
Asian Journal of Control, Vol. 00, No. 0, pp. 1–13, Month 2008
Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/asjc.0000

An Algorithm for Accurate Distributed Time Synchronization in Mobile

Wireless Sensor Networks from Noisy Difference Measurements

Chenda Liao and Prabir Barooah

I. Introduction

Time synchronization is critical for the functional-
ity and performance of wireless sensor networks. For
example, in TDMA-based communication schemes,
accurate time synchronization ensures that each node
communicates with others in the correct time slots
without interfering with others. Furthermore, operation
on a pre-scheduled sleep-wake cycle for energy
conservation also requires a common notion of time
among nodes. However, clocks in sensor nodes run
at different speeds due to the imperfectness of quartz
crystal oscillators, and a tiny difference on the
oscillators of two clocks will cause time readings drift
apart over time.

In a common clock model, the local time of node
u, τu(t) is related to the global time t as

τu(t) = αut+ βu, (1)

where the scalar parameters αu, βu are called its skew
(the relative speed of the clock with respect to t) and
offset (the time reading when t = 0), respectively [1].
In practice, skews are time-varying due to temperature
change, aging etc. However, it is common to model
the skew of a clock as a constant since its variation is
negligible during time intervals of interest [2]. A node
that knows the global time is called a reference node.
The global time can be Coordinated Universal Time
(UTC) if the reference node(s) can access it through

Manuscript received February 15, 2015.
C. Liao is currently with Nuance Communications,Inc.,

Burlington, MA 01803 USA (e-mail: cdliao84@gmail.com,
ph: 352 870 5251); he was formerly with the Dept. of
Mechanical and Aerospace Engineering, University of Florida.
P. Barooah is with the Department of Mechanical and
Aerospace Engineering, University of Florida, Gainesville, FL
32611 USA (e-mail: pbarooah@ufl.edu, ph: 352 392 0614)

This work has been supported by the National Science
Foundation by Grants CNS-0931885 and ECCS-0955023.

GPS. If none of the nodes can access the UTC, one
node in the network is elected as a reference node so
that the local time in the node becomes the global time.
A node u can determine the global time t from its local
time if it knows its skew and offset. Specifically, if u
has estimates α̂u, β̂u of its true skew and offset αu, βu,
it can estimate the absolute time as

t̂u =
τu(t)− β̂u

α̂u
(2)

Hence the problem of the time synchronization can
be alternatively posed as the problem of skews and
offsets estimation among nodes. A node u can use a
pairwise synchronization method, such as those in [3–
5], to estimate αu and βu if the paired neighboring node
is a reference node. However, most nodes in sensor
networks are not connected to the reference nodes
directly due to the limited communication range. It is
therefore not possible for all nodes to obtain their skews
and offsets directly.

Network-wide time synchronization in sensor
networks has been intensely studied in recent years.
Work in this area can be grouped into three categories:
cluster-based protocols, tree-based protocols and dis-
tributed protocols. In cluster-based [6] and tree-based
protocols [7, 8], synchronization relies on establishing
a pre-specified network structure. In mobile networks,
however, network topology continually changes, which
results in frequent re-computation of a cluster and
spanning tree, or re-election of a root node. This
introduces considerable communication overhead to the
networks, therefore the above cluster-based and tree-
based protocols are primarily targeted to networks of
static or quasi-static nodes.

Recently, a number of fully distributed algorithms
that do not require the establishment of clusters or
trees have been proposed. These typically perform
synchronization by estimating skews and/or offsets

c© 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls [Version: 2008/07/07 v1.00]

2 Asian Journal of Control, Vol. 00, No. 0, pp. 1–13, Month 2008

and then computing the global time from them. The
algorithms proposed in [9–12] belong to this category.
In these algorithms, estimates of a log-skews (and
offsets) are obtained from noisy measurements of the
difference of log-skews (and offsets) between pairs
of neighbors. These distributed algorithms for skew
and offset estimation are more readily applicable to
mobile networks than the previous two categories of
algorithms, though their convergence analyses were
provided only for static networks. Convergence of these
algorithms in mobile networks is analyzed in [13].
The algorithm analyzed in [13] is applicable to mobile
networks and it subsumes the algorithms in [9–12].
The algorithm in [13] is called JaT algorithm (Jacobi-
type) due to its similarity to the Jacobi algorithm
first proposed in [9]. The time-varying topology of a
network of mobile nodes is modeled as the state of a
Markov chain. Under certain conditions, it was shown
that the variances of estimation errors of log-skews and
offsets converge to positive values. However, even a
small error in the skew estimate leads to poor absolute
time estimate over long time periods, cf. (2). Thus, even
a small steady variance of the skew estimates may lead
to poor time estimates over time, requiring frequent
restarting of the synchronization process.

In this paper, we revisit the problem of distributed
estimation of clock skews and offsets from noisy
difference measurements. The main contribution is
an algorithm (called DiSync) that achieves 0 steady-
state variance of the skews and offsets under mild
assumptions on the pairwise measurement noise. Mean
square convergence of the algorithm is proved for both
random (Markovian) as well as deterministic switching
of graphs. Time varying gains in the proposed algorithm
that make the variances converge to 0 are adopted from
stochastic approximation, which is also used in [14,
15] to attenuate noise. The gains need to vary in a
specific manner with time, which poses a challenge
in implementation in a network of unsynchronized
clocks. We address this issue by using a novel approach:
an iteration schedule is pre-specified to the nodes
so that they can effectively perform a synchronous
update without having synchronized clocks. This
makes DiSync fully distributed and asynchronous.
Furthermore, we propose a DiSync-I algorithm in which
the effect of slow convergence rate of the DiSync
is ameliorated while retaining theoretical convergence
guarantees. We evaluate the accuracy of the DiSync and
DiSync-I algorithms when applying to global time
estimation through Monte Carlo simulations. Time
estimation accuracy of the proposed algorithms are
compared with that of the JaT algorithm. Simulations

indicate the global time estimation error in the proposed
algorithms stay close to 0 for long time intervals, while
that in JaT increases over time.

The simulation studies in papers [9–13, 16] use
noisy difference measurements generated by adding
noise on true values, while in practice these difference
measurements are supposed to be obtained from
processing multiple time-stamps by using an existing
pairwise synchronization protocol, such as the ones
proposed in [3–5]. In contrast, here we generate noisy
difference measurement by simulating the pairwise
synchronization protocol of [3] with random delays
in packet reception. The noise in the difference
measurements obtained are thus likely to have more
realistic characteristics.

A new type of virtual time-synchronization
protocols has been proposed recently. They let nodes
estimate a common virtual global time that is not the
local time of any clock [17, 18]. These algorithms
are potentially applicable to mobile networks, though
not useful when knowing an absolute global time is
critical. Still, we compare the proposed algorithm to
the ATS algorithm proposed in [17]. Although ATS
does not provide estimate of an absolute global time,
we compare the algorithms in terms of the maximum
synchronization error - the maximum deviation in the
estimates of global time (virtual or absolute) over
two arbitrary nodes. It turns out that the proposed
DiSync and DiSync-I algorithm outperforms ATS under
this metric.

