
1

Second Order Markov Model Based Proactive
Password Checker

Harpreet Singh Dhillon
Department of Electronics and Communication Engineering, IIT Guwahati, India.

Roll No.: 04010214; email: harpreet@iitg.ernet.in

Abstract— With the rapid increase in the multiuser
systems, the issues relating to the password security have
become very important. The problems inherent in allowing
users to choose passwords without restriction have been
widely reported in literature. Proactive password checking
has been a common means to enforce password policies and
prevent users from choosing easily guessable passwords
in the first place. One such proactive password checking
scheme, based on second order Markov model, is discussed
in this report.

Index Terms— Proactive password checking, dictionary
attack, markov model, password security.

I. INTRODUCTION

The problems inherent in allowing users to choose
passwords without restriction have been widely dis-
cussed in literature. Due to the limitation of human
memory, people are inclined to choose easily guess-
able passwords (e.g. phone numbers, birthdays, names
of family or friends, or words in human languages)
that might lead to severe security problems. Though
it was commonly believed that secure passwords were
difficult to remember and easy-to-remember passwords
were insecure, a recent experiment [1] showed with hard
data that passwords based on mnemonic phrases could
provide both good memorability and security, but non-
compliance with password selection advices was a main
threat to password security.

Proactive password checking [2] has been a common
means to enforce password policies and prevent users
from choosing easily guessable passwords in the first
place. When a user chooses a password, a proactive
checker will determine whether his password choice is
acceptable or not, and this proactive checking is done
online and the user will be immediately responded the
result. Among common approaches to improving pass-
word security by selecting good passwords, such as user
education, program-controlled password generation and

This report is submitted as a part of MA–402 (Queueing Models
for Performance Analysis) course taken by Dr. N. Selvaraju, Asst.
Professor, Department of Mathematics, IIT Guwahati, India.

reactive password checking (i.e., system administrators
periodically run password cracking programs to search
weak passwords), proactive password checking has been
widely regarded as the best.

II. PROACTIVE PASSWORD CHECKING

In proactive password checking scheme, a user is
allowed to select his own password. However, at the time
of selection, the system checks to see if the password is
allowable and, if not, rejects it. Such checkers are based
on the philosophy that, with sufficient guidance from
the system, users can select memorable passwords from
a fairly large password space that are not likely to be
guessed in a dictionary attack.

The trick with the proactive password checker is to
strike a balance between user acceptability and password
strength. If the system rejects too many passwords, users
will complain that it is too hard to select a password. If
the system uses some simple algorithm to define what
is acceptable, this provides guidance to the password
crackers to refine their guessing techniques.

Simple proactive techniques involve some kind of
rule enforcements. For example, all passwords must
be at least eight characters long or in the first eight
characters, the passwords must include at least one each
of uppercase, lowercase, numeric digits and punctuation
marks. Although this approach is superior to simply
educating the users, it may not be sufficient to thwart
password crackers. This scheme alerts crackers as to
which passwords not to try but may still make it possible
to do password cracking.

Another possible procedure is simply to compile a
large dictionary of possible “bad” passwords. When the
user selects a password, the system checks to make sure
that it is not on the disapproved list. There are two
main problems of space and time with this approach.
For dictionary to be effective, it has to be very large,
hence leading to a large memory requirement. The
time required to search a large dictionary may itself
be very large. Researchers have been looking for good



2

a

b

c

0.0

0.5 1.0

0.2

0.5

0.0

0.4

0.4

0.0

Fig. 1. Transition probability diagram for the simplified first order
markov model.

algorithms that could achieve both fast checking speed
and effective dictionary compression at the same time.
One such password checker, based on Markov model is
discussed in the following section.

III. BAPASSWD: A PROACTIVE PASSWORD CHECKER

This proactive password checker, named as BA-
passwd [3]–[4], is based on the Markov model for the
generation of the guessable passwords. Simplified illus-
tration of this model is given in Fig. 1. This model shows
a language consisting of an alphabet of three characters.
The state of the system at any time gives the identity of
the most recent letter. The value on the transition from
one state to another represents the probability that one
letter follows another. Thus, the probability that the next
letter is a, given current letter is b is 0.2.

In general, a Markov model is a quadruple
[m,A, T, k], where m is the number of states in the
model, A is the state space, T is the transition probabilty
matrix and k is the order of the model. For a kth

order model, the probability of making a transition to
a particular letter depends on the previous k letters that
have been generated. Fig. 1 shows such a simple first
order model. The transition probability matrix for this
model can be written as follows.

T =

 0.0 0.5 0.5
0.2 0.4 0.4
1.0 0.0 0.0


The authors of [3] report on the development and use

of the second-order model. To begin, a dictionary of the
guessable passwords is constructed. Then the transition
matrix is calculated as follows:

1) Determine the frequency matrix f , where f(i, j, k)
is the number of occurances of the trigram consist-
ing of the ith, jth and kth character. For example,
the password happy yields the trigrams hap, app
and ppy.

2) For each bigram ij, calculate f(i, j,∞) as the total
number of bigrams begining with ij. For example,
f(a, b,∞) would be total number of trigrams of
the form aba, abb, abc and so on.

3) Compute the enteries of T as follows:

T(i, j, k) = f(i, j, k)/f(i, j,∞)

The result is a model that reflects the structure of
the words in the dictionary. For a given password, the
transition probabilites of all its trigrams can be looked
up. Some standard tests can then be used to determine
if the password is likely or unlikely for that model.
Passwords that are likely to be generated by the model
are rejected. With this model, the question “Is this a bad
password?”, is being transformed into “Was this string
(password) generated by this Markov model?”.

IV. CONCLUSION

A proactive password checker, based on second order
Markel model, is discussed in this report. This model is
seen to transform the problem of deciding whether the
passwords is bad or good to the problem of observing
whether this password was generated by the Markov
model or not.

REFERENCES

[1] J. Yan, A. Blackwell, R. Anderson and A. Grant, “The Memo-
rability and Security of Passwords – Some Empirical Results”,
Tech. Report No. 500, Comp. Lab., Univ. of Cambridge, 2000.
http://www.ftp.cl.cam.ac.uk/ftp/users/rja14/tr500.pdf

[2] F Bergadano et al., “Proactive Password Checking With Deci-
sion Trees”, ACM conference on computer and communications
security, 1997, Zurich.

[3] C. Davies and R. Ganesan, “BApasswd: A New Proactive
Password Checker”, in proc. 16th National Comp. Security
Conf., pp. 1–15, Baltimore, MD, Sept. 1993.

[4] W. Stallings, Cryptography and Network Security. pp. 486–488,
Englewood Cliffs, NJ: Prentice-Hall, 1998.


