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Abstract— We propose a novel stochastic agent-based model
of occupancy dynamics in a building with an arbitrary number
of zones and occupants. Simulation of the model yields time-
series of the location of each agent (occupant) over time, from
which a time-series of occupancy (number of people in each
zone) can be determined. The model is meant to provide realistic
simulation of occupancy dynamics in non-emergency situations,
which can be used for extraction of reduced order models
of occupancy dynamics for estimation and control purposes.
Comparison of the model’s prediction of mean occupancy, and
distributions of random variables such as first arrival time,
are provided against those estimated from measurements in a
commercial building.

I. I NTRODUCTION

There is an increasing demand on developing methods to
design and operate smart buildings that have high energy
efficiency, high level of thermal comfort and higher safety
and security features. Modeling occupancy dynamics in
buildings is going to be important in achieving this vision.
A model of occupancy dynamics is a mathematical tool
to predict occupancy (number of people) in a building (or
zone) as a function of time given some initial condition.
Such predictions can serve as inputs to various types of
building energy simulation tools and models in the commis-
sioning and recommissioning phase. For instance, heating
and cooling loads experienced by the building HVAC (heat-
ing, ventilation and air-conditioning) system strongly depend
on time variation of building occupancy. HVAC equipment
schedules can be optimized based on the relevant statistics,
such as means, variances, and max values of occupancy-
driven energy loads computed from the model’s predictions.
Another use of such models is real-time estimation/prediction
of zone-level occupancy in a building from limited number
of sensors. Real-time occupancy estimates are useful in
providing information to first responders and in performing
controlled egress in the event of an emergency [1]. Certain
control techniques designed to reduce HVAC energy use,
such as demand controlled ventilation, also need real-time
occupancy estimation/prediction capability. There are several
types of sensors that can provide information on occupancy
indirectly, such as CO2 sensors, video cameras, and PIR
motion detectors. However, sensor measurements alone may
not be enough for accurate estimation since they suffer from
large measurement error [2], [3]. Filtering techniques canbe
used to compensate for measurement error by fusing noisy
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sensor measurement with prediction from a model [3], [4].
This requires a model of occupancy dynamics.

Constructing a mathematical model of occupancy dynam-
ics of a building is a challenging problem because of the
high uncertainty of people movement that governs occupancy
evolution. On the lower end of the spectrum of complexity
– as well as predictive capability – are models with low
temporal and spatial resolution that only seek to predict the
whole-building (or a single zone) occupancy at an hourly
rate (see [5], [6], [7], [8], [9]). On the high-resolution
end of the spectrum of modeling possibilities lie the so-
called agent-based models. An agent-based model consists
of agents (encoded in software) in which each agent is
endowed with a set of behaviors that are designed to mimic
behavior of humans under situations that the model is meant
to study. Computer simulation with an agent-based model
can be used to generate time-traces of each occupant’s
location, which can then be aggregated to yield time traces
of occupancy of each zone or of the entire building. An
extensive literature exists on agent-based models for a diverse
set of applications during the last 40 years; see the review
article [10] and reference therein. However, almost all the
work on agent-based modeling of occupants in buildings
have been designed to study emergency situations such as
fire and explosions [11], [12], [13]. The number of works that
seek to model building occupancy dynamics during normal,
day-to-day operations using agent-based models is limited
with the exception of a few studies such as [14], [15].
The most relevant one among these is the work by Page
et al. [14]. They model the dynamics of a single person in
a single-occupancy room by a time-inhomogeneous Markov
chain with two states (in/out or occupied/unoccupied). The
model requires as input the sequence of2 × 2 transition
probability matricesP(k), k = 1, . . . , K, whereK is the
number of time periods for which the simulation is to be
conducted. Extending the model to multiple zones is much
more challenging. For a building withn zones, an occupant
can be in any one ofn + 1 states (then + 1-th state
corresponding to outside the building), so each transition
probability matrixP(k) becomes an(n+1)×(n+1) matrix,
which is not-trivial to determine from sensor measurements.
The paper by Erikson et al. [15] introduces an agent-based
model of occupants in 4 zones. The model is constructed
from measurements of people’s trajectories obtained from
cameras. This method of constructing models is not feasible
for a large building with a large number of occupants.

