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Abstract— We propose a novel stochastic agent-based model sensor measurement with prediction from a model [3], [4].
of occupancy dynamics in a building with an arbitrary number  This requires a model of occupancy dynamics.
of zones and occupants. Simulation of the model yields time- Constructing a mathematical model of occupancy dynam-

series of the location of each agent (occupant) over time,dm . f a building i hall . bl b £ 1h
which a time-series of occupancy (number of people in each ICS OF a building IS a challenging problem because ot the

zone) can be determined. The model is meant to provide reatis ~ high uncertainty of people movement that governs occupancy
simulation of occupancy dynamics in non-emergency situatins, evolution. On the lower end of the spectrum of complexity
which can be used for extraction of reduced order models _— g5 well as predictive capability — are models with low
of occupancy dynamics for estimation and control purposes. emnoral and spatial resolution that only seek to prediet th

Comparison of the model’s prediction of mean occupancy, and hole-buildi inal i hourl
distributions of random variables such as first arrival time, ~Whole-buliding (or a single zone) occupancy at an hourly

are provided against those estimated from measurements in a fate (see [5], [6], [7], [8], [9]). On the high-resolution
commercial building. end of the spectrum of modeling possibilities lie the so-

called agent-based models. An agent-based model consists
|. INTRODUCTION of agents (encoded in software) in which each agent is
endowed with a set of behaviors that are designed to mimic
There is an increasing demand on developing methods fghavior of humans under situations that the model is meant
design and operate smart buildings that have high energy study. Computer simulation with an agent-based model
efficiency, high level of thermal comfort and higher safetyyan be used to generate time-traces of each occupant’s
and security features. Modeling occupancy dynamics igcation, which can then be aggregated to yield time traces
buildings is going to be important in achieving this vision.of occupancy of each zone or of the entire building. An
A model of occupancy dynamics is a mathematical todbxtensive literature exists on agent-based models forexgtiv
to predict occupancy (number of people) in a building (0ket of applications during the last 40 years; see the review
zone) as a function of time given some initial conditiongyrticle [10] and reference therein. However, almost all the
Such predictions can serve as inputs to various types @fork on agent-based modeling of occupants in buildings
building energy simulation tools and models in the commishave been designed to study emergency situations such as
sioning and recommissioning phase. For instance, heatifige and explosions [11], [12], [13]. The number of works that
and cooling loads experienced by the building HVAC (heatseek to model building occupancy dynamics during normal,
ing, ventilation and air-conditioning) system stronglypeed  gay-to-day operations using agent-based models is limited
on time variation of building occupancy. HVAC equipmentyjith the exception of a few studies such as [14], [15].
schedules can be optimized based on the relevant statisti¢he most relevant one among these is the work by Page
such as means, variances, and max values of occupangy-l. [14]. They model the dynamics of a single person in
driven energy loads computed from the model’s predictiong, single-occupancy room by a time-inhomogeneous Markov
Another use of such models is real-time estimation/prafict chain with two states (infout or occupied/unoccupied). The
of zone-level occupancy in a building from limited numbelngdel requires as input the sequence2ok 2 transition
of sensors. Real-time occupancy estimates are useful ﬁb‘f‘obability matricesP(k),k = 1,..., K, where K is the
providing information to first responders and in performinthumper of time periods for which the simulation is to be
controlled egress in the event of an emergency [1]. Certagbnducted. Extending the model to multiple zones is much
control techniques designed to reduce HVAC energy Usgore challenging. For a building with zones, an occupant
such as demand controlled ventilation, also need real-tim&n pe in any one of. + 1 states (then + 1-th state
occupancy estimation/prediction capability. There av@s®#  corresponding to outside the building), so each transition
types of sensors that can provide information on occupangyobability matrixP (k) becomes aftn+1) x (n+1) matrix,
indirectly, such as CO2 sensors, video cameras, and P{fhich is not-trivial to determine from sensor measurements
motion detectors. HOWeVer, sensor measurements alone mﬁye paper by Erikson et a|. [15] introduces an agent-based
not be enough for accurate estimation since they suffer frofgdel of occupants in 4 zones. The model is constructed
large measurement error [2], [3]. Filtering techniques ban from measurements of people’s trajectories obtained from
used to compensate for measurement error by fusing noig§meras. This method of constructing models is not feasible
for a large building with a large number of occupants.
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model, namedMultiple Modules(MuMo) model, decides The state of an agent is initialized by the first module, and
the location of an agent over time through a set of rulesach module after the first modifies the state determined by
specified by a number of modules. The modules are designtie previous module. The output of tA& module is denoted

to maintain a Markov-like property of the agent dynamicdy zy)(l@), and the output of the last module ig(k).