The DiSync algorithm bears a close resemblance to
average-consensus (leaderless) algorithms in [17, 18].
The estimation error dynamics in our problem turns out
to be a leader-follower consensus algorithm, where the
leader states - corresponding to the estimation error of
the reference nodes - are always 0. The convergence
analysis in this paper is inspired from [17, 18]. There are
some technical differences since our scenario is leader-
follower consensus while those in [17, 18] are leaderless
consensus.

A preliminary version of this paper has been
published in [19]. Compared to [19] this paper
contains several major extensions. First of all, the
switching topology was assumed to be deterministic
for the convergence analysis in [19], while in this
paper we extend the analysis of convergence to
Markovian switching. The relevance of Markovian
switching comes from the fact that switching topology
due to random node motion can be modeled as
Markovian [20]. The modified algorithm DiSync-
I, which ameliorates the slow convergence rate of
theDiSync algorithm, is another novel aspect of

c© 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls

A. N. Other: A Demonstration of the Asian J. Contr. Class File 3

this paper compared to [19]. Moreover, practical
implementation details of the algorithm, including
extensive simulation comparisons with competing
algorithms, is provided here which was lacking in [19].

II. Problem formulation

The time synchronization problem is formulated as
nodes estimating their skews and offsets. It is possible
for a pair of nodes u, v, who can communicate with
each other to estimate their relative skew αu,v := αu

αv

and relative offset βu,v := βu − βv αu

αv
. The reason for

this terminology is the following relationship τu(t) =
αu

αv
τv(t) + βu − βv αu

αv
, that can be derived from (1).

The estimation of relative skews and offsets is
called “pairwise synchronization”. Several protocols for
pairwise synchronization from time-stamped messages
are available; see [3–5] and references therein. We
assume nodes can estimate relative skews and offsets
by using one of these existing protocols. Only those
nodes that can communicate directly with the reference
nodes can estimate their (absolute) skews and offsets,
since they can employ pairwise synchronization with
reference nodes. Most of the nodes cannot estimate their
skews and offsets due to limited communication range.

Suppose between a pair u and v, node u obtains
noisy estimates α̂u,v, β̂u,v of the parameters αu,v, βu,v
by using a pairwise synchronization protocol. We model
the noisy estimate as α̂u,v = αu,v + esu,v, where esu,v is
the estimation error. Therefore, by αu,v = αu

αv
,

log α̂u,v = logαu − logαv + ξsu,v, (3)

where ξsu,v = log(1 + esu,v
αv

αu
). The quantity obtained

from pairwise synchronization is therefore a noisy
difference measurement of log-skews. If αv/αu ≈ 1,
which is usually the case, and esu,v is small, then the
measurement noise ξsu,v is small. Similarly, the noisy
estimate of relative offset is modeled as β̂u,v = βu,v +
eou,v, where eou,v is the error. Again, by βu,v = βu −
βv

αu

αv
,

β̂u,v = βu − βv + ξou,v, (4)

which is a noisy difference measurement of the offsets
between the two nodes, with measurement noise ξou,v =
βv(1− αu

αv
) + eou,v. Due to the nonzero βv(1− αu

αv
), the

measurement error is biased even if eou,v is zero mean.
Since αu

αv
is close to 1 for most clocks, the bias is usually

small.
We see from (3) and (4) that log α̂u,v and β̂u,v

are the noisy measurements of log-skew difference

logαu − logαv and offset difference βu − βv, respec-
tively. The problem of interest for this paper is
estimate the log-skews and offsets of all the nodes in a
distributed manner from these noisy pairwise difference
measurements. Note that once a node estimates its log-
skew, it can recover the skew, and then compute the
global time from its local time using estimated skew and
offset.

To facilitate further discussion, in this section we
only consider the estimation of scalar valued node
variables from noisy difference measurements. If an
algorithm of solving this problem is available, two
copies of the algorithm can be executed in parallel
to obtain both log-skews and offsets. Let u-th node
in a n-node network have an associated constant
scalar node variable xu ∈ R, u ∈ V = Vb ∪Vr =
{1, . . . , n}. Nodes in Vb = {1, . . . , nb} do not know
their node variables, while the reference nodes are
the remaining nr nodes in Vr = {nb + 1, . . . , n}, who
know the values of their own node variables. Here xu
represents log(αu) for skew estimation and βu for offset
estimation. Without loss of generality, we assume node
variables of reference nodes are all 0, i.e. skews are
1 and offsets are 0. Time is measured by a discrete
time-index k = 0, 1, The mobile nodes define a
time-varying undirected measurement graph G(k) =
(V ,E(k)), where (u, v) ∈ E(k) if and only if u and
v can obtain a difference measurement of the form

ζu,v(k) = xu − xv + ξu,v(k), (5)

during the time interval between k and k + 1, where
ξu,v(k) is measurement error. We assume that between
u and v, whoever obtains the measurement first shares
it with the other so that it is available to both u and
v. We also follow the convention that the difference
measurement between u and v that is obtained by the
node u is always of xu − xv while that used by v
is always of xv − xu. Since the same measurement is
shared by a pair of neighboring nodes, if v receives
the measurement ζu,v(k) from u, then it converts
the measurement to ζv,u(k) by assigning ζv,u(k) :=
−ζu,v(k). For similar reasons, between a pair u and v,
the node who computes ζu,v(k) in node pair u and v is
fixed for all time k. This can be achieved by comparing
the magnitude of the index of nodes. For example, if
u > v, then u computes ζu,v(k) first and then sends
it to v. The neighbors of u at k, denoted by Nu(k),
is the set of nodes that u has an edge with in the
measurement graph G(k). We assume that if v ∈ Nu(k),
then u and v can also exchange information through
wireless communication at time k.

c© 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls

4 Asian Journal of Control, Vol. 00, No. 0, pp. 1–13, Month 2008

Now the reformulated problem is to estimate the
node variables xu, u ∈ Vb, by using the difference mea-
surements ζu,v(k), (u, v) ∈ E(k) that become available
over time. We assume nr ≥ 1 (i.e., there exists a
least one reference node), otherwise the problem is
indeterminate up to a constant.

III. The DiSync algorithm

The proposed DiSync algorithm is an iterative
algorithm that nodes can use to solve the problem
of node variable estimation from noisy difference
measurements in a distributed and asynchronous
manner when they do not have synchronous clocks.
Later in the section we describe how this algorithm is
used to estimate the log-skews and offsets of the nodes,
i.e., perform time-synchronization.