In this paper we propose a stochastic agent-based model
that is easily scalable to arbitrary number of zones and
arbitrary number of individuals, oragents. The proposed



model, namedMultiple Modules (MuMo) model, decides
the location of an agent over time through a set of rules
specified by a number of modules. The modules are designed
to maintain a Markov-like property of the agent dynamics
so that the location of an agent at a given time depends on
its location in the previous time. The MuMo model is thus
inspired by that in [14]; the latter is denoted by “Page model”
in the sequel. The model is constructed from information
obtained from survey of the building occupants. For greater
accuracy, the model need to be calibrated for each building,
which requires a limited amount of sensor data. Note that
for applications such as real-time estimation, an agent based
model such as the MuMo model is not appropriate. However,
reduced order models that are more appropriate for real-time
applications can be extracted from Monte Carlo simulations
of the MuMo model; which is described in [16].

We address three distinct scenarios: single-occupant
single-zone, multi-occupant single-zone and multi-occupant
multi-zone. The verification of single-occupant single-
zone scenarios has been previously reported in [4], where the
measured data were provided by author in [14]. Therefore,
in this paper we only report performance evaluation of the
model in the multi-occupant single-zone and multi-occupant
multi-zone scenarios. Verification data for these scenarios
were collected in a building in the University of Florida
campus by using a number of video cameras for a few
months. The model’s prediction of mean occupancy as a
function of time is compared with that determined from
measured data. We also compare the model’s prediction of
the distribution of key random variables such as first arrival
time and last departure time of occupants in a zone with those
estimated from measurements. The model predicts the mean
occupancy quite well. The predictions of the distributionsare
mixed in the sense that a few variables are predicted well,
but not all.

The rest of the paper is organized as follows. Section II
describes the proposed agent-based model. Section III de-
scribes the calibration procedure and the verification of the
model based on comparison with sensor measurements. The
paper concludes with a discussion in Section IV.

II. A GENT-BASED MODEL OF BUILDING OCCUPANTS

Consider a building withn zonesthat is occupied bym
individuals, calledagents. Time is measured with a discrete
time indexk = 1, . . . , K, whereK is maximum time index,
with a sample period ofT (measured in minutes). The agents
are indexed asi = 1, . . . , m. An n-zone building hasn + 1
nodesthat are indexed asj = 1, . . . , n, n + 1 (n + 1-th
node refers to the outside of the building). Thestatezi(k) ∈
{1, . . . , n + 1} of agenti at time indexk refers to the node
that the agent occupies during time interval[(k − 1)T kT ].
The occupancyxj(k) of nodej at timek is defined as the
number of entries of the set{i|zi(k) = j} and the occupancy
of a n-zones building at timek is x(k) :=

∑n

j=1 xj(k).
The proposed agent-based model, namedMultiple Mod-

ules (MuMo) Model, consists of a number of modules that
together determine the state of an agent at every time index.

The state of an agent is initialized by the first module, and
each module after the first modifies the state determined by
the previous module. The output of theℓth module is denoted
by z

(ℓ)
i (k), and the output of the last module iszi(k).

A. Description of the MuMo model

The model consists of the following modules that govern
the behavior of each agent:

0) Preliminary state generator module: An
agent-specific nominal presence probability
profile {Pi(k), k = 1, . . . , K} is specified as
input to this module for every agenti, where
Pi(k) = [Pi,1(k), . . . , Pi,n+1(k)]T and Pi,j(k) is
an approximation ofPr(zi(k) = j), the probability
that agent i occupies nodej at time k (Pr(·)
denotes probability). During simulation,z(0)

i (k),
i.e., the initial guess for thei-th agent’s state at
time k, is generated using a pseudo-random number
generator so that itspmf (probability mass function)
matches the nominal presence probability profile, i.e.,
Pr(z

(0)
i (k) = j) = Pi,j(k).

1) Damping and acceleration modules:Each agent has
an associatedprimary zonethat corresponds to the
zone in the building where the agent spends most
of time. People in primary zone (or outside building)
tend to stay there for relatively long periods, while
people in hallways or restrooms tend to leave quickly.
A damping and an acceleration module are used to
mimic this behavior by utilizingtransition probability
parameterspd and pa. The implementation of the
damping module is as follows: ifz(0)

i (k) 6= zi(k − 1)
and zi(k − 1) is either a primary zone or the outside
node, thenz(1)

i (k)← zi(k−1) with probability1−pd.
In acceleration module, ifz(0)

i (k) = zi(k−1) is either
restroom or hallway, thenz(0)

i (k) is recomputed with
probability pa by running preliminary state generator
module again, and the output is assigned toz

(1)
i (k).

