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A Queueing Model for Meteor Burst Packet 
Communication Systems 

Abstract-A discrete time queueing model for the performance of 
meteor burst packet communication systems is analyzed using matrix 
analytic methods. A meteor burst system uses ionized layers formed by 
naturally occurring meteor bursts in the earth’s atmosphere to reflect 
radio signals. Due to its nuclear survivability, inherent privacy, and low 
cost, such a method of communication has gained considerable interest 
especially in the defence community. Not only is the system subject to 
interruptions due to the intermittence of the ionization layer, but its 
analysis is further complicated by the necessity to retransmit packets that 
have error or that occur at the tail end of a period of availability of the 
system. Our model takes such complexities into account. It is also of 
independent methodological interest in that it provides an exact analysis 
of a general queueing model with service interruptions. For the applica- 
tion at hand, we demonstrate the feasibility of the algorithms by a 
selected set of numerical examples. The algorithm can be used to ascertain 
the effects of the packet size, the bit error rate, the sync acquisition time, 
and other variables on system performance. A particularly useful aspect 
of our model is that it allows for the direct use of empirical distributions 
obtained from observational data. 

I. INTRODUCTION 
RATHER unusual approach to data transmission using A ionization layers created in the earth’s atmosphere by 

naturally occurring meteorite showers has gained importance 
due to many of its inherent advantages. Particularly in the 
military community, interest in such ‘‘meteor burst communi- 
cation systems” is increasing [ 11 due to its nuclear survivabil- 
ity, inherent privacy, and low cost. Indeed, the Defence 
Communications Agency, the Department of Agriculture, the 
Department of Energy, and the National Oceanic and Atmo- 
spheric Administration have sponsored related studies. A 
number of such systems have been built, and among the 
applications are Beyond Line-of-Sight (BLOS) communica- 
tions, sensor data collection, facsimile transmission, etc. For a 
detailed discussion of the basic facts concerning meteor burst 
systems, refer to [2] and [12]. 

In such a system, ionization layers created by meteorite 
showers are used to bounce radio signals thereby letting such 
layers fulfill the task of a communication satellite. For this 
reason, the system has been dubbed by some as the “poor 
man’s satellite. ” Although meteorite showers arrive fre- 
quently, the useful life time of the ionization layer created by 
each shower is very short. It has been observed that while such 
showers occur at average intervals of about 10 s, the resulting 
layers provide effective transmission periods of only about 0.5 
s; see [12] for a table of data pertaining to different seasons 
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and times of the day. Thus, in queueing theory parlance, what 
we have is an intermittently available server. 

In using this intermittently available medium for point to 
point packet communication from, say, A to B, a continuous 
probing signal (on a different frequency) is sent from B to A .  
Receipt of the probing signal by A signifies the beginnning of 
a period when the medium is available (operating period), and 
A starts sending packets to B which are acknowledged by B. 
Complicating the scenario are, however, the following facts. 
At the beginning of each operating period, a certain amount of 
time has to be expended by A for sending a preamble for 
“sync acquisition.” Also, at the end of each operating period, 
the packets that are en route are lost and need retransmission. 
Finally, the channel is subject to a bit error rate, and packets 
that are in error also have to be retransmitted. 

The purpose of this paper is to provide a queueing model 
and an algorithmic solution thereof to determine the perform- 
ance of such meteor burst communication systems. In particu- 
lar, the model allows for the computation of many important 
characteristics such as the long run throughput and the 
statistics for the queue length and sojourn times of messages. 
Using the algorithm, the effects of the bit error rate and packet 
lengths on the performance of the system can be evaluated. 
This paper was inspired by the work of Robert, Mitrani, and 
King [16] who examined this model by classical queueing 
techniques and without including some complexities taken into 
account here. 