Each node u ∈ Vb keeps its local iteration index
ku and maintains an estimate x̂u(ku) ∈ R of its node
variable xu in its local memory. The estimates can
be initialized to arbitrary values. In executing the
algorithm, node u starts its i-th iteration at a pre-
specified local time τ (i), for i = 0, 1, . . . , which will
be described in Section 3.1. Then, node u obtains
current estimates x̂v(ku) along with the measurements
ζu,v(ku) from its current neighbors v ∈ Nu(ku). After
a fixed time length δt (measured in local time), node u
increments its local iteration index ku by 1, and updates
its new estimate based on current measurements and
neighbors’ estimates by using the following update law:

x̂u(ku + 1) =x̂u(ku) +m(ku)
∑

v∈Nu(ku)

auv(ku)(x̂v(ku)

+ ζu,v(ku)− x̂u(ku)), (6)

where the time varying gain m(·) : Z+ → R+ has to
be specified to all nodes a-priori. Note that when
Nu(ku) = ∅, x̂u(ku + 1) = x̂u(ku). The choice of m(·)
will play a crucial role in the convergence of the
algorithm and will be described in Section IV. In this
paper, we let weight auv(ku) = 1 if (u, v) ∈ E(ku).
Recall that the reference nodes take part by helping their
neighbors obtain difference measurements, but they do
not update their own node variables. The algorithm
is summarized in Algorithm 1. Note that, since
obtaining difference measurements requires exchanging
time-stamped messages, current estimates can be
easily exchanged during the process of obtaining new
measurements.

Algorithm 1 DiSync algorithm at node u

1: while u is performing time synchronization do
2: if Local time τu = τ (i), i = 0, 1, . . . then
3: u collects current local indices kv from neighbors v ∈

Nu(ku).
4: for all v ∈ Nu(ku) do
5: if ku = kv and u does not have ζu,v(ku) then
6: 1.u and v perform pairwise communication;
7: 2.u saves ζu,v(ku) and x̂v(ku); v saves ζv,u(kv) and

x̂u(kv);
8: else
9: u and v stop the communication;

10: end if
11: end for
12: end if
13: if τu = τ (i) + δt, i = 0, 1, . . . then
14: ifNu(ku) 6= ∅ then
15: u updates x̂u(ku + 1) using (6);
16: else
17: x̂u(ku + 1) = x̂u(ku);
18: end if
19: u updates, ku=ku+1;
20: end if
21: end while

3.1. Iteration schedule and synchronous view
We will later describe that the gains m(·) is chosen

to be a decreasing function of time, which helps reduce
the effect of measurement noise. This is a well-known
idea in stochastic approximation. However, using this
idea in a network of unsynchronized clocks presents
an unique challenge since no node has a notion of a
common time index, at least in the initial phase when
they do not have good estimates. If nodes wait for a
constant length of time (measured in their local clocks)
before starting a new iteration, a node with faster skew
might finish the (i+ 1)-th iteration while a node with
slower skew hasn’t even finished the i-th iteration.
Therefore, specifying a function m(·) to all the nodes
does not ensure that nodes use the same gain at the
same (global) interval, which is required by stochastic
approximation.

We address the problem by providing the nodes
a priori the sequence of local time instants τ (i), i =
0, 1 . . . mentioned at the beginning of the Section III.
This sequence is called an iteration schedule, and the
formula for computing it is described below. Let the
skews and offsets of all clocks be lower and upper
bounded by those in two fictitious clocks cL and cH ,
such that αcL ≤ αu ≤ αcH , βcL ≤ βu ≤ βcH . Recalling
(2), therefore τcL(t) ≤ τu(t) ≤ τcH (t) for all u ∈ V .
The formula for calculating τ (i) is

τ (i+1) =
αcH
αcL

(τ (i) + δt− βcL) + βcH , (7)

where τ (0) has to satisfy τ (0) > βcH . This schedule
ensures that nodes operating on their unsynchronized

c© 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls

A. N. Other: A Demonstration of the Asian J. Contr. Class File 5

local clocks still perform updates in an effectively
synchronous manner over time. To see this, define

I(i) := (
τ(i)−βcH

αcH
,
τ(i+1)−βcH

αcH
) as a global interval and

I(i)u := (τ
(i)−βu

αu
, τ

(i)+δt−βu

αu
) as the global time interval

with respect to i-th local iteration of node u. Eq. (7)
guarantees that, at each i, I(i)u ⊂ I(i) for all u ∈ V .
In other words, there exists a sequence of global time
intervals such that each i-th global interval contains, and
only contains, the i-th local iteration (in global time) of
all u ∈ V . Figure 1(a) shows the relationship between
intervals of local iterations and the corresponding global
intervals. In Figure 1(b), we pick the 3rd global interval
from Figure 1(a), and show the global time intervals
when local iteration updates occur. We emphasize that
τ (i) is the same for all nodes and every node u starts and
ends its i-th iteration at the same local time instants τ (i)

and τ (i) + δt. Each node is provided the values of the
parameters αcH

αcL
, βcL ,βcH , and δt ahead of time, which

are design variables.
We next address the issue of how to pick values

for αcH

αcL
, βcL and βcH without knowing a real bounds

on skews and offsets of all clocks in a network. In
wireless sensor nodes, a pair of clocks in sensor nodes
usually drift apart up to 40 µsec/sec [2]. Therefore, we
can pick αcH/αcL ≈ 1 + 4× 10−5. To pick reasonable
values of the offset bounds, the following procedure
should be used to initialize the synchronization. The
reference node first broadcasts a message (to indicate
the beginning of synchronization) and sets its local
clock time t to zero simultaneously. A node that
receives this message sets its own clock to zero and
broadcast such message again. The nodes that hear this
message also set their local clocks to 0, and so forth.
Since nodes (except the reference node) start their local
clocks after – but close to – the instant of t = 0, their
offsets are negative and small. Therefore, βcH can be
chosen as zero and βcL can be picked as an estimate
of the time it takes for all active nodes to receive the
“synchronization start” signal. For a node who was out
of communication range at the beginning but joins the
networks later, it can set the local time to the current
local time of a neighbor that has already started the time
synchronization, and record neighbor’s iteration index
as well. In this way, the newly joined node can take part
in the synchronization process as if it started at the very
beginning.

Another practical issue is the unbounded growth
of the inter-synchronization intervals τ (i). For example,
if δt is chosen as 1 second, the choice of αcH/αcL =
1 + 4× 10−5 ensures that the time interval between two
successive iterations, τ (i+1) − τ (i), will increase from

1 second to 60 seconds after 1.023× 105 iterations,
or 28.4 hours. If the updates are to be done more
slowly, a larger δt will be used, which will slow
down the growth of the iteration interval τ (i+1) − τ (i).
If it is desired that the inter-synchronization interval
not increase beyond a certain pre-specified bound, a
reference node should restart the synchronization after a
certain time to maintain τ (i+1) − τ (i) within the desired
bound. When the restart should occur can be computed
from the recursion (7).

0.85 1.89 3.15 4.70

1.23

2.37

3.77

Global time
Lo

ca
l t

im
e Local

interval

Global
interval

τ
max

(t)=1.1t+0.3

τ
min

(t)=0.9t−0.3

(a)

A

B

C

D

E

(b)

Fig. 1. In (a), the X-axis is labeled by the time instants of the beginning
of global intervals and the Y-axis is labeled by the sequence of
τ (i). The red solid slanted lines represent two fictitious clocks
cL and cH as the bounds for local clocks in nodes. The black
solid vertical lines divide global time into a sequence of I(i).
Each i-th interval from black solid vertical to black dotted-

dash vertical line is the interval (
τ(i)−βcH
αcH

,
τ(i)−βcL
αcL

), which

contains the global time instants of τ (i) for all u ∈ V . In (b), the
3rd global interval is picked as also circled in (a). The segments
in the second and fifth rows correspond to I(3)cH and I(3)cL of
two fictitious clocks respectively. The segments in the third and
fourth rows present I(3)u and I(3)v of any two nodes u, v ∈ V
accordingly.