If both the modules are not applicable,z
(1)
i (k) ←

z
(0)
i (k). The primary zones of the agents as well as

the parameterspd andpa are specified as inputs to the
model.

2) Scheduled activity module:This module takes care
of hard constraints on the individuals’ locations that
may arise from scheduled activities, e.g., the meetings,
classes, etc. Specifically, if an agenti has to attend
an activity located in nodej during a particular time
interval, z

(2)
i (k) = j. Otherwise,z(2)

i (k) ← z
(1)
i (k).

Those scheduled activities are inputs to the model.
3) Access module:Each agent has an access profile asso-

ciated with it that specifies which zones the agent has
access to. Ifz(2)

i (k) = j wherej is a node that agenti
does not have access to, thenz

(3)
i (k) ← zi(k − 1).

Otherwise,z(3)
i (k) ← z

(2)
i (k). This module is also

invoked for zones that have a maximum occupancy
limit, such as classrooms and restrooms, with the same
fashion. The occupancy of those zones are constantly



tracked during simulation. The access profiles have to
be specified as inputs.

The state of agenti at time k in the MuMo model is the
output of the last module, i.e.,zi(k)← z

(3)
i (k).

For the sake of concreteness, we set the initial condition
zi(0) = n + 1 for every i. The model determines the states
starting from timek = 1. Note that although the statezi(k)
is generated according toi’s nominal presence probability
profile, it does depend on its previous statezi(k − 1) due
to the effect of the damping and acceleration modules.
The damping module is a key element of the model. For
instance, during regular working hours except early morning
or evening, if a person is in his office at a particular time,
he is likely to remain there with high probability in the next
time instant. An appropriate stochastic model to capture this
behavior is a Markov chain. Although we did not specify
a Markov chain model due to the difficulty in identifying
the parameters of such a model (see Section I), the damping
module endows the agents with a Markov-like property. In
this regard, the proposed model is similar in spirit to the
model in [14].

B. MuMo model construction

Constructing a MuMo model withm agents requires
specifying for each agent its nominal presence probability
profiles, scheduled activities, and access profiles. In ad-
dition, damping and acceleration parameterspd and pa,
and maximum occupancy limits of rooms in the building,
if any, need to be specified. Because of the challenge in
tracking each individual over time using sensors, conducting
a survey of the occupants’ behavior by asking them to fill
out a questionnaire is a feasible - albeit less accurate - way
of collecting this information. The most time-consuming
part in constructing the model is specifying the nominal
presence probability profile for each agent. An algorithm
for computing the nominal presence probability profiles and
the parameters from a survey of the buildings’ occupants is
described in [16]. We refrain from giving the details here
due to lack of space.

III. M ODEL CALIBRATION AND VERIFICATION

Since the parameters that have to be specified in the model
may be difficult to determine accurately – especially when
the model is constructed from survey data – some of these
parameters may need to be calibrated. Calibration is per-
formed by comparing parameters and distributions of certain
zone-level or building-level random variables predicted by
the model with that estimated from measurements. Model
verification is also conducted similarly: by comparing the
statistics of these variables predicted by the model with that
estimated from measurements. The parameters and variables
mentioned above are the following:

1) Mean occupancy of zone/building: The mean occu-
pancy of zonej at each time indexk is defined as
E[xj(k)], whereE[.] denotes expectation.

2) First arrival time (in a day): the time when the zone
or building gets occupied for the first time during a

day. More precisely, for each day, ifxj(k) ≥ θempty

andxj(ℓ) < θempty for all ℓ < k, whereθempty > 0 is
an appropriately chosen parameter, thenk is the first
arrival time of zonej in that day.

3) Last departure time (in a day): the last time during a
day at which the zone or building becomes unoccupied.

4) Cumulative occupied duration (in a day): the total
length of time in a day during which the occupancy
in a zone or building is above a thresholdθoccp,
not necessarily continuously. More precisely, it is the
number of elements of the set{k | xj(k) ≥ θoccp, 1 ≤
k ≤ 24× 60/T } for each day.

5) Number of occupied/unoccupied transitions (in a
day): the number of transitions between “occupied”
and “unoccupied” status in a day for a zone or
building. Specifically, it is the number of elements
of the set {k | xj(k) ≥ θempty, xj(k + 1) <
θempty}

⋃{k | xj(k) < θempty, xj(k + 1) ≥ θempty},
for 1 ≤ k < 24× 60/T for each day.