The paper is organized as follows. In Section 11, we provide 
a general Markov chain model to describe the status of the 
communication medium in such a way that fairly general 
distributions can be used to describe the successive periods of 
availability and unavailability of the medium. In Section 111, 
we then describe a discrete time queueing model for the 
overall system as a Markov chain. That Markov chain is 
identified as belonging to the general class of “Markov chains 
of the M/G/1 type,” studied extensively by Neuts, Ra- 
maswami, and others. The basic methodology developed for 
such chains by Neuts [ 5 ] ,  [6] and a recently obtained recursion 
of Ramaswami [ 141 are also outlined. A key ingredient in that 
approach is the computation of the minimal nonnegative 
solution of a nonlinear matrix equation. In Section IV, we 
show that for the problem at hand, the Markov chain has 
special properties that allow for substantial simplifications in 
the computation of this solution and of many related quantities. 
In Section V, we provide an algorithm to compute the 
distribution and moments of the sojourn time (response time) 
of a message of an arbitrary number p of packets. We present 
some numerical results in Section VI and focus on many 
interesting questions including the importance of modeling the 
distribution of the operating periods accurately. 

In short, this study provides a tool for analyzing the 
performance of meteor burst communication systems. The 
general model and methods presented here have, however, a 
wider use in that they are applicable in many situations where 
the communication medium may become unavailable for 
intermittent periods due to breakdowns or the need to handle 
higher priority tasks. Although the literature on queueing 
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systems with service interruptons is extensive (see [3] and its 
bibliography), exact methods for analyzing them are seldom 
available. This paper may therefore be of independent interest. 
For the application which motivated this work, our model is 
definitely a useful tool, but its effective use requires careful 
estimation of the distributions of the operating and inoperative 
periods. Given the interest and existing implementations of 
such systems, data on these quantities should be available 
though not readily in the open literature. A particularly useful 
aspect of our model is that one may use the empirically 
observed distributions directly as inputs to it. 

11. A MODEL FOR THE COMMUNICATION MEDIUM 
For the discrete time queueing model describing the meteor 

burst communication system, we take time required to 
transmit one packet as the time unit. This is determined easily 
from the known transmission rate and the size of the (fixed 
size) packets. We further assume that the preamble and the 
packets lost at the end of a session together constitute M 
packets. It would appear reasonable to carry out the analysis 
assuming a fixed value for M and to choose that to be a typical 
value of a worst case upper bound. For this reason, although 
our model can be modified easily to handle the situation where 
the wasted operating period has a random duration, we limit 
ourselves to the case of a constant M. Finally, we wish to 
allow for substantially general distributions for the durations 
of availability and unavailability of the medium without losing 
computational tractability. This is done as follows. 

The state of the communication medium is modeled as a 
discrete time Markov chain. The state space of that Markov 
chain is partitioned into two subsets-operating states and 
inoperative states, so that the medium alternates between 
operating and inoperative states. The specific model used here 
assumes that these periods form an alternating renewal 
process. However, by suitably modifying the Markov chain 
model, one can allow for correlations between successive 
operating and inoperative periods without affecting the method 
of analysis to be developed here. An operating period is 
further modeled as consisting of two parts-one in which 
packets from the message queue are sent, and one in which no 
packets of the message queue are sent. The second one of these 
is to correspond to the part of the operating period that is 
wasted due to the preamble and due to those packets at the end 
of the operating period that always need retransmission. For 
notational convenience we assume, without loss of generality, 
that the wasted portions of the operating period are contiguous 
and occur at the end of each operating period. Later we will 
show that the assumptions made by us, including the Marko- 
vian assumptions, do not affect the generality of the model. 
Let us now turn to some specifics. 

We assume that the states of the communication medium at 
successive time points are described by an irreducible rn + M 
+ r state discrete time Markov chain with stochastic transition 
matrix of the block partitioned form 

where 1,- is the (M - 1) x (M - 1) identity matrix, T i s  an 
rn x rn substochastic matrix, S is an r x r substochastic 
matrix, b = (bMM-, ,  . . . , b, )  is a nonnegative vector of 
probabilities, 0 5 b,  5 1 , O  5 6, = 1 - CM ) = I  b .  J -  -= 1, To = 
1 - T1 and So = 1 - S1 where 1 is a column vector (of 
appropriate order) of l 's, @ is an r-component probability 
vector (i.e., @ 2 0 and 81 = 1) and finally CY is an rn- 
component probability vector. 

