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Abstract This entry provides an overview of building energy management systems (BEMS). It includes a
description of the communication and control architectures typically used for energy management, definition
of the optimal supervisory control problem, and a description of current and future developments in optimal
energy management.
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1 Introduction

A building automation system (BAS) enables building operators to manage the indoor environment control
system, along with fire and safety system and other auxiliary functions such as Audio-Visual systems in a
building. The phrase Building Energy Management System (BEMS) is sometimes used interchangably with
BAS, though energy management is only one aspect of a building’s control system. Indoor environment
control, which includes lighting and heating, ventilation, and air conditioning (HVAC), has a strong impact
on energy use, and this may explain the meshing of the two terms. BEMS are typically used in large
commercial buildings, though in recent times there is a trend toward smaller commercial buildings.

The number of possible types and configurations of HVAC systems in large buildings is enormous. In
this section we will limit our discussion to single duct variable air volume (VAV), chilled water based HVAC
systems. Figure 1 shows a schematic of such a system. Constant air volume systems, in which the volume
of air supplied to the building interior is constant over time, are gradually being phased out. The system
shown is a single duct system, since the conditioned air is supplied to the zones through a single duct. Some
buildings employ a dual duct system, in which outdoor air (OA) is supplied through a separate, dedicated
OA duct. The system shown in the figure is a hydronic system since it uses water to transfer energy: chilled
water produced in a chiller is supplied to one or more air handling units (AHUs) that cools and dehumidifies
the air supplied to the interior of the building. Chilled water based systems are common in large buildings,
and even in some medium sized buildings if they are part of a campus. In case of a campus, chilled water
is produced in a chiller plant with multiple chillers. In cold and dry climates that do not require cooling
and dehumidification, there is no cooling/dehumidification coil in the AHUs. Only heating coils are used,
which may use heating hot water (HHW) or electric heating elements. Many buildings use packaged rooftop
units (RTUs) that use a vapor compression refrigeration cycle to directly cool and dehumidify air. These
systems are referred to as “DX” (Direct eXpansion) systems. DX systems are common in small and medium
buildings that typically do not have BEMS.

1.1 Control algorithms in current BEMS

There are many BEMS vendors, such as Siemens, Johnson Controls, and Automated Logic. Almost all of
these BEMS vendors also offer their HVAC equipment and controller hardware. The larger vendors offers
their BEMS not simply as products but also solutions that can integrate HVAC equipment from other

P. Barooah
MAE-B 324, University of Florida
Tel.: +1-352-294-0411
E-mail: pbarooah@ufl.edu



2 Prabir Barooah

Air Handling Unit

Duct

VAV Box

Damper

Fan

Chilled Water

C
o

o
li

n
g

  C
o

il
 

VFD

Return Air

Valve Zone 1

Zone 2

Zone 3

Zone 4

Z
o

n
e 

5

Zone 6

Zone 7

Zone 8

Zone 9

Zone 10

Zone 11
M

ix
ed

 A
ir

Chiller

Cooling tower

Chiller Chiller

CHW	supply
CHW	return

(Other	buildings)

Fig. 1 A hydronic HVAC system with an Air Handling Unit (AHU) and multiple zones. A central chiller plant supplies
chiled water (CHW) to multiple buildings.

manufacturers. The BEMS from smaller vendors are usually used to integrate HVAC equipment from the
same vendor.

At present, commercially available BEMS are mostly used to perform setpoint tracking control. The
setpoints are specified by human operators through a user interface. The default values of these setpoints
are usually chosen during building commissioning. Some of these setpoints are informed by decades of
engineering practice and field-studies. For instance, the conditioned air temperature (downstream of the
cooling coil) is frequently chosen to be 55◦F in hot humid climates [9].

Even the simplest setpoint control loops are hybrid controllers, employing a mix of logic loops and PI
controllers. For example, a commonly used zone VAV box control algorithm is the so-called “single maximum
control”. Depending on the current temperature of the zone and its past history, the controller switches
to one of the three modes: cooling, heating, and deadband. In each mode, there is a distinct setpoint for
the zone temperature, and a PI controller is used to manipulate the flow rate and the amount of reheating
(except in the cooling mode in which reheating is turned off) to maintain that setpoint. These setpoint
tracking control algorithms typically come pre-packaged in BEMS, and modifications to their programming
are performed during installation and commissioning. A programming interface is offered as part of the
BEMS that allows automatic changes to the setpoints. The degree of flexibility of these programming
interfaces is typically limited, so usually only simple rule-based logics can be implemented. For instance,
the Siemens offers a programming interface using a proprietary language called ppcl, which is reminiscent
of BASIC, with features such as GOTO statements that are deprecated in modern programming languages.