Monte-Carlo simulations of the model are conducted, and
the resulting multiple time-series (each one-week long) are
used to estimate the pmfs of these random variables. Those
pmfs are also estimated from the repeated segments of one-
week-long processed sensor data (measurements). Compari-
son between the two provides an idea of how well the agent-
based model can predict such zone-level or building-level
phenomenon.

To quantitatively compare the time series of mean oc-
cupancy of between the model predictions and measure-
ments, we simply use normalized root mean square deviation
(NRMSD). Let x(k) and y(k), k = 1, . . . , K be two time
sequences, the NRMSD betweenx andy is defined as

NRMSD(x, y) =
‖x− y‖/

√
K

max z −min z
, (1)

where x = [x(1), . . . , x(K)]T , y = [y(1), . . . , y(K)]T ,
z = [xT , yT ]T and ‖ · ‖ is Euclidean norm. To compare
the predicted distributions of those variables by the model
with that estimated from measurements, we use the Kullback-
Leibler (K-L) divergence. The K-L divergence is frequently
used to compute distances between two densitiesp and q,
and is defined as [17]

d(p‖q) =
∑

i

pi log(
pi

qi

). (2)

Note that the K-L divergence is only a pseudo-metric since
d(p‖q) 6= d(q‖p) in general. For a random variableX , pMumo

X

and pmeas
X denote the pmfs ofX predicted by the Mumo

model and that estimated from measurements.

A. Model calibration procedure

Calibrating the parameters of the MuMo model becomes
necessary when the information used in model construction
may not be accurate. We choose a fraction of the measured
occupancy data for calibration and call it thetraining data.
The rest of the data, calledverification data, are not used for
calibration. The statistics of the random variables described



Fig. 1. Floor plan of the 3rd floor of MAE-B building in the University of
Florida campus used in verification of the MuMo model for the MOMZ
(multi-occupant multi-zone) scenario. Zone 15 is the room that is used
for verification of the model in the MOSZ (multi-occupant single-zone)
scenario. The triangle and stars indicates the cameras using in MOSZ and
MOMZ scenario respectively.

in the beginning of Section III are first estimated by using
only the calibration data. Calibration is then performed
by changing the agent based model – from the baseline
constructed from the survey – so that the difference between
the model predictions and measurements, as measured by
the values of NRMSD and K-L divergence, is small. To
keep the calibration process tractable, we modify only a
few parameters, such as the arrival and departure times of
the “early bird” and the “night owl”, and the transition
probability parameterspd and pa. The calibration process
is described in [16].

B. Model verification

We consider two scenarios: one in which the building
consists of a single zone and the other with multiple zones.

1) Model verification: the MOSZ (multi-occupant single-
zone) scenario:The MOSZ scenario studied in this paper
corresponds to a room in a building in the University of
Florida campus, shown as zone 15 in Figure 1. The room
housed 5 graduate students who worked there regularly and 3
undergraduate research assistants who used it intermittently.
Apart from these, the model also contains7 additional agents
(visitors), who were used to simulate students who would
occasionally visit the room to meet with a few of the
graduate students (teaching assistants). The MuMo model
was constructed by conducting a survey of the occupants to
determine the subset of the parameters that are relevant to the
MOSZ scenario. We collected occupancy data for this room
by using a wireless video camera to monitor the entrance
to the room. Data was collected for a period of about four
months (during January - April 2010). A motion detection
algorithm was used to save only those frames when motion
was detected. Manual counting of the number of people was
performed to ensure that measurements obtained were of
high accuracy. Due to technical problems of video capturing,
only 70 days’ data could be collected from a total16 weeks
of video feed.

One thousand Monte-Carlo simulations (each of one week
duration) are conducted with the proposed model. The statis-
tics of variables other than the mean occupancy, which are
described in the beginning of Section III, are estimated from
data (measurements and simulation time traces). Here we
provide comparison of statistics of variables between the two
only for weekdays. The thresholds used in computing first
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Fig. 2. Mean occupancy estimate in a MOSZ scenario (for zone 15 in
Figure 1) from three sources: measurements (dashed red), MuMo model
prediction (dotted blue), and survey (black).
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Fig. 3. Verification of the MuMo model in the MOSZ scenario: comparison
between the predictions (dotted blue) and measurements (dashed red). The
distributions are estimated from 1000 Monte-Carlo simulations of the model
and from about 12 weeks of measurements. Comparison is for weekdays
only, with binsize=1/2 hour.

arrival times etc. are:θempty = θoccp = 0.5. Two weeks
of measurements are used as training data to calibrate the
model, while the remaining data are used for verification.
Calibration of the model led to a change of the transition
probability parameterpd to 0.8 except for visitors. The
nominal presence probability profiles of one early bird and
one night owl were also adjusted during calibration. These
two agents were identified from the survey of the occupants
of the room.