so that the location of an agent at a given time depends on
its location in the previous time. The MuMo model is thuéA'
inspired by that in [14]; the latter is denoted by “Page mbdel

Description of the MuMo model
The model consists of the following modules that govern

in the sequel. The model is constructed from informatiofhe behavior of each agent:

obtained from survey of the building occupants. For greater 0)
accuracy, the model need to be calibrated for each building,
which requires a limited amount of sensor data. Note that
for applications such as real-time estimation, an ageredas
model such as the MuMo model is not appropriate. However,
reduced order models that are more appropriate for rea-tim
applications can be extracted from Monte Carlo simulations
of the MuMo model; which is described in [16].

We address three distinct scenarios: single-occupant
single-zone, multi-occupant single-zone and multi-oecup
multi-zone. The verification of single-occupant single-
zone scenarios has been previously reported in [4], where th
measured data were provided by author in [14]. Therefore,
in this paper we only report performance evaluation of the 1)
model in the multi-occupant single-zone and multi-occupan
multi-zone scenarios. Verification data for these scesario
were collected in a building in the University of Florida
campus by using a number of video cameras for a few
months. The model’s prediction of mean occupancy as a
function of time is compared with that determined from
measured data. We also compare the model’s prediction of
the distribution of key random variables such as first atriva
time and last departure time of occupants in a zone with those
estimated from measurements. The model predicts the mean
occupancy quite well. The predictions of the distributians
mixed in the sense that a few variables are predicted well,
but not all.

The rest of the paper is organized as follows. Section I
describes the proposed agent-based model. Section Il de-
scribes the calibration procedure and the verification ef th
model based on comparison with sensor measurements. The
paper concludes with a discussion in Section V.

Il. AGENT-BASED MODEL OF BUILDING OCCUPANTS

Consider a building withn zonesthat is occupied byn
individuals, calledagents Time is measured with a discrete
time indexk = 1,..., K, whereK is maximum time index,
with a sample period of’ (measured in minutes). The agents
are indexed ag =1, ..., m. An n-zone building has: + 1
nodesthat are indexed ag = 1,...,n,n + 1 (n + 1-th
node refers to the outside of the building). Tétatez; (k) €
{1,...,n+ 1} of agenti at time indexk refers to the node
that the agent occupies during time inter{@ — 1)T" kT].
The occupancy;(k) of nodej at timek is defined as the
number of entries of the s¢i|z;(k) = j} and the occupancy
of an-zones building at timé: is (k) := >°7_, (k).

The proposed agent-based model, narivedtiple Mod-
ules (MuMo) Model consists of a number of modules that
together determine the state of an agent at every time index.

2)

3)

Preliminary  state  generator module: An
agent-specific nominal presence probability
profile {P;(k),k 1,...,K} is specified as
input to this module for every agent, where
Pz(k) = [Pi,l(k)a R ,Pl'_’n+1(k)]T and Rg(k) is

an approximation ofPr(z;(k) = j), the probability
that agent:i occupies node; at time k& (Pr()
denotes probability). During simulation,zfo)(k),

i.e., the initial guess for the-th agent’s state at
time k, is generated using a pseudo-random number
generator so that itpmf (probability mass function)
matches the nominal presence probability profile, i.e.,
Pr(=" (k) = j) = P, ; (k).

Damping and acceleration modulesEach agent has
an associategrimary zonethat corresponds to the
zone in the building where the agent spends most
of time. People in primary zone (or outside building)
tend to stay there for relatively long periods, while
people in hallways or restrooms tend to leave quickly.
A damping and an acceleration module are used to
mimic this behavior by utilizingransition probability
parametersp; and p,. The implementation of the
damping module is as follows: iii(o)(k) £ zi(k—1)
andz;(k — 1) is either a primary zone or the outside
node, there™ (k) — z;(k—1) with probability 1 —p,.

In acceleration module, iffo)(k) = z;(k—1) is either
restroom or hallway, thelzgo)(k:) is recomputed with
probability p, by running preliminary state generator
module again, and the output is assignedzﬁ)(k).

If both the modules are not applicablei(,l)(k) —
zi(o)(k:). The primary zones of the agents as well as
the parameterg, andp, are specified as inputs to the
model.