Remark 1 Nodes perform skew and offset estimation
simultaneously in a distributed and iterative fashion
by using two copies of the DiSync algorithm, one for
skew estimation and one for offset estimation. With
current estimated skew α̂u(k) and offset β̂u(k), a node
u can compute the global time using (2), i.e. t̂u(k) =

(τu − β̂u(k))/α̂u(k), which is the final step of the

c© 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls

6 Asian Journal of Control, Vol. 00, No. 0, pp. 1–13, Month 2008

Pairwise

Synchronization

DiSync

Algorithm

A1

A2

A3

A4
A5

A6

Fig. 2. Time synchronization by using DiSync.

time synchronization. The entire time synchronization
procedure is illustrated in Figure 2.

IV. Convergence analysis of DiSync algorithm

Since there exists a common iteration counter k
that can be used to describe the local updates in the
nodes by using the iteration schedule (even though none
of the nodes has access to it), we consider only the
synchronous version of the algorithm using global index
k from now on. We rewrite (6) as

x̂u(k + 1) =x̂u(k) +m(k)
∑

v∈Nu(k)

auv(k)(x̂v(k)

+ ζu,v(k)− x̂u(k)). (8)

Defining the estimation error as eu(k) := x̂u(k)− xu,
Eq. (8) reduces to the following using (5):

eu(k + 1) =eu(k) +m(k)
∑

v∈Nu(k)

auv(k)(ev(k)

− eu(k) + εu,v(k)). (9)

We introduce the following stipulations and notations
to pursue subsequent analysis. First,let auv(k) = 0 for
v /∈ Nu(k). Secondly, the n× n Laplacian matrix L(k)
of the graph G(k) is defined as Luv(k) =

∑n
v=1 auv(k)

if u = v, and Luv(k) = −auv(k) if u 6= v. By removing
the rows and columns of L(k) with respect to reference
nodes, we get the nb × nb principle submatrix Lb(k) (so
called grounded or Dirichlet Laplacian matrix [21]). Let
e(k) := [e1(k), . . . , enb

(k)]T , the corresponding state
space form of the estimation error is

e(k + 1) = (I −m(k)Lb(k))e(k) +m(k)D(k)ε(k),
(10)

where

ε(k) := [ε̄1(k)T , . . . , ε̄nb
(k)T]T ,

ε̄u(k) := [εu,1(k), . . . εu,n(k)]T ,

D(k) := diag(ā1(k), . . . , ānb
(k)),

āu(k) := [au,1(k), . . . , au,n(k)],

where εu,u(k) /∈ ε̄u(k) and au,u(k) /∈ āu(k). When
auv(k) = 0, εu,v(k) is a pseudo random variable with
the same mean and variance as the measurement
noise on any existing edge. Moreover, as a node u
computes measurement ζu,v(k) and sends −ζu,v(k) to
v, εu,v(k) = −εv,u(k). Now, we introduce the following
assumptions:

Assumption 1 Measurement noise vector ε(k) is with
mean E[ε(k)] = γ and bounded second moment,
i.e. E[‖ε(k)‖2] <∞, where ‖ · ‖ denotes 2-norm.
Furthermore, ε(k) and ε(j) are independent for k 6=
j. In addition, {ε(k)} is independent of e(0), where
E‖e(0)‖2 <∞.

In practice, E[ε(k)] may be time-varying even if
all the underlying processes are wide sense stationary.
For instance, the bias in offset difference measurement
computed from node u is different from that computed
from node v, as βv(1− αu

αv
) 6= βu(1− αv

αu
). Therefore,

E[ε(k)] depends on which node initializes pairwise
synchronization at time k. To meet this requirement
E[ε(k)] = γ in Assumption 1, we can stipulate that the
node who computes ζu,v(k) between a pair u and v is
fixed for all time k. This can be achieved by comparing
the magnitude of the index of nodes. For example, if
u > v, then u computes ζu,v(k) first and then sends it to
v. Indeed, the purpose of this requirement is to provide
formula to compute the steady state value of estimation
error, and the system may still achieve convergence
without it.

Assumption 2 The non-increasing positive sequence
{m(k)} (step size of the stochastic approximation) is
chosen as m(k) = c1

k+c2
, where c1, c2 are constant real

numbers.

Note that Assumption 2 is a special case of
the standard requirement in stochastic approximation:∑∞

k=0m(k) =∞ and
∑∞

k=0m
2(k) <∞. The assump-

tion is made to simplify the subsequent analysis, but we
believe it is not necessary.

4.1. Deterministic Topology Switching

In this section, we analyze the convergence of (8)
when the topology switching is deterministic.

Assumption 3 There exists d ∈ N s.t. for any
t ≥ 0,Ĝdt :=

⋃t+d−1
k=t G(k) = (V ,

⋃t+d−1
k=t E(k)) is

connected, where E(k) is set of edges in G(k).

c© 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls

A. N. Other: A Demonstration of the Asian J. Contr. Class File 7

Assumption 4 The limits L̄, L̄b, D̄ exist: L̄ :=
limt→∞

1
t

∑t
k=0 L(k), L̄b := limt→∞

1
t

∑t
k=0 Lb(k),

D̄ := limt→∞
1
t

∑t
k=0D(k).

Assumption 3 implies that information can go from
any node to the rest nodes within a uniformly bounded
length of time. Furthermore, as G(k) is bidirectional,
another equivalent assumption is that Ĝdt contains a
spanning tree. The proposed algorithm is also robust to
permanently adding or deleting nodes in case the new
resulting graph satisfies the assumption on connectivity.
To understand the Assumption 4, we define the finite
state space G = {G1, . . . ,GN} as the set of graphs
that can occur over time. If the sequence of G(k) can
be divided into a sequence of finite intervals Ij , j =
1, 2, . . . , such that the percentage of times that each
state Gk occurs is fixed in all except finitely many
such intervals Ij , then L̄, L̄b and D̄ exist. Another
example is that the state Gi occurs according to a
sample path of a stationary ergodic process. In addition,
we denote sets of matrices Lb = {Lb1, . . . , LbN} and
D = {D1, . . . , DN}, where Lbi and Di correspond to
Gi ∈ G. If the percentage of all states occurring is π =
{π1, π2, . . . , πN}, then

L̄b :=

N∑
i=1

πiLbi, D̄ :=

N∑
i=1

πiDi (11)

Theorem 1 Under Assumption 1-4, the Algorithm 1
ensures that e(k) in (10) converges to L̄−1b D̄γ in mean
square, i.e., limk→∞E(‖e(k)− L̄−1b D̄γ‖2) = 0. �

The theorem states that under the assumptions,
the variance of the estimation error decays to 0.
If additionally all the difference measurements are
unbiased (γ = 0), then the bias of the estimates
converge to 0 as well. Proof of the theorem uses the
next two lemmas. The proof of the first lemma, which
is inspired by [14, 15], can be found in [22], while the
second is from[23].