Mean occupancy at each time was computed by averaging
over all the measurements available for that time. Figure 2
compares the mean occupancy predicted by the proposed
model with that computed from measurements, and that
computed from survey. The mean occupancy estimated from
survey is simply the sum of the probability of each agent
being “inside”, where these probabilities are determined from
the nominal presence probability profiles. The prediction
errors for mean occupancy are NRMSD(xMuMo, xmeas) =
0.0877, while NRMSD(xsurvey , xmeas) = 0.1202, where
xMuMo, xmeas andxsurvey are the mean occupancy of the
zone over one week computed from the model’s prediction,
measurements and survey. From the figure, the error in mean
occupancy predication, expressed as a fraction of the mean
occupancy, is largest during the weekends. We believe the
reason is that since the occupants have a greater variability
in using the building during the weekends, they are not able
to provide accurate description of their own behavior in the
survey.

Figure 3(a) and (b) show the pmfs of the first arrival



d(pmeas
X

‖pMuMo
X

) MOSZ MOMZ
First arrival time 0.2388 0.5667
Last departure time 0.1900 0.7496
Cumulative occupied duration 0.3261 0.8814
Number of occupied/unoccupied transitions0.0810 0.0248

TABLE I

K-L DIVERGENCE BETWEENpMUMO
X

AND pMEAS
X

IN THE MOSZ AND

MOMZ SCENARIO.

times and last departure times of a day as predicted by the
MuMo model as well as that estimated from measurements,
respectively. We see from Figure 3(a) that the shape of the
distribution is predicted correctly, but there are a few late
first arrivals around noon that the model does not capture.
Similarly, Figure 3(b) shows that the overall trend of last
departure time is predicted correctly by the model, though
it does not capture all the peaks in the pmf. There is
a small peak in the measured pmf at around5 pm that
correspond to occupants leaving the room in the evening
that the model does not predict. This may be due to the night
owl occasionally leaving earlier than usual. The distributions
of cumulative occupied duration are shown in Figure 3(c).
The mismatch is larger in case of the cumulative occupied
duration: there are several peaks in the measured pmf that the
model does not predict. The overall trend of the distribution
is predicted correctly. Figure 3(d) shows the distributionof
the number of occupied/unoccupied transitions in a day. The
MuMo model predicts the distribution quite well, especially
the probabilities of the number of transitions greater than5.
The K-L divergences between the models’ predictions and
the measured data are shown in Table I, which confirms that
the largest difference between the model and measured data
is cumulative occupied duration.

We believe part of the reason for the mismatch between
model’s prediction and that estimated from measurements, as
well as that for the non-smoothness in the measured pmfs, is
the limited amount of verification data. Specifically, thereare
only 50 samples of the variable cumulative occupied duration
that the measured distributions are estimated from, since
measurements from each weekday leads to only one sample.
In contrast, the pmfs from the model are estimated from
5000 samples. Therefore, the estimates from the measured
data may have larger error.

2) Model verification: the MOMZ (multi-occupant multi-
zone) scenario:The MOMZ scenario studied here corre-
sponds to the third floor of the MAE-B building in the Uni-
versity of Florida campus (see Figure 1). For the remainder
of this paper, we’ll refer to the 3rd floor of the MAE-B
building as the “building”. About 51 people (faculty, staff,
graduate and undergraduate research assistants and visitors)
used the building at the time of survey. Measurements were
collected by two video cameras targeting on each of the two
entrances of the building and processed by motion detection
algorithm and manual counting. Net flow rate of occupants
into the building was obtained by adding the net flow rate
across each of these camera’s field of view. Measurements
presented in this study were collected during a period of
about 7 weeks during May - July, 2010.