1.2 Communication in BEMS

There are multiple levels of communication among devices and sub-networks in a BEMS. A simple classi-
fication employs three layers: floor level network layer, management layer and enterprise layer. BACnet is
a communication protocol that runs on top of other existing electrical standards like RS-485 (serial com-
munication), Ethernet, and MS/TP (Master slave/token passing). LonWorks was engineered to be both a
data protocol and an electrical standard for digital communications. In the USA, BACnet is more widely
used compared to Modbus and LON. In modern buildings, “BACnet/IP over Ethernet” is probably the
most relevant. That essentially means that the BEMS uses BACnet/IP protocol for communication among
devices, and BACnet packets are carried over Ethernet cables.

Interoperability is still an issue in BEMS even though BACnet was devised to resolve interoperability.
A reason for this issue is that BACnet is a standard and not all vendors implement it the same way. To
ensure the quality of BACnet implementation, one can apply for a BTL license, but most vendors do not. In
recent years the NiagaraTMframework has provided a way to integrate multitude of devices from multiple
manufacturers using a diverse protocols.

2 Optimization-based control of building energy systems

2.1 Opportunities

There is a large untapped opportunity to improve energy efficiency and indoor climate through advanced
decision-making. This opportunity comes from gap between what the current BEMS are capable of and
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what they are being used for. Modern buildings equipped with BEMS typically have sufficient actuation
capabilities at many levels (chillers, AHUs and zone VAV boxes) that can be controlled to deliver high
performance in terms of energy efficiency and indoor climate. Against this possibility, the reality at present is
that BEMS are used to maintain constant set points which are designed based on steady-state considerations.
Thus, the simplest way to improve HVAC operational performance is to change the set points in real time
by solving an optimization problem that takes into account the difference between the design conditions
and actual conditions. Lower level control algorithms that BEMS are already equipped with can then be
tasked with maintaining these set points. This optimization problem has to be revisited periodically as
new information - measurements and forecasts - becomes available. For this reason, there is an emerging
consensus that model predictive control (MPC) - that repeatedly solves an optimization problem posed over
a receding horizon - is appropriate for achieving high performance from existing BEMS. Another option is
a model-free approach such as reinforcement learning, though little exploration has been performed into
that frontier.

As in any control systems, sensing and actuation play as big a role as control algorithms. The control
problem - whether one employs MPC or some other approach - can be made easier by adding more sensing
and actuation. Additional actuation is quite expensive since that requires changing the building’s physical
structure. Adding sensors to a BEMS after it has been installed and commissioned is far more expensive
than the cost of the sensors themselves due to the cost of integration and testing. Still, adding sensing is
far less expensive than adding actuators. Adding advanced decision-making is perhaps the least expensive,
especially if the computations are performed in the cloud, while the BEMS serves only to provide the sensor
data and execute the decisions computed by the cloud-based algorithm through the building’s actuators.
This requires a middleware. BACnet, for instance, allows multiple commands to be sent to a controller
board with different priorities, and the equipment controller implements the one with the highest priority.
This mechanism can be used by the middleware to overwrite the default control commands computed by
the BAS and replace them by the commands from the cloud-based algorithm.

We next discuss some of the opportunities of achieving high performance building operation using MPC,
and the challenges therein. Although the right metric for performance will vary from one building to another
depending on the preference of the building owner, operator, and its occupants, it is common in the research
literature to take energy use (or energy cost) as the objective function to minimize, while indoor climate
requirements are posed as constraints. The key energy consumers are the chillers that produce chilled water,
reheat coils and supply air fans in air handling units (AHUs), and finally reheat coils in zone-level VAV
boxes; see Figure 1. The control problem therefore has to consider decisions for these equipment, and the
downstream effect of these decisions on the indoor climate. The energy consumed by pumps for chilled and
hot water are ignored here.

2.2 “Air-side” optimal control

In the so-called air-side optimization problem, the control commands are set points of air handling units
and perhaps zone-level VAV boxes. Chiller operation is outside the purview of the decision-making problem,
and will be discussed in Section 2.3.