Lemma 1 If difference measurement is unbiased, i.e.,
γ = 0, under assumption 1-3, the Algorithm 1 ensures
that e(k) in (10) converges to 0 in mean square, i.e.,
limk→∞E(‖e(k)‖2) = 0. �

When γ = 0, (10) can be regarded as a leader-following
consensus problem with time-varying topology and
zero-mean noisy input. The leaders are reference nodes
u ∈ Vr, which hold their variables as zero. Then, eu(k)
for u ∈ Vb is driven to zero by the reference nodes as k
goes to∞ in mean square sense.

Lemma 2 [23]Denote by A an unknown symmet-
ric and positive semi-definite matrix in Rn×n,
and we have to solve the equation Ax=y for an
unknown y ∈ Rn. Assume that A−1 exists. We are
given a sequence of matrices Ak and a sequence
yk, where k = 0, 1, In addition, suppose that
limk→∞ ‖ 1k

∑k
i=1 yi − y‖ = 0, limk→∞ ‖ 1k

∑k
i=1Ai −

A‖ = 0, limk→∞
1
k

∑k
i=1 ‖Ai‖2 exists. Consider the

sequence xk: x0 is arbitrary,

xk+1 = xk +
c1

k + c2
(yk −Akxk), (12)

where c1 and c2 are constant real numbers. Then,
limk→∞ xk = A−1y. �

Proof of Theorem 1 Taking expectations on both
sides of (10) with respect to measurement noise ε(k),
we obtain

η(k + 1) = (I −m(k)Lb(k))η(k) +m(k)D(k)γ,
(13)

where η(k) = E[e(k)]. By substituting (13) in (10), we
get

ẽ(k + 1) = (I −m(k)Lb(k))ẽ(k) +m(k)D(k)ξ(k),
(14)

where ẽ(k) = e(k)− η(k) and ξ(k) = ε(k)− γ. Note
that ξ(k) is zero mean and satisfies Assumption 1.
By Lemma 1, ẽ(k) converges to 0 in mean square.
Therefore, e(k) is mean square convergent to η(k).
Now, we examine the convergence of η(k). From
the definition of L̄b and the symmetry of Lbi, L̄b is
a symmetric grounded Laplacian of Ĝ. Since Ĝ is
connected, by Lemma 1 in [21], L̄b is positive definite.
Consequently, λm(L̄b) > 0. Now, it follows from
Lemma 2 that limk→∞ η(k) = L̄−1b D̄γ. Consequently,
e(k) converges to L̄−1b D̄γ in mean square, i.e.,
limk→∞E(‖e(k)− L̄−1b D̄γ‖2) = 0.

4.2. Markovian Topology Switching

In this section, we analyze convergence when
network topology switches randomly. We model the
switching of the network topologies as a Markov chain;
the reasonableness of this model for mobile networks
has been established in [13].

Assumption 5 The temporal evolution of the mea-
surement graph G(k) is governed by an N-state
homogeneous ergodic Markov chain with state space
G = {G1, . . . ,GN}, which is the set of graphs that

c© 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls

8 Asian Journal of Control, Vol. 00, No. 0, pp. 1–13, Month 2008

can occur over time. Furthermore Ĝ :=
⋃N
k=1 Gk =

(V ,
⋃N
k=1 Ek) is connected, where Ek is set of edges

in Gk. In addition, the processes G(k) and ε(j) are
independent for all k and j.

In Assumption 5, the Markovian switch on
the graphs means that P (G(k + 1) = Gi|G(k) =
Gj) = P (G(k + 1) = Gi|G(k) = Gj ,G(k − 1) =
G`, . . . ,G(0) = Gp) where Gi,Gj ,G`, . . . ,Gp ∈ G.
The requirement for ergodicity of the Markov chain
ensures that there is an unique steady state distribution
with non-zero entries. This means every graph in the
state space of the chain occurs infinitely often. Since Ĝ
is connected, ergodicity implies that information from
the reference node(s) will flow to each of the nodes
over time. Again, note that none of the graphs that ever
occur is required to be a connected graph. Since the
Markov chain is ergodic, the steady state distribution of
the chain is defined as π = {π1, π2, . . . , πN}. Recalling
that Lbi and Di correspond to Gi ∈ G, we can use the
same formula as that in (11) to define L̄b and D̄.

Theorem 2 Under Assumption 1,2 and 5, e(k) in (10)
is mean square convergent, i.e., limk→∞E(‖e(k)−
Eε(e(k))‖2) = 0, where Eε(e(k)) is expectation of e(k)
w.r.t. measurement noise ε(k), and Eε(e(k)) converges
to L̄−1b D̄γ almost surely.

The proof of the theorem uses the next two
lemmas.

Lemma 3 If relative measurements are unbiased, i.e.,
γ = 0, under 1,2 and 5, e(k) in (10) converges to 0 in
mean square, i.e., limk→∞E(‖e(k)‖2) = 0.

Lemma 4 [Proposition 1 in [24]] Assume {Ak, yk},
k = 0, 1, . . . , is stochastic process on (Σ,F , P), where
Ak is an n× n symmetric positive semidefinite matrix
and yk is n× 1. Consider the following iteration with
arbitrary x0:

xk+1 = xk +
c1

k + c2
(yk −Akxk), (15)

where c1 and c2 are real constants. If A :=

limk→∞
1
k

∑k
i=1E[Ai], y := limk→∞

1
k

∑k
i=1E[bi],

and A is positive definite, then limk→∞ xk = A−1y
almost surely.

Proof of Lemma 3 is omitted due to its length;
it can be found in [22]. Lemma 4 follows in a
straightforward manner from the results in [24], so its
formal proof is omitted.

Proof of Theorem 2: The proof is similar to that
for Theorem 1. Define η(k) = Eε[e(k)], where the
expectation is taken with respect to measurement noise
ε(k). Take the expectation on both sides of (10), we get

η(k + 1) = (I −m(k)Lb(k))η(k) +m(k)D(k)γ.
(16)

By substituting (16) in (10), we get

ẽ(k + 1) = (I −m(k)Lb(k))ẽ(k) +m(k)D(k)ξ(k),
(17)

where ẽ(k) = e(k)− η(k) and ξ(k) = ε(k)− γ. Note
that ξ(k) is zero mean and satisfies Assumption 1. By
Lemma 3, ẽ(k) converges to 0 in mean square. Now, we
examine the convergence of η(k). We rewrite (16) as

η(k + 1) = η(k) +m(k)(D(k)γ − Lb(k)η(k)). (18)

It follows from Assumption 5,

lim
k→∞

1

k

k∑
i=1

E[Lb(k)] =

N∑
i=1

πiLbi = L̄b,

lim
k→∞

1

k

k∑
i=1

E[D(k)] =

N∑
i=1

πiDi = D̄ (19)

From the definition of L̄b and the symmetry of Lbi,
L̄b is a symmetric grounded Laplacian of Ĝ. Since
Ĝ is connected, by Lemma 1 in [21], L̄b is positive
definite. Consequently, λm(L̄b) > 0. Furthermore, Lbi
is positive-semi definite. Then, by Lemma 4 that η(k)
converges to L̄−1b D̄γ almost surely.