The states of the Markov chain are to have the following 

interpretation. During an interval [n, n + l ) ,  if the Markov 
chain is in one of the states rn + M + 1, . . . , rn + M + r,  
then the communication layer is not present and no packet can 
be transmitted. If the Markov chain is in 1, . 1 . , rn + M ,  then 
the communication layer is present and packets may be 
transmitted. However, if the chain is in the states rn + 1,  . . . , 
rn + M ,  then although a packet may be transmitted, it is either 
part of a preamble or one of those packets occurring at the end 
of the available period and requiring retransmission; thus in 
these states also the packet queue cannot be depleted. Thus, 
the sojourn time in the set of states rn + 1, . . * , rn + M 
corresponds to the operating period wasted. Only when the 
Markov chain is in one of states 1, - * * , rn can one transmit a 
packet from the true message queue, and such a packet has a 
probability e = (1 - E) of being correctly received where E is 
the bit error rate and b is the number of bits in a packet. 

We will now show that the above Markov chain model is 
substantially general to support arbitrary distributions for the 
operating and inoperative periods. In fact, one may even use 
the empirical distributions obtained from observational data 
directly. 

First of all, note that the durations of unavailable periods are 
i.i.d. with probability density 

P ( U = k ) = B S k - ' S 0 ,  k r  1. 

Such a density is obtained as the distribution of the absorption 
time in the discrete time Markov chain with initial probability 
vector (@, 0) and transition matrix [i so] and is called the 
phase type distribution PH (@, 5'). For a detailed discussion 
of phase type distributions and their computational uses we 
refer the reader to [8 ,  ch. 21. We recall that discrete phase type 
distributions include as special cases the geometric distribution, 
the negative binomial distribution, their mixtures and convolu- 
tions, as well as any distribution on the nonnegative integers 
with finite support. Thus, our model allows for very general 
distributions for the durations of unavailability of the medium. 
Other authors [12], [16] have assumed that distribution to be 
geometric (an assumption equivalent to Poisson arrival of 
meteor scatters). That assumption corresponds to the special 
case r = 1. While it is claimed in the literature that the Poisson 
assumption for meteor scatters may be justified based on the 
physics of the underlying phenomena, we are not aware of any 
validation of this assumption based on actual data. In the 
general setting considered here, this assumption can, if 
necessary, be replaced by suitable alternatives. 

Just as the distribution of the periods of unavailability is 
modeled generally, so is the distribution of the periods of 
availability. Indeed, it is easy to verify that under our general 
assumptions, the periods of availability are i.i.d. with common 
density 

if n s M  
P (  V= n )  = bMaTk-ITo if n = M + k ,  k z l .  

Thus, given that the duration of the available period is greater 
than M, its excess over M has distribution PH(cY, T). Because 
of the stated properties of phase type distributions and the 
arbitrary nature of bi, 1 5 i 5 M ,  we have a general model 
for the duration of periods of availability as well. 

We note that by modifying the elements of the matrix A 
corresponding to transitions into and out of the states rn + 1, 

e ,  rn + M ,  it is possible to allow the duration of the wasted 
operating period itself to be a random variable. Clearly, this 
does not affect the analysis discussed in this paper. Also, since 
such a specification renders the wasted operating period to 
have a phase type distribution, once again a general distribu- 
tion is supported. For reasons stated earlier, we shall in the 
sequel limit ourselves to the case where M is constant. 

The key step in using our model is to choose appropriate 
distributions for the durations of the operating and inoperative 
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periods. These can then be used to obtain the transition matrix 
of the Markov chain model. This may be done, for example, 
by fitting mixtures of negative binomial distribution by a 
moment matching method. An important fact to note in this 
context is that our model also allows for the direct use of the 
empirical distributions obtained from observational data. As 
noted in the section on numerical examples, the distributions 
of these periods have a crucial effect on the performance of the 
system, and therefore careful fitting of these distributions is 
important for obtaining a valid model for the overall system. 

We conclude this section by obtaining intuitively the 
stability condition for our model. Denoting by I. the steady- 
state distribution of the Markov chain describing the status of 
the communication layer, i.e., I .  = T A ,  1.1 = 1, and 
setting I., = (r,, - * e ,  rm), it follows that the maximum 
throughput of the system is given by @(I.,, 1). For the system 
to be stable it is then necessary that the average number of 
packets d arriving per unit time should satisfy d < e ( r ,  1). 
This result is proved in the next section. 