The optimization problem underlying an MPC controller will seek to minimize some objective function
subject to the dynamic constraints and actuator limits. In a discrete-time setting, at time index k, the MPC
controller computes the decisions uk, uk+1, . . . , uk+N−1 over a planning horizon Kk = {k, k+1, . . . , k+N−1}
of length N by solving an optimization problem of finite (N-length) horizon. The planning horizon depends
on many factors. If the objective is to minimize energy cost, and monthly peak demand plays an important
role in the energy cost, the planning horizon needs to span months. A day long planning horizon seems to
be the shortest possible while keeping the problem practically relevant.

The single zone case We describe the problem in detail for a building in which an AHU is used to maintain
the climate of one space, which we refer to as a “single-zone” building. In such a building, shown in Fig. 2,
only four variables can be independently varied, which form the control command u: (i) ṁSA, the flow rate
(kg/s) of supply air, (ii) rOA, the outdoor air ratio, i.e., the ratio of outdoor air to supply air flow rates,
rOA := ṁOA/(ṁOA + ṁRA) ∈ [0, 1], (iii) TCA, the temperature of conditioned air and (iv) qrh, the rate of
reheating (kW). Thus, ut = [ṁSA, rOA, TCA, qrh]Tt ∈ R4. Each of these four control commands are in fact
setpoints of lower-level control loops that are common in existing building control systems.

There are many choices of control that can lead to similar indoor climate but distinct energy consump-
tion. A small TCA with small ṁSA can deliver the same “cooling” as a slightly larger TCA and larger
ṁSA. While lower ṁSA uses less energy consumption, lower TCA causes more energy consumption since it
removes more moisture, which requires removing the large latent heat of evaporation. It is important to
emphasize that the conditioned air temperature and humidity TCA,WCA cannot be decided independently,
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only TCA is a part of the control command since it can be maintained by a chilled water control loop. The
humidity of the conditioned air is indirectly decided by TCA due to the dynamics of the cooling coil. The
relationship is highly complex and challenging to model for real-time optimization [7].

The relationship between the control command u and the disturbance d to indoor climate variables
is best expressed as process (dynamic) models. They form the equality constraints in the optimization.
Inequality constraints come from actuator limits and bounds on climate variables (state constraints). Apart
from the dynamic constraints, there are two other types of constraints. The first set of constraints comes
from thermal comfort and indoor air quality considerations. The second set comes from actuator limits.

For the purpose of exposition, we use the total HVAC energy (over a time interval N) as the objective
function in the MPC optimizer: J = Etot =

∑k+N−1
t=k (pcdt + prht + pfant )∆t =

∑
t∈Tk p

tot
t ∆t, though other

choices are possible, such as the monthly energy cost that depends on total energy use and sometimes on
a combination of energy use and peak demand during the month. In summary, the optimization problem
within the MPC controller at time k is:

u∗k = arg min
uk,xk

J(uk,xk, d̂k), s. t. xk+1 = f(xk,uk, d̂k),xk ∈ Xk,xk ∈ Uk (1)

where uk := (uk, . . . , uk+N−1) and xk := (xk, . . . , xk+N−1) are the inputs and states, and d̂k = (d̂k, . . . ,
d̂k+N−1), in which d̂ is prediction of disturbance d, and Xk,Uk are constraint sets for states and inputs.

Climate controllers currently used in buildings do not optimize; they err on the side of maintaining
indoor climate since that is far more important than the energy bill [8]. Typically, TCA is maintained by
a PID loop at a setpoint that is decided based on decades of engineering experience. For instance, most
hot and humid climates TCA is set to 55◦F [9]. The flow rate ṁSA and reheating rate qrh are decided by
feedback controllers to ensure space temperature is within predetermined bounds; the bounds are again
decided based on decades of research on human comfort [3,2]. Finally, the outdoor air ventilation is usually
maintained at a setpoint based on design occupancy, which fixes the fourth component of u, namely rOA.

The disturbance and its predictions play a crucial role in predictive control. The disturbance d consists
of 5 components: (i) weather variables: solar heat gain ηsun, OA temperature TOA and OA humidity
WOA (ii) internal signals: sensible heat gain qint (mostly from occupants and their actions, such as use of
computers and lights), internal moisture generation rate ṁH20 (from occupants’ bodies, decorative plants,
coffee machines, etc.), and the number of occupants o. At every instant k, the optimizer needs predictions of
all the exogenous signals for the planning horizon. Except for weather related variables, obtaining forecasts
of the remaining disturbance signals is a highly challenging problem.