Scheduled activity module: This module takes care
of hard constraints on the individuals’ locations that
may arise from scheduled activities, e.g., the meetings,
classes, etc. Specifically, if an agenhas to attend
an activity located in nodg during a particular time
interval, zi(z)(k) =j. Otherwise,zfQ)(k) — zfl)(k).
Those scheduled activities are inputs to the model.
Access moduleEach agent has an access profile asso-
ciated with it that specifies which zones the agent has
access to. Ifzi(Q)(k) = j wherej is a node that agerit
does not have access to, theﬁ)(k) — zi(k —1).
Otherwise,zi@)(k:) — zi(g)(k). This module is also
invoked for zones that have a maximum occupancy
limit, such as classrooms and restrooms, with the same
fashion. The occupancy of those zones are constantly



tracked during simulation. The access profiles have to  day. More precisely, for each day, if; (k) > Oempty

be specified as inputs. andz;(£) < Oempty for all £ < k, wherefempey, > 0is
The state of agent at time & in the MuMo model is the an appropriately chosen parameter, tfieis the first
output of the last module, i.ez (k) — 2% (k). arrival time of zonej in that day.

For the sake of concreteness, we set the initial condition 3) Last departure time (in a day}he last time during a
z(0) = n + 1 for everyi. The model determines the states day at which the zone or building becomes unoccupied.
starting from timek = 1. Note that although the statg(k) 4) Cumulative occupied duration (in a dayjhe total
is generated according tds nominal presence probability length of time in a day during which the occupancy
profile, it does depend on its previous staj¢k — 1) due in a zone or building is above a threshofi.,,

to the effect of the damping and acceleration modules.  Not necessarily continuously. More precisely, it is the
The damping module is a key element of the model. For ~ nhumber of elements of the s¢k | z;(k) > focep, 1 <

instance, during regular working hours except early maynin k <24 x 60/T'} for each day.

or evening, if a person is in his office at a particular time, 5) Number of occupied/unoccupied transitions (in a
he is likely to remain there with high probability in the next day) the number of transitions between “occupied”
time instant. An appropriate stochastic model to captuie th and “unoccupied” status in a day for a zone or
behavior is a Markov chain. Although we did not specify building. Specifically, it is the number of elements
a Markov chain model due to the difficulty in identifying of the set{k | z;(k) = Ocmpty,zj(k + 1) <

the parameters of such a model (see Section ), the damping  fempty} U{E | (k) < bempty, 2 (k + 1) = Oempty },
module endows the agents with a Markov-like property. In ~ for 1 <k <24 x 60/T for each day.
this regard, the proposed model is similar in spirit to the Monte-Carlo simulations of the model are conducted, and
model in [14]. the resulting multiple time-series (each one-week long) ar
used to estimate the pmfs of these random variables. Those
pmfs are also estimated from the repeated segments of one-
Constructing a MuMo model withm agents requires week-long processed sensor data (measurements). Compari-
specifying for each agent its nominal presence probabilityon between the two provides an idea of how well the agent-
profiles, scheduled activities, and access profiles. In agased model can predict such zone-level or building-level
dition, damping and acceleration parametgs and p,,  phenomenon.
and maximum occupancy limits of rooms in the building, To quantitatively compare the time series of mean oc-
if any, need to be specified. Because of the challenge #upancy of between the model predictions and measure-
tracking each individual over time using sensors, condgcti ments, we simply use normalized root mean square deviation
a survey of the occupants’ behavior by asking them to filNRMSD). Letz(k) andy(k), k = 1,..., K be two time

out a questionnaire is a feasible - albeit less accurate - wagquences, the NRMSD betweerandy is defined as
of collecting this information. The most time-consuming

B. MuMo model construction

part in constructing the model is specifying the nominal NRMSD(z, ) = H«’C—?/||//?7 @
presence probability profile for each agent. An algorithm max z — min z

for computing the nominal presence probability profiles angihere » = [2(1),...,2z(K)]T, v = [y(1),...,y(K)]T,

the parameters from a survey of the buildings’ occupants is — [T ;7|7 and || - || is Euclidean norm. To compare
described in [16]. We refrain from giving the details herahe predicted distributions of those variables by the model
due to lack of space. with that estimated from measurements, we use the Kullback-