111. THE QUEUEING MODEL 
Recall that time is discretized in units equal to the 

transmission time of a single packet. We assume that the 
number of packets arriving in successive intervals [n, n + 1) 
are i.i.d. with common distribution {a,:u 2 0) of mean 6. We 
define X,, as the number of packets in the system at time n + 
and Jn, as the state of the medium at time n - . The definition 
of J,, as the state of the medium at n - instead of at n + leads 
to substantial simplifications in the algorithms. The process 
{ ( X n ,  J,,):n 2 o} is a discrete time Markov chain with state 
space { ( i ,  j ) : i  2 0,  1 5 j 5 m + M + r}. Defining the 
subsetsofstatesi= { ( i , j ) : l  ~ j < r n + M + r } a s l e v e l i  
and partitioning the transition matrix of the Markov chain 
according to levels 0, 1, . * e ,  its transition matrix is given by 

P =  

where for U 2 0, 

(3.1) 

B, = a,A and A, = AAv (3 4 
where A” is the diagonal matrix 

with 1, denoting the identity matrix of order k. Recall that e is 
the probability that a transmitted packet is error free, and e = 
1 - P .  We set a - ,  = 0. 

The transition matrix P in (3.1) is a matrix “of the M/G/l 
type” [5], [ 111, and is the natural matrix generalization of the 
structure of the embedded Markov chain of the M/G/1 queue 
(where the blocks reduce to scalars.) Algorithmic methodol- 
ogy for analyzing such chains has been set forth in [5], [6] and 
has been applied to many examples-see, for example, [7], [9], 
[13]-and we will draw on those results below. For complete- 
ness, we summarize only the key results. No proofs will be 
repeated; the reader is referred to [5], [ 1 11 for the details. We 
denote by x(i, j ) the steady-state probability that the Markov 
chain {(X,,,  J,,)} is in state ( i ,  j ) ,  and we set xi = (x(i, l) ,  . . . , 
x(i, rn + M + r)), x = (xo, x,, . . .), and X(z) = C E O  z’xi. 
The key step in the analysis is the computation of the quantities 
x(i, j) which give the joint stationary distribution of the 
number of packets in the system and the state of the medium. 

I) Stability Condition: By the general results in 151, [ 1 13, 
we know that the Markov chain given by P is ergodic iff ~ / 3 *  

c 1 where, I. is the stationary probability vector of the 
transition matrix CL, A i  = A and fl* = C E  , iAi 1. A direct 
computation using (3.2), (3.3) yields that 1.8* = 1 + d - 
@(rl 1) where I.~ is the vector comprising of the first rn 
components of r. Therefore, the following holds. 

Theorem I: The queue is stable iff d < @(rl 1). 
Henceforth, we only consider stable queues. As already 

noted, the quanitity @(rl 1 )  is the maximum achievable 
throughput, so that the stability condition simply states that the 
average number of arrivals per time slot should not exceed that 
quantity. 

2) Computation of xo.* The algorithm for the steady-state 
probability vector x starts by the determination of the vector 
xO. To that end, we consider the embedded Markov renewal 
process at visits to the set of states 0 whose transition function 
is given by the generating function K(z) = C E O  zBiGi(z) 
where Gi(z) is the generating function governing the first 
passage times from states of i to 0.  From the structure of P in 
(3.1), it follows that Gi(z) = [G,(z)]’, and thus 

(3.4) 

where G(z) = Gl(z). A familiar result from Markov renewal 
theory yields xo = (KK*)-’K where K is the stationary 
probability vector of the Markov chain governed by the 
transition matrix K(1) and K* = K’(1)l. 

The matrix G(z) = Gl(z) clearly satisfies the equation 

G(z) = 2 u l , [ G ( z ) l ’  (3.5) 
,=o 

and in particular the matrix G = G(1), is known to be the 
unique stochastic matrix satisfying 

m 

G = z  u l , G ’ .  (3.6) 
r = O  

Successive substitutions in this equation, starting with the zero 
matrix, give a sequence of matrices monotonically increasing 
to G and so provide a method to compute that matrix 151. The 
special structure of our problem leads to some simplifications 
in this procedure and, combined with some acceleration 
techniques recently proposed by Ramaswami [ 151, this results 
in an efficient computational scheme to determine G. Having 
computed G, one evaluates the matrix K(1) and the vector K. 

