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Abstract— The problem of real-time estimation of occupancy of C'O,, etc. However, sensing alone is not enough for occu-
in a commercial building (number of people in various zones pancy measurement, because each of these sensors have large
at every time instant) is relevant to a number of emerging ncertainty [4]. Optical tripwires, PIR sensors and video

applications, such as green buildings that achieve high ergy .
efficiency through feedback control. Due to the high deployrant cameras suffer from false counts, whil&0, sensors have

cost and large errors that people counting sensors suffer ém,  large delay (order of 10-15 minutes [5]), calibration daiftd
measuring occupancy throughout the building accurately fom  uncertainty in the relationship between the number of peopl
sensors alone is not feasible. Fusing sensor data with model and CO, concentration. As a result, simply estimating the
predictions is essential. Due to the highly uncertain natue of  ;~io1 number of people in a building from various sensor data

occupancy dynamics, modeling and estimation of occupancy . . . o .
is a challenging problem. This paper makes two contributios is a challenging problem; sophisticated methods are reduir

toward addressing these challenges. We develop an agentsea {0 estimate total building occupancy [4], [5]. In addition,
model to simulate the behavior of all the occupants of a builthg,  deploying enough sensors to cover all areas of the building
and extract reduced-order graphical models from Monte-Cato  to measure zone-level occupancy will lead to prohibitively
simulations of the agent-based model. The agent-based madde large deployment and maintenance costs and unacceptable

validated with sensor data for the special case of one room an | | of intrusion into buildi ts' bri Théo
one occupant. Noisy measurements from a few sensors are fdse evel orintrusion into bullding occupants: privacy. e,

with the graphical model predictions using the classical LW/~ real-time occupancy estimation with high spatial resoluti
estimator to estimate room-level occupancy in the building requires fusion of sensor data with model predictions. In
Simulations illustrate the effectiveness of the proposed ethod.  fact, Meyn et. al. [5] reports that a large improvement in
building occupancy results when prior information, such as
knowledge of meetings at a specific room, is used, compared
|. INTRODUCTION to using sensor information alone.
Constructing mathematical models of occupancy dynamics

In the United States, buildings are responsible 36v¢ in a building that are appropriate for real time estimation
of COy emissions,71% of electricity consumption, and . 9 bprop

. - is a challenging problem, because of the high uncertainty
39% of energy use [1]. Improving energy efficiency of .
o : . . . of people movement that governs occupancy evolution. The
buildings is therefore becoming a national priority. Fesdb . .
occupancy models suggested in [6] rely on the correlation

control based on real-time sensing and estimation is eggdec e . .
- . . . etween occupancy and lighting and equipment load. To esti-
to play a significant role in achieving the high-degree o

energy efficiency. One of the key variables that needs to %ate z(_)ne-level occupancy with this method, sensors a_t _ea_tch
monitored to achieve high energy-efficiency is occupancZone will be required. The paper [7] proposes a proballist

which refers to the number of people. The number of peop eqdel to predict and simulate occupancy in a single person
. ) . . _..0Office, where vacant and occupied intervals are modeled
in a zone affects the zone’s cooling load and ventilation S

. . o . as exponential distributions. The results of the study were
load, which determines the amount of conditioned air to be".

delivered to that zone to maintain thermal comfort and ai'imxed' A stoch_ast|c model of occupancy in UK housghqlds
. . - : . ~was proposed in [8] that can be used to generate statigticall
quality. Besides energy efficiency, occupancy information

. - . , ._representative sample paths of household occupancy.
a large commercial buildings is valuable during evacuation ) )
Another line of research on occupancy modeling that

of fire, terrorist attacks, earthquake and other emergencie ; L
Due to the hiahlv uncertain nature of occUDANG an(R]as seen a recent spurt in activity is through agent-based
gnly pancy odels. Agent-based models to mimic individual behavior

wide fluctuations seen over multiple time-scales, ocCpaNG, o5 heen in development over the last 40 years; see the review
cannot be predicted ahead of time based on expected bu”dinrqicle [9] and reference therein. Many of t’hese models

use, and has to be monitored in real-time. Several kinc%

of sensors currently can provide information on occu anCare used to simulate behavior of individuals in emergency
i y pro ; Up ftuations such as fire [10], or to study the patterns in
such as video cameras equipped with people-counting soft-

ware [2], [3], optical tripwires and PIR (pyroelectric iahed) pedestrian traffic [11]. However, there has been little work