Data for model construction was collected by a survey
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Fig. 4. Estimate of mean occupancy (for the building shown inFigure 1)
in a MOMZ scenario from three sources: measurements (dashedred),
MuMo model prediction (dotted blue), and survey (black).

of the occupants of the building. The survey was not as
extensive as that in the MOSZ scenario (see [16] for the
details). Two weeks of measurements were used as training
data for calibration, while the remaining data were used
as verification data. Model calibration led to the following
values of parameters:pd = 0.8, pa = 0.5, α = 0.1. An
early bird and a night-owl were identified from the survey,
whose arrival time and departure time were changed during
calibration. Due to the simplicity of visitors’ behavior, only
pd = 0.5 was used in the model of visitors.
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Fig. 5. Verification of the MuMo model in the MOMZ scenario:
comparison between predictions (dotted blue) and measurements (dashed
red). All variables correspond to total building occupancy. Comparison is
for weekdays only, with binsize=1/2 hour.

Figure 4 compares the mean value of occupancy of the
entire building estimated from three sources: measurements,
prediction by the MuMo model, and the survey. Because of
the limited number of measurements available, the measured
mean occupancy is computed only for a 24-hour period by
averaging over the measurements obtained for 30 weekdays.
Model prediction of mean occupancy is computed by av-
eraging over 5000 samples from Monte-Carlo simulations.
The mean occupancy estimated from survey was computed
in the manner described in Section III-B.1. The predic-
tion errors are NRMSD(xMuMo, xmeas) = 0.0995, while
NRMSD(xsurvey , xmeas) = 0.2118. The NRMSD value of
survey prediction is much larger than that of the model
prediction, which is interesting since the model is generated
from survey data as well. However, the agent-based model
mimics various aspects of people’s behavior, including the
fact that they do not remain inside the building for the whole
duration between arrival and departure. Therefore it is able
to predict the trend of building occupancy better than the
survey. The large over-prediction of mean occupancy by
direct processing of survey information shows that using
schedule information, even after accounting for probabilities
of presence obtained from a survey, may lead to poor
estimation of building occupancy.



Figures 5(a)-(e) show the pmfs of variables such as first
arrival time (for the whole building) as estimated from 1000
Monte-Carlo simulations of the MuMo model. They also
show the distributions estimated from sensor measurements
(verification data) for the same variables. The thresholds
used are:θempty = θoccp = 3. A larger threshold is used
here compared to the previous scenario since we are dealing
with a building with more than50 occupants. We see from
Figure 5(a) that the model does predict the location of the
main peak in the pmf of the first arrival time quite well,
though it misses a much smaller peak corresponding to late
first arrivals. The model’s prediction of the last departure
time is poorer than that for the first arrival time, as seen from
Figure 5(b). There is a large probability of the last departure
time being close to6 pm that the model does not reproduce. It
also over-predicts the probability of very late (past midnight)
last departures. Since the last departure time of a building
is determined by the behavior of a few critical occupants,
the model’s inability to predict these statistics may come
from the inaccuracy of the information obtained from the
survey. A possible cause of the mismatch is that the night-owl
occupants misjudged how often they leave early when they
provided this information in the survey. Figure 5(c) shows the
distributions of the cumulative occupied duration in a day.
As in the multi-occupant single-zone scenario, the prediction
of this variable is poorer than the rest. Figure 5(d) shows the
distribution of the number of transitions between occupied
and unoccupied status, which is predicted by the model quite
accurately.

Overall, while the MuMo model predicts the general trend
of the distributions of these variables, it does not seem to
predict the values of the probabilities accurately. The K-L
divergences between the model’s predictions and measured
data are shown in Table I as well. In the table, we see that
the model’s prediction in the multi-zone case is poorer than
that in the single-zone scenario. A higher error in the multi-
zone scenario is expected since survey-based data introduces
more inaccuracies in an agent-based model as the number of
agents increases. Another reason for the mismatch may be
the limited amount of measured data. In fact, this factor may
be playing an even stronger role in the multi-occupant multi-
zone scenario since the verification data were collected from
measurements of only five weeks. Therefore, a significant
share of the difference may come from the measured data
and not the model.

IV. SUMMARY AND FUTURE WORK

We presented a novel stochastic agent-based model of
occupancy dynamics in a building with an arbitrary number
of zones and occupants. The proposed MuMo model can be
used to simulate the evolution of occupancy over time during
non-emergency situations. In the model verification, it was
found through comparison with measured data that it predicts
certain variables more accurately than others. In general,
mean occupancy, and the marginal distributions of the first
arrival time and number of transitions between occupied
and unoccupied states are predicted well. However, the

distribution of last departure time and cumulative occupied
duration are not predicted well. The inputs that have to be
provided to the model usually have to be collected from
the occupants by conducting a questionnaire-based survey.
For situations involving a large number of agents, gathering
enough information to specify the input to the model may
become a hurdle in using such a model.
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