Direct differentiations in (3.4) and (3.5) lead to the normaliza- 
tion constant KK* in a computable form. We shall present some 
of the details of these steps in the next section with particular 
attention to structural simplifications for the present model. 

3) Computation of x,, i = 1: Ramaswami [14] has 
established the following stable recursion for the vectors xi, i 
2 1 .  

Theorem 2: For i 2 1, 

I -  1 

x , = [ x o B , + C  x J A , + l - J ] ( z - A l ) - l  (3.7) 
J =  I 

where B, = 
The matrices A ,  and B, obviously tend to the zero matrix as i 

-+ 00. One may therefore choose a sufficiently large index i ,  
set A,  = B, = 0, and compute the others using the backward 

substitute these in (3.7) to evaluate the vectors x,, i 2 1. 
Particularly useful in confirming the adequacy of the trunca- 
tion index is the obvious result 

B,GJ-‘ and A, = C;=, A,GJ-‘. 

reCUrSiOnS Ak = Ak + Ak+ and B k  = Bk + B k +  and 

i = O  
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which follows from consideration of the stationary distribution 
of the state of the communication medium. 

Modulo the details of computing the matrix G and the vector 
xo, the preceding results provide the relevant algorithms for 
the stationary probabilities x(i, j ) .  Once these are computed, 
one can routinely derive from them the joint stationary 
distributions of the system size and the state of the medium at 
special epochs such as the beginning of an operating period, 
the end of an operating period, etc. These provide useful 
information about how the queue builds up during inoperative 
periods and becomes depleted in the operating periods. 

The steady state equation x = XP may be written as 

The generating function X(z)  clearly satisfies 

where A(z) = .CEO ?Aj and B(z) = C E O  z'Bj. Repeatedly 
differentiating in (3.10) and using standard techniques (see 
[l l]), one can compute the moments of the system size. These 
provide further checks on the accuracy of the computed 
stationary probabilities. We omit the details and discuss in 
Section IV, the simplifications in these computations resulting 
from the special structure of P for the present problem. 

IV. SIMPLIFICATIONS DUE To STRUCTURE 
From (3.2), (3.3) the last M + r columns of the matrix A.  are 
zero. This implies that the last M + r columns of the matrix G 
are zero; each of the iterates in the successive substitution 
scheme in (3.6) has this property. The matrix G therefore is of 
the form 

where GI is of order m, and G2 of order (M + r) x m. 
Subsituting this in (3.6) and similarly partitioning A as 

r 

where A l l  is of order m and Azl is of order (M + r) x m, and 
using (3.2), (3.3), we see that the matrices GI and G2 satisfy 
the equations 

G I  = ~ A I I H + e A I I H G 1  +AI2G2H (4.2) 

G2=eAz1H+eAzlHGl  +A2*G2H (4 .3)  
where 

m 

H = C  ajG{. 
j = O  

(4.4) 

Successive substitutions in these equations result in the 
scheme. 

Initialization: Set G1(l) = O m , ,  and Gz(l) = O ( m + d x m .  
Iteration: For n >- 1, set 

H(n+ l)=C aj [Gl (n ) ] j  
m 

j = O  

G l (n+  l ) = e A I I H ( n +  l ) + e A l l H ( n +  l )Gl (n )  

+A12G2(n)H(n+ 1 )  

Gz(n + 1 )  = eA2,H(n + 1) + eAzlH(n + l )G l (n )  

+A22G2(n)H(n + 1 ) .  

It follows that as n t 03, GI@) t GI,  and G2(n) t G2. This 
reduces the number of matrix multiplications substantially and 
avoids unnecessary multiplications by zero. 