V. Ameliorating slow convergence: DiSync-I

The proposed DiSync algorithm ensures mean
square convergence by attenuating the measurement
noise using ideas from stochastic approximation. In
particular, the gain m(k) that decays slowly with time
is instrumental in driving the variances of the estimation
error to zero. This slowly decaying gain, however, also
makes the convergence rate slow. This is a common
feature of stochastic approximation algorithms. We’ll
see numerical evidence of this in Section VI. In practice,
transient performance of the DiSync algorithm can be
further improved by modifying the update law, which

c© 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls

A. N. Other: A Demonstration of the Asian J. Contr. Class File 9

we describe next. The modified algorithm is called the
DiSync-I(DiSync-Improved) algorithm.

First, we define a scalar state yu(k) for each node
u, which is a surrogate for the distance (number of hops)
of node u from the reference nodes. The state yu(k) is
called average distance of u from the reference nodes
at time k, and is computed by an update law that will
be described in Algorithm 2. If u is a refernce node,
yu(k) = 0 for all k. To describe the update law of yu(k)
for non-reference nodes, we define the set Su(k) :=
{v|yu(k) ≥ yv(k), v ∈ Nu(k)}, the subset of neighbors
of node u whose average distances are smaller than that
of node u at k. The state yu(k) is updated by averaging
all yv(k) from its neighbors who have smaller average
distance; see Algorithm 2. If none of its neighbors have
smaller average distance than itself, yu(k) increases.
Both Su(k) and yu(k) are maintained in u at index k.

The node variable update law for the DiSync-I
algorithm is given below; where the subscript on the
local iteration counter is suppressed:

x̂u(k + 1) =x̂u(k) + h(k)
∑

v∈Hu(k)

auv(k)(x̂v(k)

+ ζu,v(k)− x̂u(k)), (20)

where

h(k) =

{
1

1+|Hu(k)| for k < kh
m(k − kh) for k ≥ kh,

(21)

Hu(k) =

{
Su(k) for k < kH
Nu(k) for k ≥ kH,

(22)

where kh and kH are constants - that satisfy kH ≤ kh -
that are pre-specified to all nodes.

If yu(k) ≥ yv(k), it means that node v has been
closer to the reference nodes than node u on average
(even if node v may be farther from the reference node
than u at current index k). This indicates that node v is
likely to contain better estimates that u. If u and v are
neighbors, u should use the estimate from v to perform
update, while v should not use estimates from u.

Note that when kh =∞ and kH = 0, (20) becomes
the JaT algorithm of [13, 16]. As shown in [13, 16],
JaT algorithm ensures that the mean of the estimation
error converges to a constant (zero if measurement is
unbiased) and variance to a constant. In addition, when
kh =∞ and kH <∞, the resulting update law (20)
is a modified version of JaT algorithm: it now uses
Algorithm 2 during the initial phase up to k ≤ kH. We
will call it the JaT-I algorithm.

Table 1 shows how the update law (20) can produce
different algorithms depending on the values of the

Algorithm 2 Average distance algorithm at node u ∈
Vb

1: Initialize yu(0) =∞
2: while u is performing iteration do
3: for v ∈ Nu(k) do
4: if yu(k) ≥ yv(k) and yv(k) 6=∞ then
5: Su(k)← v;
6: end if
7: end for
8: if Su(k) 6= ∅ then

9: yu(k + 1) =

∑
v∈Su(k) yv(k)

|Su(k)| ;
10: else
11: yu(k + 1) = yu(k) + 0.25;
12: end if
13: k=k + 1;
14: end while

parameters kh, kH. For simulation studies in this paper
on the DiSync-I algorithm, we pick kh = kH somewhat
arbitrarily. In this case, DiSync-I first adopts JaT-
I when k < kh and then becomes DiSync when k > kh.
The reason behind the modification (20) over (8) is
the following. First, JaT has better convergence speed
during initial phase than that of DiSync. Second, JaT-
I has even better convergence rate than JaT due to the
use of only those neighbors that have been closer to the
reference node(s).

Note that the DiSync-I differs from DiSync only
during the initial phase (up to kh), otherwise it is the
same. As a result, the mean square convergence results
of DiSync holds for DiSync-I as well.

Table 1. Comparison of different algorithms

kH = 0 kH <∞ kH =∞
kh = 0 DiSync — —
kh <∞ — DiSync-I —
kh =∞ JaT JaT-I —

VI. Simulation evaluation

We now examine through simulations the time
synchronization performance of the DiSync and
DiSync-I algorithms, as well as that of JaTand JaT-
I algorithms. Finally, they are compared with the
virtual time synchronization algorithm ATS [17] in
terms of pairwise synchronization error. Simulations
are performed in a 10-node mobile network within a
10m× 10m square field. Nodes’ motions are generated
according to the widely used random waypoint
(RWP) mobility model [25]. It has been shown
in [13] that when nodes move according to the RWP
mobility model, the switching of the graphs can be

c© 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls

10 Asian Journal of Control, Vol. 00, No. 0, pp. 1–13, Month 2008

Fig. 3. Two graphs that occur during one simulation with 10 nodes
moving according to the random direction mobility model.

modeled as a Markov chain. A pair of nodes can
communicate when distance between them is less
than 5m. The true skews and offsets of 9 nodes are
picked uniformly from [1− 2× 10−5, 1 + 2× 10−5]
and [−10−2, 10−2]sec respectively according to [8].
The single reference node (10th) has skew 1 and offset
0. Denote k = 1, 2, . . . as update intervals (also called
synchronization periods), and tk as the global instant
of the beginning of k-th interval. In this simulation, the
interval is chosen as 1 sec, therefore tk+1 − tk = 1. For
the sake of convenience, simulations are carried out in
a synchronous fashion.

6.1. Implementation of pairwise synchronization

The simulation of the DiSync, DiSync-I, JaT and
JaT-I algorithms requires pairs of nodes to obtain
difference measurements by exchanging time stamped
messages when they are within communication range.
In order to evaluate the entire time synchronization
procedure, unlike [10–12, 16], in which difference
measurements are generated by adding random noise
to true difference of log-skew/offset, we select the
pairwise synchronization algorithm proposed in [3]
to compute the relative skew αu,v and relative offset
βu,v, and the difference measurements βu − βv and
log(αu)− log(αv) are then obtained from these as
described in Section II. According to [3], at the
beginning of the kth interval, node u sends a message
to v that contains the value of the local time at u
when the message is sent: τ (1)u . When node v receives
this message, it records the local time of reception:
τ
(1)
v . After a waiting period, node v sends a message

back to u that contains both τ
(2)
v and τ

(1)
v . When it

arrives at u, node u again records the local time of
reception: τ (2)u . Two nodes u and v in communication
range performs this procedure, called two-way time-
stamped message exchange, twice - at the beginning
and in the middle of each synchronization period. At
the end of the synchronization period, node u uses the

obtained eight time stamps {τ (i)u , τ
(i)
v } for i = 1, . . . 4 to

estimate αu,v(k) and βu,v(k) via the formula provided
in [3]. Finally, node u sends back to v these estimates.