) . on agent-based modeling for building occupancy in normal,
motion sensors that count the number of people crossing a g g 9 pancy

articular areaC O, sensors that measure the concentratioday-to-day’ operations. A notable exception is the work by
P 2 Bage et. al. [12]; which proposes an agent-based model for

. . _ f single person in a single room and validates the prediction

C. Liao and P. Barooah are with the Dept. of Mechanical an f th del f I d d | iod
Aerospace Engineering, University of Florida, GainesyiffL.{cdl i ao, Y t. € moael from co eCt.e sensor data over a o_ng perio
pbar ooah}@f | . edu of time. However, extending the model proposed in [12] to



the case of a building with many rooms occupied by a large ?_EZ?T‘]’;::;lsgfccifécaa:l‘;”pfr‘(’);ifjcr‘ agent:
number of individuals is not trivial. S:l:\éil)'l:‘);ta — --Transition probability parameter
A weakness of agent-based-models is that even if ac- ~-Probability of initiating a long absence
. --Distribution of duration of long absence
curate models are constructed, they suffer high-degree of

complexity that makes them unsuitable for real-time data Generate initial
fusion. We adopt a two-tiered strategy to address the mod- agent's state \
eling challenge. (i) First, we develop a novel agent-based e ceries of Multiple rules for each agent:
stochastic model which can be used to simulate the behavior |ygents' states —~-Acceleration and damping rules
of an arbitrary number of individual occupants (agents) of a —Access rule
building with arbitrary number of zones. The information
needed to construct these models can be obtained frdr: 1: The process of constructing the agent-based MARMeahadd
. . enerating occupancy time-series using it.
surveys, collected sensor data, or a combination of the wWo.
Simulations of these models yield realizations (time seriethe paper by Paget. al.[12] is the only one that focuses on
data) of zone-level occupancy. (ii) Next, we extract sdechl developing agent-based models for simulating the occypanc
graphical models of zone-level occupancy from Monte-Carlprofile in a building during normal operation over long
simulations of the agent-based model. Graphical modelgne intervals. We will refer to the model in [12] as the
are widely used in spatial statistics, image analysis ariPage model” in the sequel. The Page model considers a
bioinformatics, and are convenient for representingsttatil  single person who nominally occupies a single room. The
relationships between variables (see [13], [14] and refsge motion between the room and “outside” is modeled as a
therein). The usefulness of graphical models for occupandiyne-inhomogeneous Markov chain. Extending the model to
estimation is that they extract a reduced-order statisticanultiple rooms/zones that are peopled by a large number of
model of room-level occupancy (means and correlations @sdividuals is not trivial. The reason is that since acoerat
a function of time) from the stochastic agent-level behaviomotion model of an individual necessarily has to be time-
A key advantage of a graphical model is that it identifiesnhomogeneous, it is cumbersome to specify the time-varyin
correlations among room-level occupancy that arise out dflarkov transition probability matrices for each individua
complex behavior of individual occupants. This informatio Therefore in this paper we propose an alternate agent-based
helps predict occupancy in locations without sensors basetbdel that is easily scalable to large number of zones and
on measured sensor data in other locations. Finally, thedividuals. The model is inspired by that in [12], and sisare
extracted graphical model is used with the classical LM\several key attributes.
(Linear Minimum Variance) estimator [15] to compute the Consider a building wit zones that is nominally occu-
number of people in all the zones of the building from thepied by m individuals. The model is described in terms of

noisy measurements of occupancy from a few sensors. Wet 1 nodesthat are indexed ag=1,...,n,n+1 (n+1-th
assume that each sensor measures a noise-corrupted valueaasfe refers to the “outside of the building”). The indivithia
the occupancy in a zone in which it is located. (agent} are indexed as = 1,...,m. Time is measured by

The primary contribution of this paper is a novel agenta discrete time index. In this paper, each increment in
based model for occupancy simulation in multi-zone multithe time counter corresponds to a 15-minute interval. We
occupant buildings and its preliminary validation from ex-mnodel the motion of agents for one week, assuming that the
perimental data for the special case of single-room singlstatistics of agents’ behavior does not change among weeks,
occupant. The experimental data is borrowed from [12]. Weo thatk = 1,...,672. The model consists of deciding on
calibrate the agent-based model for a building in the Unihestateof each agent at each time instant, where state refers
versity of Florida campus based on preliminary survey dat#g the node that the agent occupies. The model, navtieed
extract graphical models and perform occupancy estimateigent-based Rules Mod@ARM ), consists of a number of
We present performance evaluation of estimation methadodules for each ageftthe decision on the state of an agent
through simulations, which show promising results. being modified by each successive module, the decision by