While as shown in [15], this scheme converges, its 
convergence is usually slow. An accelerated scheme for 
computing GI and G2 adapts the sub-Newton scheme proposed 
in [15]. This corresponds to the following technique. Having 
computed in (n + 1)st iterate, say G(n + 1) of G using the 
above scheme, update G(n + 1) by setting 

G(n  + l )+G(n  + 1 )  +AlZn+ I +A2[Zn+ I G ( n )  + G(n)Zn+ 1 1  
where 

Zn+ 1 = ( I - A I ) - ' [ G ( n  + 1) - G(n) ] .  
In [15] it is shown that this modification also yields a 
monotonically converging sequence of iterates, and extensive 
experimentation has shown this scheme to be substantially 
faster than the direct scheme. In practice, the above accelera- 
tion is implemented in the appropriate partitioned form for the 
iterates Gl(n) and G2(n).  

The iterations for G are continued until the maximum 
difference in the corresponding elements of two successive 
iterates falls below a specified tolerance (taken by us to be 

Also, at the termination of the iterative scheme, a linear 
extrapolation to a stochastic matrix based on the last two 
iterates is computed and taken as the computed value of the 
matrix G. This summarizes the steps in computing the matrix 
G. 

The structure of G also simplifies the computation of the 
matrix K(1). From (3.4), we have that 

Computation of K( 1) from this formula results in considerable 
savings. We recall that the steady-state vector xo is given by xo 
= ( K I [ * ) - ~ K  where K is the invariant probability vector of K(1) 
and K* = K'(1) 1. The vector K is evaluated using any of the 
standard technique for computing the stationary probability 
vector of a finite state Markov chain; we used the algorithm 
developed in [4]. After some routine algebra, details of which 
are omitted, it is possible to show that for our model 

where p = r/3* = 1 + d - (rI 1)e. In short, the 
determination of xo is fairly straightforward once the matrix G 
has been computed. 

v. RESPONSE TIME OF A MESSAGE 
Of particular interest to the meteor burst communication 

system is the response (sojourn) time distribution and its 
moment of a message of a given length p under the FIFO 
discipline. The queue is assumed to be in steady state at time 0, 
and we consider the response (sojourn) time of a message of 
length p arriving at time 0. Since the queue is FIFO, we may 
study its distribution by proceeding as though arrivals were 
shut off in the interval (0, 00). 

Let 

and let Cl = A - Co. Given that the arrival at time 0 finds k 
packets ahead of it and that the medium is in state i ,  the 
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response time of that message is the first passage time from the 
state (k + p, z) to level 0 in the Markov chain with transition 
matrix 

I O 0 0  r cl 

This follows since a packet is successfully transmitted iff the 
Markov chain describing the medium enters the set { 1, * - * , 
m} and the packet has no error. The stationary probability of 
state (k, z) is x(k, i), so that the probability generating function 
of the response time distribution of a message of size p is given 
by 

m 

Wp(z) = X k [ H ( z ) l k + P 1  ( 5  .2) 
k = O  

where 

(5.3) 
is the probability generating function of the first passage time 
from any level i to i - 1. 

As in other models of M/G/1 type-see, for example, [IO], 
[13]-it is possible by using the equations (3.9), to obtain a 
matrix generalization of the Pollaczek-Khinchin formula for 
Wp(z). The resulting expressions appear, however, to be too 
complicated for computational use. We shall not present that 
result, and only report on the direct scheme which we have 
implemented to compute the quantities of interst. 

Sojourn Time Distribution: For J, k 2 0, let the ith 
component of the (m + M + r) column vector rtl be the 
probability that, starting with an unlimited queue of packets to 
draw from and the medium in state i, the system successfully 
transmits at most k packets during the first j time slots. Then, 
clearly 

r f ) = l ,  for all k z j  (5  -4) 
and further 

Now, the probability wp( j )  that the sojourn time of a message 
of size p exceeds j is given by 

since the arriving message of size p spends more than j tmits of 
time in the system iff during the first; time units at most k + p 
- 1 packets are succesfully transmitted where k is the number 
of packets ahead of the arrival. Computation of the comple- 
mentary sojourn time distribution using the fortnulae is fairly 
straightforward. 

One may differentiate in (5.2) and (5.3) to obtain the 
factorial moments WJl) and Wi(1) of the sojourn time 
distribution in computable forms from which the mean and the 
variance of the sojourn time readily follow. These moment 
formulae provide accuracy checks in the computation of the 
sojourn time distribution. As these are now routine al- 
gorithmic steps, we omit the details. 