There is a random delay between the time
a node sends a message and the other node
receives the message. This delay directly induces
errors in the estimated αu,v(k) and βu,v(k), and
thus determines the level of noise in the resulting
difference measurement. Therefore, the random delay
ultimately affects the time synchronization accuracy.
In employing the pairwise synchronization protocol
of [3], we subject the message exchanges to a
random delay that is Gaussian distributed with mean
150µsec and standard deviation 10µsec, as these
values are considered realistic for wireless sensors
networks with current hardware and communication
protocols with uncertain-delay elimination (e.g., MAC-
layer time-stamping) [8]. Although the relation between
the statistics of the random delays and the noise
of difference measurements of log-skew and offsets
defined in Section II are complex, the noise levels in the
difference measurements used are likely to be realistic
due to realistic choice of delays.

6.2. Performance in estimating global time

We conduct 1000 Monte Carlo simulations of
running algorithms for 800 second (iterations). Figure 3
shows two snapshots of the network during a
simulation. As we can see, only a limited number
of nodes can communicate with each other. Recall
that auv(k) = 1 if (u, v) ∈ E(k) for all k. The step
size function is chosen as m(x) = 1

x+3 . We pick kh =
kH = 40 somewhat arbitrarily. Moreover, to evaluate
the algorithms under sleep-wake cycle implementation
for energy conservation, we force nodes to pause the
updates when k ∈ [400, 600]. When k > 600, the step
size function is changed to m(k − kh − 200), i.e. it
resumes the value before the pause.

Figure 4(a) and 4(b) show the mean and variance
of estimation error of the skew of node 3. As expected,
both the variances of DiSync and DiSync-I are seen to
converge to zero, while that of JaT and JaT-I converge
to constant value. In addition, DiSync-I improves the
accuracy of the mean of estimation error at the expense
of slightly increasing the variance of estimation error.

Figure 5 shows the global time estimation error in
one experiment, i.e. t̂u(tk)− tk as a function of tk for
node 3. Both DiSync and DiSync-I show much higher
accuracy of global time estimation than that of JaT and
JaT-I. The accurate skew estimates is crucial in getting
good global time estimates, since even a tiny error in the

c© 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls

A. N. Other: A Demonstration of the Asian J. Contr. Class File 11

0 100 200 300 400 500 600 700 800

−1

0

1

2

3
x 10

−6

Time (sec)

M
ea

n

JaT
JaT−I

DiSync
Disync−I

True

(a) Mean

0 100 200 300 400 500 600 700 800
10

−13

10
−12

10
−11

10
−10

Time (sec)

V
ar

ia
nc

e

JaT
JaT−I

DiSync
Disync−I

(b) Variance

Fig. 4. Empirically estimated mean and variance of the estimation error
of skews in node 3. Note that in (b), y-axis is in logarithm scale.

0 100 200 300 400 500 600 700 800
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

Time (sec)

T
im

e
es

t.
er

ro
r

(s
ec

)

JaT
JaT−I

DiSync
Disync−I

True

Fig. 5. The estimation error of global time in node 3

skew estimate leads to a large error in the prediction of
global time t over time. In addition, the DiSync-I further
reduces the initial transient period that DiSync suffer
from.

6.3. Comparison with ATS

In ATS [17], each node u estimates the virtual
global time using t̂ru(t) = %̂u(k)τu(t) + ôu(k) for tk ≤
t ≤ tk+1, where variables %̂u(k) and ôu(k) can be
thought of as the skew and offset of a virtual global
time respect to the local time of u during interval
k. Here, we present a synchronous version of ATS
algorithm that we use in simulation in order to be

consistent with the discussion. Each node u updates
its %̂u(k) and ôu(k) using %̂v(k), t̂rv(k), α̂uv(k) from
its neighbors, where α̂uv(k) is the estimated relative
skew. α̂uv(k) is obtained by pairwise communication
between u and v during k-th update interval, as part of
the ATS algorithm. This is done as follows. Two time-
stamped messages are sent from node v to node u: one
at the beginning of k-th interval and the other one in
the middle of the interval. Note that no return messages
from u to v is required. The computation of α̂uv(k)
is performed by a low-pass filter as provided in ATS:
α̂u,v(k) = ρα̂u,v(k − 1) + (1− ρ)

τ(1)
v −τ

(2)
v

τ
(1)
u −τ

(2)
u

, where ρ is
a tuning parameter and chosen as 0.2 (same value used
in ATS). It has been shown that limk→∞ αu%̂u(k) =
ᾱ, limk→∞ ôu(k) + βu%̂(k) = β̄, where ᾱ and β̄ is the
skew and offset of the virtual clock with respect to t.
The ATS algorithm ensures that the estimated virtual
global times in all nodes are eventually equal, i.e.,
limt→∞ t̂ru(t) = t̂rv(t) for all u and v.

The performance of ATS is guaranteed under the
assumption that the time stamps are exchanged without
random delay. To compare with other algorithms under
identical conditions, we add random delay to τ

(i)
u for

i = 1, 2. The delay parameters are the same as those
used during the simulation of the other algorithms. In
addition, since ATS does not estimate the clock time
at any of the nodes, we use the metric “maximum
synchronization error” to compare ATS with the other
four algorithms. This is defined as maxu,v |t̂ru(tk)−
t̂rv(tk)| for ATS, and maxu,v |t̂u(tk)− t̂v(tk)| for the
other four algorithms.

Figure 6 compares maximum synchronization
error in one experiment for all five algorithms. Although
the maximum synchronization error decreases faster
in ATS, JaT and JaT-I at the beginning, the
superior robustness to the measurement noise of the
DiSync algorithm helps it outperform them after about
100 sec. It can be seen from the figure that the DiSync-
I achieves the lowest maximum synchronization error
among all algorithms.

VII. Conclusion

We proposed a novel distributed asynchronous
algorithm to estimate clock skews and offsets from
pairwise difference measurements of log-skews and
offsets. The nodes measure log-skew difference
and offset difference with nearby neighbors by
exchanging time stamped messages. A node fuses
these measurements with current estimates to iteratively

c© 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls

12 Asian Journal of Control, Vol. 00, No. 0, pp. 1–13, Month 2008

0 100 200 300 400 500 600 700 800
10

−4

10
−3

10
−2

10
−1

Time (sec)

S
yn

c
er

ro
r

(s
ec

)

ATS
JaT

JaT−I
DiSync

Disync−I

Fig. 6. Maximum synchronization error along time in one experiment.

update their estimates of skew and offset. The algorithm
is inspired by the recent work on using stochastic
approximation in consensus algorithms. The variance of
skew/offset estimation error asymptotically converges
to zero under certain assumptions. Using estimated
skews and offsets, nodes can estimate the time of global
clock accurately which was demonstrated in numerical
evaluation. Simulations also show that the proposed
algorithms outperform competing algorithms.