Leibler (K-L) divergence. The K-L divergence is frequently

IIl. M ODEL CALIBRATION AND VERIFICATION ; .
. —— sed to compute distances between two densjtiend ¢,
Since the parameters that have to be specified in the mo (?'ld is defined as [17]

may be difficult to determine accurately — especially when ‘
the model is constructed from survey data — some of these d(pllq) = Zpi log(&). 2)
parameters may need to be calibrated. Calibration is per- i di

formed by comparing parameters and distributions of aertaote that the K-L divergence is only a pseudo-metric since
zone-level or building-level random variables predictgd b j|14) £ d(q||p) in general. For a random variahlé, pHumo
the model with that estimated from measurements. Modglq pTeas denote the pmfs ofX predicted by the Mumo
verification is also conducted similarly: by comparing thgngdel and that estimated from measurements.
statistics of these variables predicted by the model witt th
estimated from measurements. The parameters and variabfesModel calibration procedure
mentioned above are the following: Calibrating the parameters of the MuMo model becomes
1) Mean occupancy of zone/buildnghe mean occu- necessary when the information used in model construction
pancy of zonej at each time index is defined as may not be accurate. We choose a fraction of the measured
E[z;(k)], whereE][.] denotes expectation. occupancy data for calibration and call it thaining data
2) First arrival time (in a day) the time when the zone The rest of the data, callecrification dataare not used for
or building gets occupied for the first time during acalibration. The statistics of the random variables déstti
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Fig. 1. Floor plan of the 3rd floor of MAE-B building in the Ursity of Fig. 2.
Florida campus used in verification of the MuMo model for th©MZ
(multi-occupant multi-zone) scenario. Zone 15 is the rodmat tis used
for verification of the model in the MOSZ (multi-occupant glie-zone)
scenario. The triangle and stars indicates the camerag usiMOSZ and
MOMZ scenario respectively.

Mean occupancy estimate in a MOSZ scenario (for zdnénl
Figure 1) from three sources: measurements (dashed redyloMuodel
prediction (dotted blue), and survey (black).
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only the calibration data. Calibration is then performed Time (houn ime thour)

by changing the agent based model — from the baseline (@ Firstarrival time (b) Last departure time

constructed from the survey — so that the difference between . 04—

the model predictions and measurements, as measured LE %1 2 Eo.2

the values of NRMSD and K-L divergence, is s_maII. To 0 T 18 % R T

keep the calibration process tractable, we modify only a Time (hour)

few parameters, such as the arrival and departure times ofc) Cumulative occupied duration(d) No. of occupied/unoccupied

the “early bird” and the “night owl”, and the transition transitions

probability parameterg, and p,. The calibration process Fig. 3. Verification of the MuMo model in the MOSZ scenarionggarison

is described in [16]_ between the predictions (dotted blue) and measuremensbddared). The
distributions are estimated from 1000 Monte-Carlo simaiet of the model

B. Model verification and from about 12 weeks of measurements. Comparison is fekdags

only, with binsize=1/2 hour.
We consider two scenarios: one in which the building

consists of a single zone and the other with multiple zones.

1) Model verification: the MOSZ (multi-occupant single-arrival times etc. arefempty = foccp = 0.5. Two weeks
zone) scenario:The MOSZ scenario studied in this paperof measurements are used as training data to calibrate the
corresponds to a room in a building in the University ofmodel, while the remaining data are used for verification.
Florida campus, shown as zone 15 in Figure 1. The roo@alibration of the model led to a change of the transition
housed 5 graduate students who worked there regularly angg®bability parametemp,; to 0.8 except for visitors. The
undergraduate research assistants who used it interthittennominal presence probability profiles of one early bird and
Apart from these, the model also contaihadditional agents one night owl were also adjusted during calibration. These
(visitors), who were used to simulate students who woultivo agents were identified from the survey of the occupants
occasionally visit the room to meet with a few of theof the room.
graduate students (teaching assistants). The MuMo modelMean occupancy at each time was computed by averaging
was constructed by conducting a survey of the occupants ¢wer all the measurements available for that time. Figure 2
determine the subset of the parameters that are relevard to tompares the mean occupancy predicted by the proposed
MOSZ scenario. We collected occupancy data for this roommodel with that computed from measurements, and that
by using a wireless video camera to monitor the entrana®mputed from survey. The mean occupancy estimated from
to the room. Data was collected for a period of about fousurvey is simply the sum of the probability of each agent
months (during January - April 2010). A motion detectiorbeing “inside”, where these probabilities are determimechf
algorithm was used to save only those frames when motidghe nominal presence probability profiles. The prediction
was detected. Manual counting of the number of people wasrors for mean occupancy are NRMGDRun10s Tmeas) =
performed to ensure that measurements obtained were WH877, while NRMSD(zsyrvey, Tmeas) = 0.1202, where
high accuracy. Due to technical problems of video capturingasuazo, Tmeas aNdzsyrvey are the mean occupancy of the
only 70 days’ data could be collected from a tofal weeks zone over one week computed from the model's prediction,
of video feed. measurements and survey. From the figure, the error in mean