VI. NUMERICAL EXAMPLES 
Here we report the results of computations for a selected set 

of examples. In all of them we have used the same set of values 
for the means of the operating period and the inoperative 

TABLE 1 
SELECTED STATISTICS FOR SYSTEM SIZE (N) AND SOJOURN TIME (s) 

Inoperative 
Period Neg. Bin. 

I P(N=O)  I 0.74 

Neg. Bin. 

Gcommc 

Mixture 

553.20 
405.91 

E(N) 10.83 
18.29 

1021.66 
1064.92 

18.02 
27.38 

1721.02 
1929.30 

Opcrative Period 
Geomnic Mixture 

I3 79 
16.09 20.70 

789.14 1091.02 
732.61 1133.13 

14.98 19.30 
22.83 21.52 

1311.41 I65 1.6 I 
1398.71 1800.75 

22.50 27.14 
32.09 36.96 

2063 47 2445.31 
2304.63 2731.48 

period as well as for the arrival rate. However, it will be seen 
that depending on the particular set of distributions used, the 
performance characteristics differ significantly. Thus, the 
principle conclusion to be drawn from the examples is that the 
distributions of the operating and the inoperative periods have 
a significant effect on performance. In particular, the knowl- 
edge of their means alone is not adequate to predict accurately 
the performance of the system. For proper use of the model 
and algorithms, it is essential that accurate distributional 
assumptions be made. As our model allows the use of general 
distributions (and, in particular, the empirical distributions 
themselves), the techniques presented here can be fruitfully 
employed to study the performance of meteor scatter systems 
under realistic assumptions. Finally, in contrast to the distribu- 
tional assumptions, the bit error rate and the number of 
packets lost during an operating period (due to sync acquisi- 
tion time, etc.) do not appear to have a significant effect on 
performance. 

Our examples do not pertain to any specific system and are 
based on some hypothetical cases, but as far as possible, we 
have chosen parameter values representative of actual realiza- 
tions. The time to transmit a packet is 10 ms. This is also the 
unit of time. Arrivals occur in messages of 20 packets each 
with a mean arrival rate of 0.01 packets per unit time. This is 
modeled by assuming that the distribution {a,} is given by a0 
= 0.9995 and a. = 0.0005. Each packet consists of 20 bits. 
We set the mean operating period to 58 units (0.58 s) and the 
mean inoperative period to 1O00 units (10 s); as reported in 
[12], these values are typical of some systems for which data 
are available. 

The first set of Tables I-V, demonstrate the effect of the 
distributional assumptions on performance characteristics. 
Throughout, M = 4 and the bit error rate E = The 
tables correspond to three distributions each for the operating 
period and for the inoperative period. Those used for the 
operating period are the geometric distribution with mean 58, 
the negative binomial distribution with 9 phases and mean 58, 
and an equally weighted mixture of two geometric disributions 
with means 100 and 16, respectively. Similarly, the distribu- 
tions considered for the inoperative period are the geometric 
distribution with mean 1O00, the negative binomial distribu- 
tion with 9 phases and mean 1O00, and the equally weighted 
mixture of two geometric distributions with means 200 and 
1800, respectively. In each case, the negative binomial 
distribution has less variability than the geometric which in 
turn has less variability than the mixture. 

Table I lists the following steady-state measures for the 
resulting systems: the probability of emptiness (P(N = 0)), 
the expected number of packets in the system (E(N) ) ,  the s.d. 
of the number of packets in the system a ( N ) ,  the mean sojourn 
time ( E ( S ) )  of a packet, and the s.d.(a(S)) of the sojourn time 
of a packet. At a glance this table shows that the distributional 
assumptions have a drastic effect on the computed perform- 
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Inoperative 
Period 

TABLE I1 
SELECTED PERCENTILES OF SYSTEM SIZE 

Owrativc Period 
Percentile Ncg. Bin. I Gwmnic  I Mixture 

TABLE VI 
MAXIMUM THROUGHPUT 

M=l M=4 M=7 
- €=IO+ 0.0538 0.0510 0.0484 

0.0528 0.05Ol 0.0476 
= I F *  0.0441 0.0418 0.0397 90 

95 
20 32 40 
26 40 57 

Mixture 

95 40 60 77 
50 0 13 20 
75 20 40 40 
90 60 60 79 

Inopcntivc 
Period 

TABLE I11 
SELECTED PERCENTILES OF SOJOURN TIME 

oant ive  period 
Percentile Neg. Bin. I o#nnetric I Mixture 

Inoperative 
Period 

Ne& Bin. 