The fact that clocks are not synchronized poses an
unique challenge in applying stochastic approximation
ideas to log-skew and offset estimation problem, since
all nodes need to reduce a gain in a synchronous
manner. This was addressed by providing an iteration
schedule to the nodes ahead of time so that all
nodes can effectively perform updates synchronously.
The scheduled iteration interval grows along time,
though the growth rate is quite slow. In many cases
the growing interval between iterations schedules
may be useful since it automatically slows down
the rate of synchronization over time. This has the
desired effect of more iterations and faster lowering
of synchronization error initially at the cost of high
communication overhead, while lowering the overhead
as more accurate synchronization is achieved. In
cases when the growth of synchronization interval
is undesirable, the reference nodes could restart the
synchronization process. Another possibility is to use
the estimated skews after some time has passed instead
of using pre-specified bounds at all times. Since the
proposed algorithms provide highly accurate skew
estimates, doing so will ensure synchronous updates
while keeping the time interval between updates from
growing. The effectiveness of this strategy will be
studied in future work. There are many additional
avenues of further exploration, such as the role of
network topology [21, 26] and design parameters kH,kh
on the convergence rate.

REFERENCES

[1] B. M. Sadler and A. Swami, “synchronization in sensor
networks: an overview,” in IEEE MILCOM, October 2006,
pp. 1–6.

[2] J. R. Vig, “Introduction to quartz frequency standards,”
Army Research Laboratory, Tech. Rep., 1992.

[3] K.-L. Noh, Q. M. Chaudhari, E. Serpedin, and B. W. Suter,
“Novel clock phase offset and skew estimation using
two-way timing message exchanges for wireless sensor
networks,” IEEE Transactions on Communications,
vol. 55, no. 4, pp. 766–777, Apr 2007.

[4] S. Yoon, C. Veerarittiphan, and M. L. Sichitiu, “Tiny-sync:
Tight time synchronization for wireless sensor networks,”
ACM Transactions on Sensor Networks, vol. 3, no. 2, pp.
1–34, Jun 2007.

[5] M. Leng and Y.-C. Wu, “On clock synchronization
algorithms for wireless sensor networks under unknown
delay,” IEEE Transactions on Vehicular Technology,
vol. 59, no. 1, pp. 182–190, Jan 2010.

[6] J. Elson, L. Girod, and D. Estrin, “Fine-grained network
time synchronization using reference broadcasts,” in the
Fifth Symposium on Operating Systems Design and
Implementation (OSDI), 2002.

[7] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-
sync protocol for sensor networks,” in ACM Conference
on Embedded Networked Sensor Systems (SenSys), 2003.

[8] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi,
“The flooding time synchronization protocol,” in ACM
Conference on Embedded Networked Sensor Systems
(SenSys), 2004.

[9] P. Barooah and J. P. Hespanha, “Estimation from relative
measurements: Error bounds from electrical analogy,” in
Proc. of the 2nd International Conference on Intelligent
Sensing and Information Processing(ICISIP), January
2005, pp. 88–93.

[10] P. Barooah, N. M. da Silva, and J. P. Hespanha,
“Distributed optimal estimation from relative measure-
ments for localization and time synchronization,” in
International Conference on Distributed Computing in
Sensor Systems DCOSS’06, San Francisco, June 2006, pp.
266 – 281.

[11] A. Giridhar and P. R. Kumar, “Distributed clock
synchronization in wireless networks: Algorithms and
analysis (I),” in 45th IEEE Conference on Decison and
Control, December 2006, pp. 4915 – 4920.

[12] R. Solis, V. S. Borkar, and P. R. Kumar, “A new
distributed time synchronization protocol for multihop
wireless networks,” in Proc. of the 45th IEEE Conference
on Decison and Control, December 2006, pp. 2734–2739.

c© 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls

A. N. Other: A Demonstration of the Asian J. Contr. Class File 13

[13] C. Liao and P. Barooah, “Distributed clock skew
and offset estimation from relative measurements in
mobile networks with markovian switching topology,”
Automatica, vol. 49, no. 10, pp. 3015 – 3022,
2013. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0005109813003634

[14] M. Huang, S. Dey, G. N. Nair, and J. H. Manton, “Stochas-
tic consensus over noisy networks with Markovian and
arbitrary switches,” Automatica, vol. 46, no. 10, pp. 1571–
1583, Oct. 2010.

[15] T. Li and J. Zhang, “Consensus conditions of multi-
agent systems with time-varying topologies and stochastic
communication noises,” Automatic Control, IEEE Trans-
actions on, vol. 55, no. 9, pp. 2043–2057, 2010.

[16] C. Liao and P. Barooah, “Time synchronization in mobile
sensor networks from difference measurements,” in In
proceedings of the 49th IEEE Conference on Decision and
Control, December 2010, pp. 2118 – 2123.

[17] L. Schenato and F. Fiorentin, “Average timesynch: A
consensus-based protocol for clock synchronization in
wireless sensor network,” Automatica, vol. 47, no. 9, pp.
1878 – 1886, 2011.

[18] R. Carli, E. D’Elia, and S. Zampieri, “A pi controller based
on asymmetric gossip communications for clocks syn-
chronization in wireless sensors networks,” in Decision
and Control and European Control Conference (CDC-
ECC), 2011 50th IEEE Conference on, dec. 2011, pp.
7512 –7517.

[19] C. Liao and P. Barooah, “Di-Sync: High-accuracy
distributed clock synchronization in mobile ad-hoc
networks from noisy relative measurements,” in American
Control Conference, June 2013, pp. 3338–3343.

[20] ——, “Estimation from relative measurements in mobile
networks with markovian switching topology: Clock
skew and offset estimation for time synchronization,”
ArXiV preprint, 2013. [Online]. Available: http:
//arxiv.org/abs/1301.2218

[21] P. Barooah and J. P. Hespanha, “Graph effective
resistances and distributed control: Spectral properties and
applications,” in Proc. of the 45th IEEE Conference on
Decision and Control, December 2006, pp. 3479–3485.

[22] C. Liao, “Distributed time synchronization from relative
measurement in mobile wireless sensor networks,” Ph.D.
dissertation, University of Florida, April 2013.

[23] L. Gyrfi, “Stochastic approximation from ergodic sample
for linear regression,” Probability Theory and Related
Fields, vol. 54, pp. 47–55, 1980.

[24] M. Kouritzin, “On the convergence of linear stochastic
approximation procedures,” Information Theory, IEEE
Transactions on, vol. 42, no. 4, pp. 1305 –1309, jul 1996.

[25] T. Camp, J. Boleng, and V. Davies, “A survey of
mobility models for ad hoc network research,” Wireless
Communications and Mobile Computing, vol. 2, no. 5, pp.
483–502, Aug 2002.

[26] M. Pirani and S. Sundaram, “On the smallest eigenvalue
of grounded laplacian matrices,” IEEE Transactions on
Automatic Control, 2015.

c© 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls

http://www.sciencedirect.com/science/article/pii/S0005109813003634
http://www.sciencedirect.com/science/article/pii/S0005109813003634
http://arxiv.org/abs/1301.2218
http://arxiv.org/abs/1301.2218

	I Introduction
	II Problem formulation
	III The DiSync algorithm
	3.1 Iteration schedule and synchronous view

	IV Convergence analysis of DiSync algorithm
	4.1 Deterministic Topology Switching
	4.2 Markovian Topology Switching

	V Ameliorating slow convergence: DiSync-I
	VI Simulation evaluation
	6.1 Implementation of pairwise synchronization
	6.2 Performance in estimating global time
	6.3 Comparison with ATS

	VII Conclusion