Multi-zone case In most buildings an AHU is used to deliver air to multiple zones; see Figure 1. The
problem described above can be expanded to the multiple-zone case in a straightforward manner. The
state dynamics will involve the states of thermal dynamics from each zone, and the control command will
now include not simple AHU-level variables but also the setpoints for each of the VAVs. The problem is
considerably more challenging, and not simply due to the higher computational complexity caused by the
higher state dimension. Additional challenges come from the higher degree of uncertainty in models.

2.3 The “water-side” optimal control

The so-called water-side control problem is to make decisions about the chiller and cooling towers. Most
chillers at present are run by constant-speed motors, so the key decision is turn a chiller in a bank of chillers
either on or off. Even in constant speed chillers, the load on the chiller can be changed by actuating the inlet
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Fig. 2 A single zone VAV HVAC system
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guide vanes. In some chiller plants, the supply water temperature can be manipulated and that becomes
another decision variable. The water side problem is applicable only with buildings with chillers, which is
more common in a campus or district setting [6].

3 Challenges

There are many challenges in successfully applying MPC to HVAC systems. One is the need for an accurate
and yet computation friendly dynamic model. Although there is a long history of modeling HVAC systems
and equipment, there are still unresolved issues. The underlying physical processes involve conductive,
convective and radiative heat transfer as well as mixing and transport of several species such as moisture and
CO2. Thus, first principles based models can be arbitrarily complex. A popular class of models for modeling
temperature evolution in a building is based on the resistance-capacitance networks, whose parameters are
fitted to measured temperature data. There is a large unknown disturbance that comes from heat gains
from occupants and their activities that makes system identification challenging [5]. Moreover, these models
ignore humidity; work on identification of models that include both temperature and humidity is rare.
Constructing control-oriented models for HVAC equipment, such as the cooling and dehumidification coil,
is more challenging [7].

Another challenge for MPC-type control is the need for prediction of the disturbance signal over the
planning horizon. Recall that there are many components in the disturbance signal, and while weather
related disturbances can be reasonably forecasted, signals such as number of occupants and the moisture
generation are difficult to predict.

Yet another challenge is addressing the high computational complexity due to the large number of
decision variables, especially where there are a large number of zones and the planning horizon is long.

3.1 Building-specific requirements

There are many types of buildings and all have their own unique requirements on indoor climate which spill
over to the constraints on the climate control system, MPC or not. Healthcare-related facilities in particular
require special considerations and have distinct environmental constraints. The HVAC system described in
detail in Section 2.2 is a hydronic (chilled water) system. The details of the control problem will differ in
case of a DX cooling system, which are used widely in packaged rooftop units used in small commercial
buildings.

The air-side control problem discussed in Section 2 involved continuously variable actuators and set
points, and the optimization becomes a nonlinear program (NLP). However, in case of a DX system the
decision variables may be integer valued if compressor stages need to be decided. In fact, many large HVAC
equipment is ultimately on-off, such as compressors in chilled water plants, cooling towers with constant
speed fans, etc. The optimization problem therefore becomes a mixed integer non-linear program (MINLP),
which are considerably more challenging to solve than NLPs. Advances in solving MINLPs will thus benefit
adoption of MPC in buildings.

Two other applications in which optimal control of BEMS can play an important role are demand side
services and management of on-site renewable energy sources. More generally, in any building that moves
away from the traditional role of being purely a consumer of energy that is supplied by someone else (power
grid, gas grid, etc.) to one of a prosumer that uses on-site generation, and perhaps energy storage, can
benefit significantly from more intelligent real-time decision making than the currently available rule-based
control algorithms of existing BEMS.

4 Conclusion

BEMS augmented with advanced decision-making algorithms can improve both indoor climate and reduce
energy use. In addition, they can help operate buildings with on-site generation and storage resources.
There are many challenges in achieving this vision. Control-oriented models learned automatically from
data, prediction of exogenous disturbances, and optimization algorithms all need advances. Another option
is model-free (learning-based) control. No matter the approach, the resulting methods need to be inexpensive
to deploy and maintain, which is challenging due to differences among buildings and changes that occur
in a building over time. The systems and control community is well positioned to address many of these
challenges.
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