The paper is organized as follows. Section Il describebe last module being the final state. We now describe these
the model of agent-based model of building occupancy thatodules: (see Figure 1)
we have developed, and preliminary model validation from e
sensor data. Section Il describes identification of carare A Description of the MARM model
graph models from agent-based models. Section IV describess Denote by P, ;(k) the probability of agent occupy-
estimation of occupancy using sensor data and covariance ing nodej at time k. A nominal occupancy profile

graph models. Simulation studies to evaluate performahce o {P;(k),k =1,..., K} is first specified for every agent
the proposed method is described in Section V. The paper i, where P;(k) = [P;1(k),..., Pini1(k)]T, and K =
concludes with a discussion on future work in Section VI. 672 for the current investigation. During simulation,

each occupant’s state is initialized according to its
nominal occupancy profile with the help of a pseudo-

Although agent-based models have a long history of random number generator. The nominal behavior could
application in many disciplines, to the best of our knowledg be obtained by conducting a survey, or collected by

Il. AGENT-BASED MODEL OF INDIVIDUAL OCCUPANTS



occupancy sensors for a long term as done in [12].
o Occupants in the hallway tend to leave the hallway
quickly, while occupants of the other zones tend to stay
in where they are. An acceleration rule and a damping
rule are used to mimic this behavior, which is based [ o ,
on a pre-specifiedransition probability parametepy, TR T YT
and p,.. The implementation of acceleration rule is as Hour
follows. Suppose thé-th state of an agent is “hallway”
and his/her tentativék + 1)-th state is also “hallway”.

With probability p,,, the tentative(k + 1)-th state will ) , L . .
be reassigned by using nominal occupancy profile iHarlabIes: first arrival time, last departure time, totatation

order to force that agent to transit out of the “hallway”Of daily presence, length of continuous presence, number of

state as soon as possible. The damping rule is similagaily changes and probability of presence. The statistics o
if the tentative(k + 1)-th state is different from the these variables are also estimated from the repeated segmen

state (except hallway), with probabilipy., the (k + 1)- of o_ne-week-long processed sensor data. i _ )
th state will be reassigned back to the value of & Figure 3(a) compares the CDF of the first arrival time
state. predicted by the proposed model, and Page model and sensor
« To simulate long absence, we borrow the method usdipta. The figure shows that the proposed model predicts the
in [12]. Long absence corresponds to an absence lgte arrivals better than it does the early ones, whereas the
more than one days due to vacation, sickness, busind2agde modgl pred_icts the_early first arrivals more accurately
trips and conference, but not weekends. The probabilifan late first arrivals. Figure 3(b) shows the CDF of the
of initiating a long absence and the distribution offotal duration of daily presence, which refers to the total

duration of long absence for each agent is specifigd!mPer of hours the occupant stays in the room in a 24-
a-priori, which are obtained from survey or sensofour period. Both MARM and Page models essentially track

data. During simulation, a long absence for an agent fbe monitored data with equal amqunt of error. Figu_re 3(c)
randomly initiated at time: according to the specified shows the CDF of the length of continuous presence in a day.

probability using a random number generator, whild he figure shows that MARM model predicts the length of

the distribution of duration of long absence decides thgontinuous presence better than the Page model does. The
duration of the long absence once it is initiated. interested reader is referred to [16] for comparison of the

« Finally, each agent has associated access profile t{&M&ining variables, which are omitted here due to space
specifies which rooms he/she has access to. The accdgytation. . .
rule is used to ensure that agents do not occupy nodesBased on this comparison, we conclude that occupancy
without access, which is the last step in agents’ stafgalistics predicted by the MARM model sufficiently matches
generation. Some nodes that have a maximum occthat estimated from sensor data, and the proposed MARM

pancy like classrooms and restrooms also fit this ruleModel has the same level of accuracy as that of the Page
model. Efforts to gather data to validate the MARM model

B. Preliminary model validation with experimental data in the multi-zone multi-person case is ongoing.

Probability

Fig. 2. Nominal occupancy profile of the single occupant i éme-room
building extracted from sensor data reported in [12].