One thousand Monte-Carlo simulations (each of one weelccupancy predication, expressed as a fraction of the mean
duration) are conducted with the proposed model. The statisccupancy, is largest during the weekends. We believe the
tics of variables other than the mean occupancy, which areason is that since the occupants have a greater vagabilit
described in the beginning of Section Ill, are estimatednfro in using the building during the weekends, they are not able
data (measurements and simulation time traces). Here we provide accurate description of their own behavior in the
provide comparison of statistics of variables betweenwoe t survey.
only for weekdays. The thresholds used in computing first Figure 3(a) and (b) show the pmfs of the first arrival



d(pEa ™oy MOSZ | MOMZ 20
First arrival time 0.2388 | 0.5667 g
Last departure time 0.1900 | 0.7496 310
Cumulative occupied duration 0.3261 | 0.8814 O e
Number of occupied/unoccupied transitions0.0810 | 0.0248 0 6 g2 18 24
TABLE |
K-L DIVERGENCE BETWEENPE/I(UMO AND pYEAS |N THE MOSZ AND Fig. 4. Estimate of mean occupancy (for the building showfigure 1)

MOMZ in a MOMZ scenario from three sources: measurements (daste)l
SCENARIO. MuMo model prediction (dotted blue), and survey (black).

times and last departure times of a day as predicted by th -
X of the occupants of the building. The survey was not as
MuMo model as well as that estimated from measurements . . .
. . eXtensive as that in the MOSZ scenario (see [16] for the
respectively. We see from Figure 3(a) that the shape of thg .~ .
NS i etails). Two weeks of measurements were used as training
distribution is predicted correctly, but there are a fevelat

! . data for calibration, while the remaining data were used
first arrivals around noon that the model does not capture, g

Similarly, Figure 3(b) shows that the overall trend of lasES verification data. Model calibration led to the following

. . . alues of parametergiy; = 0.8, p, = 0.5, a = 0.1. An
_departure time is predicted correctly_by the model, thouQ_}éarly bird and a night-owl were identified from the survey,
it does not capture all the peaks in the pmf. There is

a small peak in the measured pmf at arolmgm that whose arrival time and departure time were changed during

. . . calibration. Due to the simplicity of visitors’ behavio
correspond to occupants leaving the room in the evenin phctty mly

that the model does not predict. This may be due to the nigﬁqf = 0.5 was used in the model of visitors.
owl occasionally leaving earlier than usual. The distridnus

X ! i - o 0.5 .02
of cumulative occupied duration are shown in Figure 3(c). g A 50.1\ :
The r_nismatch is larger in case Qf the cumulative occupied 0 TR T 0N — o
duration: there are several peaks in the measured pmf that th Time (hour) Time (hour)
model does not predict. The overall trend of the distributio (a) First arrival time (b) Last departure time

is predicted correctly. Figure 3(d) shows the distributain o
the number of occupied/unoccupied transitions in a day. The 50#
MuMo model predicts the distribution quite well, espegiall
the probabilities of the number of transitions greater than , , _ _ _
The K-L divergences between the models’ predictions and (c) Cumulative occupied duratlong:ignsl\ilt(i)dnsof occupied/unoccupied
the measured data are shown in Table I, which confirms that

the largest difference between the model and measured d&& 5 Verification of the MuMo model in the MOMZ scenario:
. . . . comparison between predictions (dotted blue) and measmntsn{dashed
is cumulative occupied duration.

) ) red). All variables correspond to total building occupan@pmparison is
We believe part of the reason for the mismatch betweenr weekdays only, with binsize=1/2 hour.