Gunnetric 1431 1823 2281 
2407 3107 3948 
3147 
I085 1313 1560 

h4iXturC 2439 291 1 3434 
4235 5047 5966 
5595 

Operative Period 
Percentile Neg. Bin. I Gwmtric 

TABLE IV 
PERCENTILES OF THE SYSTEM SIZE AT THE BEGINNING OF AN 

INOPERATIVE PERIOD 

lnopcrativc 
period 

oarative Period 
Percentile Neg. Bin. I Gcomaic I Mixture 1 

Neg. Bin. 

Gwmeuic 
90 20 
95 37 
50 

90 0 23 
95 15 47 

MiXW 75 0 

GtOmCUiC 

Mixture 
0 

12 
32 
46 
0 

I 1  
31 
56 
0 

11 
41 
69 

90 35 40 48 
95 40 52 61 
50 0 0 I I  
75 20 20 31 
90 40 40 60 

TABLE V 

Mixture 

PERCENTILES OF THE SYSTEM SIZE AT THE END OF AN INOPERATIVE 
PERIOD 

95 42 60 78 
50 0 0 0 
75 20 20 33 
90 40 57 63 

I Neg. Bin. I 75 I 20 I 20 I 27 I 

I 95 I 60 I EO I 93 I 

ance measures. A cycle comprising of a long inoperative 
period and a short operating period leaves behind a substantial 
backlog, which usually persists for a significant amount of 
time. This inflates the overall means for the system size and 
the sojourn time. This further results in increased variability in 
the distributions of these quantities. For the distributions 
considered, note that such effects can be expected to be least 
pronounced for the negative binomial and most for the 
mixture. 

Tables 11-V confirm these findings through more detailed 
information on the queue. In Tables I1 and 111, we give 

TABLE VI1 
SELECTED STATISTICS FOR SYSTEM SIZE (N) AND SOJOURN TIME (S)  

I I M = l  I M 4  I M=7 
I P ( N 4 )  I 0.558 I 0.541 I 0.524 

14.01 14.98 16.03 
2 1.76 22.83 22.97 

1223.84 1311.41 1406.51 
o(s) 1307.53 1398.71 1497.82 

P ( N 4 )  0.555 0.539 0.522 
E ( N )  14.11 15.09 16.16 
o ( N  ) 21.87 22.94 24.10 

1230.82 1319.34 1415.57 
1315.66 1407.93 1508.33 

P ( N  4) 0.529 0.512 0.494 
15.31 16.42 
23.1 1 24.32 25.63 

1314.59 1414.73 1524.38 
1413.72 1519.20 1634.77 

selected percentiles of the number of packets in the system and 
of the sojourn time of a packet. Note the pronounced tails 
when the input distributions exhibit greater variability. Tables 
IV and V, respectively, give the conditional distributions of 
the number in the system at the beginning and at the end of an 
inoperative period. When both distributions are negative 
binomial, we see that almost all the packets arriving during an 
inoperative period are cleared from the system during the 
succeeding operating period. However, when the distributions 
are not so regular, a significant queue can build up. For 
example, when both distributions are mixtures, then with 
significant probability there is a cycle with a rather long 
inoperative and a short operating period. Such cycles leave 
behind a long queue which takes a long time to dissipate. 

The results in Tables I-V show that performance predic- 
tions based only on mean values can be widely off the mark. In 
practice, typical performance criteria require that, with high 
probability, the response time should fall below stipulated 
values. These are conditions on the tails of distributions which 
are highly sensitive to the distributional assumptions made on 
the inputs. This shows the importance of gathering detailed 
distributional information on the operating and inoperative 
periods in making correct performance predictions. 

In Tables VI and VII, we examine the effects of the values 
of M and E on the performance of the system. These tables are 
computed assuming that both the operating and the inoperative 
period have geometric distributions. One sees that in the range 
considered, these parameters exert little influence on the 
performance characteristics. 
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