We perform a preliminary validation of the proposed
model by simulating the special case of 1 room and 1 occu-
pant (n = n = 1), and comparing the statistics predicted by The agent-based model described in the previous section is
MARM model with processed occupancy sensor data, as weiseful to simulate room-level occupancy profiles in buifgin
as that by Page model. The processed sensor data consistd it predicts the statistics of occupancy evolution. Here
of binary state information (occupied/unoccupied) cdbelc it is too complex for real-time estimation with sensor déta.
at 15 minute intervals, which has been provided to us by thenore compact representation of the occupancy dynamics is
authors of [12]. The raw sensor data was collected usingraquired for real time estimation. Our choice of such a com-
motion sensor for years in a room that was used by only orgact modeling paradigm i€ovariance Graph Mode]17].
person. We estimate a nominal occupancy profile as well 3hese graphical models are attractive for real-time estima
long absence probabilities from the collected sensor data, since they can compactly represent marginal dependencies
done in [12]. Due to lack of space, the interested reader @mnong the occupancy of various nodes. In addition, they can
referred to [12] for details on the data collection and pssee be identified from time series data collected from sensors
ing. These profiles are used as inputs to both the proposedagent-based model. Graphical models have been widely
MARM model and Page model. Figure 2 shows the nominalsed in spatial statistics, image analysis and bioinfoosat
occupancy profile extracted from the collected data ansee [13], [14] and references therein.
used in the simulations for model validation. Monte-Carlo A covariance graph model of amvariate distribution is
simulations of our model and Page model are conductespecified in terms of the mean and covariance matrix
and the resulting time series are used to estimate the CDEs= {o;,}. It is called a graphical model since the structure
(cumulative distribution functions) of the following raoh  of the covariance matrix defines a gra@h= (7, £ ), where

IIl. COVARIANCE GRAPH MODEL IDENTIFICATION



gL Similarly, we compute the sample covariance of the state
at timek as
505 1 &
o —MARM _ (4) _X (4) _X T
---Page W(k) =+ Z(X (k) =X(k)(X (k) =X (k)" (2)
e J ‘ | -=sensor j=1
0 6 12 18 24 Model selection is based on hypotheses testing on all edges
Hour (i.e., all entries of W (k)) at an overall confidence level
(a) CDF of first arrival time determined by a designed parametefl7]. Assuming that
the data comes from the true graph modelthis method
leads to an estimated graph modg] with the following
confidence levellim inf P(G, = G) > 1 — «. This means,
n—oo
——MARM for fixed «, the correct model is selected with probability at
d ---Page leastl — « for large sample size. Once the structure of the
of ‘ ‘ . |Sensor graph model is chosen based on model selection, an iterative
6 12 18 24 conditional fitting algorithm based on maximum likelihood
Hour . . . . .
_ estimation is used for estimating the values of the non-zero
(b) CDF of total daily presence entries of¥. The interested reader is referred to [18] for
the details. Although rigorous results on identification of
’ graphical models require the assumption that the undeylyin
distribution is multi-variate Gaussian, applications béde
—MARM models to non-Gaussian data is common [19].
; ~~-Page Using multiple time-series of occupancy in theroom
——Sensor oy . . .
0 : : ‘ : building obtained from Monte Carlo simulations of the agent
6 12 18 24 . ;
Hour based model, we estimat&r2 covariance graph models

(u(k),x(k)), & = 1,...,672, one for each 15-minute
interval. There is one difficulty in applying methods for
Fig. 3. Comparison the statistics predicted by the MARM noBage graphica' model identification to this app"cation in a@m_
model and sensor data. - .

. . forward manner. The sample covariance matfiix in (2)
vV ={1,...,n} isthe node setang C 9 x % is the edge . ired b inaular for th hod b
set with the property thdt, j) ¢ £ = o0, ; = 0 [17]. For oc- Is required to be non-singular for these methods to be

! b i applicable [17], [18]. At certain time instants, espegiadt

cupancy modeling, the random vector whose distribution Wr?ight, the probabilities of certain rooms being occupiee ar

(c) CDF of length of continuous presence

are interested is the occupancy vector= [X,..., X,]7, .