model’s prediction and that estimated from measuremests, a
well as that for the non-smoothness in the measured pmfs, isFigure 4 compares the mean value of occupancy of the
the limited amount of verification data. Specifically, thare entire building estimated from three sources: measuresnent
only 50 samples of the variable cumulative occupied duratioprediction by the MuMo model, and the survey. Because of
that the measured distributions are estimated from, sintke limited number of measurements available, the measured
measurements from each weekday leads to only one samptean occupancy is computed only for a 24-hour period by
In contrast, the pmfs from the model are estimated froraveraging over the measurements obtained for 30 weekdays.
5000 samples. Therefore, the estimates from the measurbtbdel prediction of mean occupancy is computed by av-
data may have larger error. eraging over 5000 samples from Monte-Carlo simulations.
2) Model verification: the MOMZ (multi-occupant multi- The mean occupancy estimated from survey was computed
zone) scenario:The MOMZ scenario studied here corre-in the manner described in Section IlI-B.1. The predic-
sponds to the third floor of the MAE-B building in the Uni- tion errors are NRMSDxprunr0, Timeas) = 0.0995, while
versity of Florida campus (see Figure 1). For the remaind®RMSD(z sy vey s Tmeas) = 0.2118. The NRMSD value of
of this paper, we’'ll refer to the 3rd floor of the MAE-B survey prediction is much larger than that of the model
building as the “building”. About 51 people (faculty, staff prediction, which is interesting since the model is gerestat
graduate and undergraduate research assistants andsyisittrom survey data as well. However, the agent-based model
used the building at the time of survey. Measurements weraimics various aspects of people’s behavior, including the
collected by two video cameras targeting on each of the twiact that they do not remain inside the building for the whole
entrances of the building and processed by motion detectidiuration between arrival and departure. Therefore it i€ abl
algorithm and manual counting. Net flow rate of occupant® predict the trend of building occupancy better than the
into the building was obtained by adding the net flow ratsurvey. The large over-prediction of mean occupancy by
across each of these camera’s field of view. Measurementsect processing of survey information shows that using
presented in this study were collected during a period afchedule information, even after accounting for probtedi
about 7 weeks during May - July, 2010. of presence obtained from a survey, may lead to poor
Data for model construction was collected by a survegstimation of building occupancy.

el
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Figures 5(a)-(e) show the pmfs of variables such as firslistribution of last departure time and cumulative occdpie
arrival time (for the whole building) as estimated from 100@luration are not predicted well. The inputs that have to be
Monte-Carlo simulations of the MuMo model. They alsoprovided to the model usually have to be collected from
show the distributions estimated from sensor measuremeiit® occupants by conducting a questionnaire-based survey.
(verification data) for the same variables. The threshold=or situations involving a large number of agents, gatlerin
used ar€fempty = foccp = 3. A larger threshold is used enough information to specify the input to the model may

here compared to the previous scenario since we are dealingcome a hurdle in using such a model.

with a building with more thars0 occupants. We see from
Figure 5(a) that the model does predict the location of the
main peak in the pmf of the first arrival time quite well, [1]
though it misses a much smaller peak corresponding to late
first arrivals. The model’s prediction of the last departure[]
time is poorer than that for the first arrival time, as seemfro
Figure 5(b). There is a large probability of the last departu
time being close t6 pm that the model does not reproduce. It [3]
also over-predicts the probability of very late (past mgfhrt)
last departures. Since the last departure time of a building
is determined by the behavior of a few critical occupantsj4]
the model's inability to predict these statistics may come
from the inaccuracy of the information obtained from the
survey. A possible cause of the mismatch is that the night-ow
occupants misjudged how often they leave early when the}/6
provided this information in the survey. Figure 5(c) shotes t ]
distributions of the cumulative occupied duration in a day.
As in the multi-occupant single-zone scenario, the préaatict
of this variable is poorer than the rest. Figure 5(d) shows th
distribution of the number of transitions between occupieds]
and unoccupied status, which is predicted by the model quite
accurately. [9
Overall, while the MuMo model predicts the general trend
of the distributions of these variables, it does not seem to
predict the values of the probabilities accurately. The K-
divergences between the model's predictions and measurned
data are shown in Table | as well. In the table, we see that
the model’s prediction in the multi-zone case is poorer thah
that in the single-zone scenario. A higher error in the multi
zone scenario is expected since survey-based data ingsduc
more inaccuracies in an agent-based model as the number of
agents increases. Another reason for the mismatch may feg
the limited amount of measured data. In fact, this factor may
be playing an even stronger role in the multi-occupant multi
zone scenario since the verification data were collected fro[14]
measurements of only five weeks. Therefore, a significant
share of the difference may come from the measured daﬁ%]
and not the model.

(7]

IV. SUMMARY AND FUTURE WORK

We presented a novel stochastic agent-based model [%)?
occupancy dynamics in a building with an arbitrary number
of zones and occupants. The proposed MuMo model can B
used to simulate the evolution of occupancy over time during
non-emergency situations. In the model verification, it was
found through comparison with measured data that it predict
certain variables more accurately than others. In general,
mean occupancy, and the marginal distributions of the first
arrival time and number of transitions between occupied
and unoccupied states are predicted well. However, the
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