. . very small. In this case, we may get zero rows and columns
where X; is the occupancy (number of people) of noge . . . .
. g i . in the sample covariance matrix due to finite number of
i1 =1,...,n. Note that the “outside” node is not part of the

: o o Monte-Carlo simulations. In order to use proposed model
graph. Since occupancy statistics vary with time, the model = .= ~ " o
entification method, we eliminate these rows and columns

|
covariance graph mode(g(k), S(k)), k = 1,..., K. and construct reduced sample covariance mal¥ixk),.

varies with time as well, so that we have a sequence Q
To describe model identification, we first consider the casgl—e;i r?ﬁg(izSh?\ci)ngsr(]jceescr:;t?g?;?Svgagn%em%%agzdbzy
when the model does not change with time. The identification 9 q '

of a covariance graph modéfs, ©) from samples of the regained by plugging in the zero rows and columns back to
. o (k).

random vectorX consists of two steps: (i) model selection

and (i) parameter estimation. Model selection refers to IV. OCCUPANCY ESTIMATION

choosing the structure of the gragh(or equivalently, the  |n this paper we consider sensors that can measure a

sparsity pattern ok), while parameter estimation refers tofunction of the occupancy at a location directly. The total

choosing the values of those entries fthat have been number of sensors in the building is denoted Ny, and

decided to be non-zero in the model selection step. The gaale + is used to denote the node of the graph where the

of this two-step identification is to estimate the pOSSib'}{-th sensor is located (exc|uding nodet 1, the “outside”)_

sparsest graph structure that can still explain the first angote that this means; can be any zone of the building

second order statistics of the data. We follow the metho@(cept the “outside”. We assume a measurement of the

proposed in [17], [18] to carry out the model selection angorm 4, (k) = n(x,, (k) + €;(k)) is available from thes;-

parameter estimation steps. The first step is the compnotatigh sensor, where is a measurement noise and-) is a

of the sample covariance matrix frol samples of data. (typically) nonlinear function of its argument. For exampl

Assuming we conduc¥ Monte-Carlo experiments, for every video cameras with people counting software fall into this

time k, we compute the sample mean category. The measurement vector at tiimés denoted by
X(k) = Z;\f:l X0 (), L Y(l_f) = [y1(k),...,yn.(K)]T. The estimation problem is to

estimate the state vectof (k) from Y (k), using the graph-
where X ) (k) is X (k) observed in thej-th simulation. ical model information(s, (k), ¥, (k)), fork=1,..., K.



Wt"’i %ogce@ceﬁce“?ce“?m offcs | Offco @eﬁwe A total of 672 covariance graph mode{g.(k), X(k)), k =
o, L[wl L 1,...,672 (one week at 15-minute intervals) are identified
L pee — from the time series data obtained frard00 Monte-Carlo
1 ogr.zce”o Lab > @ = @ @ simulations of the agent-based model, using the method
" 15 1 estroon described in Section Illl. The value af for hypothesis
@ : Ocoupancy Sensor testing was chosen &sl. The model selection step in model

identification reduces model complexity by almost an order
Fig. 4. The floor plan of the 3rd floor of MAE-B in the Universitf  of magnitude. If the covariance were simply taken as the
Florida campus, in which estimation was carried out. sample covariance, skipping the model selection part, the
number of edges in the graph would have been betwé&n
The LMV (Linear Minimum Variance) estimator of a and171. In contrast, the number of edges in the identified
random vectorX in terms of anothet” is given by [15] model was betwee and 18. More details are available

. in [16].
X (k) = px + Zay By, (Y (K) = py), 3)

where ¥,, = cov(X,Y) and £,, = cov(Y,Y). In the
linear sensing modeln(xz) = z), Y(k) = CX(k) +
e(k), where C' is a Ny, x n matrix of 0's and 1's, and

B. Estimation

Estimation was performed from simulated sensor data that
was generated with the help of the agent-based model. We
used a total of7 sensors, whose locations are shown in

— T i H
e(k) = [61(/{)’% -ven, (K)]7. Assuminge(k) is zero-mean Figure 4. In the simulations reported here, we obtain a sing|
?:((jj E([:élf[z:(“) | = Ro(k — k), the LMV estimate in (3) time trace from the agent-based model for one week, and
u

then add random noise to the profile so generated, which
X(k) = X (k) + 2(k)CT(C2(k)CT + R(k)) ™ is taken as the “true” occupancy. The purpose of adding
« (Y (k) — CX (k) @) noise is to simulate people whc_) occupy the_bundmg for short
' periods and who are not taken into account in the agent-based
where the invertibility of(CXC” + R) is assured by the model, e.g., visitors to the nominal occupants, repairnmeh a
positive-definiteness oR and positive semi-definiteness of janitorial staff, etc. The variance of the random distuizan
Cx.CT. When a sensor measures the occupancy of a rooddded wag).16. Noisy sensor measurements are generated
with an additive white noise, the estimate of occupanicegsing a nonlinear sensor model from the true occupancy data:
in all the zones can be computed by using the classical
LMV estimator as described abgve. Theymeangand covariance Yi(k) = round(s, (k) + €(k)), ©)
information needed to compute the estimates are providetheree;(k) is a zero mean Gaussian noise with standard
by the covariance graph model. When the sensing modeéviation 0.5. Estimate of the occupancy statﬁ(k) is
is nonlinear, the LMV estimate does not have a simpleomputed at every timk using the LMV estimator (4). Note
expression as it does in the linear case. that the data is generated using a nonlinear sensor model
though the estimator is constructed under the assumption of
linearity of the sensing model. Thus, the computed estisnate
In this section we describe the results of performancare no longer linear optimal estimates of the states.
evaluation of the proposed methodology carried out for a Figure 5(a) shows the estimate of total occupancy in the
building shown in Figure 4. This is the simplified floor planbuilding and the true total occupancy. Note that the trual tot
of the 3rd floor of the MAE-B building in the University occupancy cannot be inferred from the sensors alone since
of Florida campus. The floor has 19 nodes (12 professortie sensors monitor less than half of the rooms. The figure
offices, 4 labs, 2 restrooms and 1 hallway). Forty-five peoplghows that the total occupancy estimate matches quite well
work in this floor in a typical work day. with the true value, with a mean error 0fl and a standard
i deviation of 2.1 (computed from a single one-week time-
A. Modeling series). Figure 5(b) shows the estimated and true occupancy
An informal survey was conducted to obtain informatiorof room 4 (which is an office with a nominal occupancy
on schedules of occupants (such as first arrival and last 1 without sensor) for a 24-hour interval (Monday). The
departure time, frequency and during of absence, etc.) figure shows that even without a sensor, the error between
well as information on who occupies which room, etc. Basethe estimated occupancy and the true value is small, with a
on this information, we generated a nominal occupanayean of0.05 and a standard deviation 0f59 (computed
profile, the probability of initiating a long absence, androm a single one-week time-series). Figure 5(c) shows the
the distribution of long absence, for each occupant. Thestimated occupancy, the sensor measurements and the true
transition probability parameters were fixed)dt, which was occupancy in room 16 for a 24-hour interval (Monday). This
the value used in validation of a single room building modekoom is a lab with a nominal occupancy of 7 that has a
With these inputs, Monte-Carlo simulations of occupaney arsensor installed in it. The mean and standard deviation of
carried out which yields stochastic occupancy historigs faestimation error ar€.03 and 1.1, which are computed in
each room over a one-week period. the same fashion. The estimator provides estimates that, on

V. PERFORMANCE EVALUATION VIA SIMULATION



experimental validation, new approaches are needed inlmode

an average, are only slightly more accurate than that by thgentification and estimation techniques. Instead of idient

ing distinct graphical models at every time instant, a more
appropriate approach would utilize the slow rate of change
of occupancy dynamics to identify a sequence of graphical
models with minimum number of changes of the model from

one time step to the next. Once such a framework is in place,
estimation can be posed in a filtering framework, which is

more natural for the targeted application than performing a

sensaor.
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(a) Estimated and true occupancy of the whole floor with eutreer-
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(c) Estimated and true occupancy of room 16 with extra unteyt
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Fig. 5. Estimation result with extra uncertainty

(8]
VI. SUMMARY AND FUTURE WORK

In this paper we presented an integrated approach t
modeling and real-time estimation of occupancy in a large
commercial building. The modeling portion consists of twd10]
stages, agent-based model to simulate behaviors of individ
occupants and covariance graph models to extract relevant
statistical information to aid in real time estimation. lifed  [12]

and noisy sensor data from occupancy sensors are then fused

with the predictions of the graphical model using the clasi [13)
LMV estimator to estimate the number of people in everyi4]
zone of the building, even in those without sensors. The
agent-based model is validated for a special scenario of opg;
room and one occupant using collected sensor data that was
reported in [12]. Simulations suggest that the modeling a
estimation technique proposed in this paper can produce
accurate estimates of building-wise as well as zone-wise
occupancy. (7]
The present work is a first step in addressing a veryg;
challenging problem of modeling and estimating occupanc
in commercial buildings. There are numerous avenues gf‘;
future work. Validation of the agent-based model for the
multi-room and multi-occupant case is currently under way.
The next step would be to test experimentally the accuracy
of the occupancy estimates in a real building. Apart from

sequence of static estimates.
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