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                                                         Introduction 
 
In a token-ring LAN the nodes (labeled i = l, . . . , n) are arranged logically in a ring with 
each node transmitting to the next node in the ring. There is a single token and a node 
must be in possession of it in order to transmit a packet.  Each intermediate node receives 
the packet and retransmits it, with a time delay‘d’. When the node completes transmitting 
the packet it appends the token to the end of the packet, thus indicating to the next 
(downstream) node that it may begin transmitting. If it does not have a packet to transmit, 
it passes on the token.  The intended recipient of the packet both reads the packet into the 
node and relays it around the ring. When the entire packet has returned to the transmitting 
node, it starts to relay what is coming in. If some other node had a packet to send, then 
that packet is what is relayed; otherwise, the token is relayed. Travel of data around the 
ring is unidirectional as indicated by the arrows. 
 
                                

 
 
                                          Figure: Typical token-ring network 
 
 
                                          Husselbaugh’s contribution 
 
Husselbaugh proposed the use of an M/GI/l queueing model to help determine whether a 
token-ring local area network (LAN) should be broken up into two or more subnetworks, 



connected by a bridge.  As more nodes are added to a token ring and the nodes compete 
for the single token, the system may experience intolerable congestion or even become 
unstable (if the overall packet-generation rate exceeds the LAN‘s transmission capacity). 
By segmenting the network into separate domains, each configured as a token ring, one 
can reduce the waiting time for a token but at the expense of installing a bridge, packet 
switch, or router to connect the segments. He also examined the effects on congestion of 
various parameters, such as the number of stations in a segment, the transmission rate, 
packet size, and the packet demand rate. A novel feature of his model (compared to 
classical queueing design models) is that increasing the number of stations per segment 
increases not only the overall arrival rate (of packets) but also the service time of each 
packet, because of the time delay required for each station to receive and retransmit the 
packet. The theme in this that “using bandwidth techniques to predict network 
performance is fraught with inadequacies. One particular problem with bandwidth is its 
failure to take competition [for the token] into account.” In the language of queueing 
theory:  a system in with adequate capacity (arrival rate less than service  
rate) may still have unacceptably high waiting times. 
 
                                Contribution of the present paper  
 
1. The author explicitly considers the trade-off between reduced congestion and the cost 
of inserting a bridge or other routing device.  
2. He develope what we believe is a more accurate model for the traffic in each LAN 
segment as a function of the number of nodes in the segment (or, equivalently,as a 
function of the number of segments ).  
3. He compare the relatively simple, single-class M/GI/1 model of to the more 
complicated, multi-class polling models that have been  proposed in the literature on 
token-ring LANS.  
He argues that the single-class model gives reasonably accurate estimates of performance 
measures such as average waiting time for a symmetric LAN with negligible switchover 
(walking) times between classes.  Moreover, with this simple model it is possible to solve 
efficiently the design problem of selecting the optimal number of nodes to assign to each 
LAN segment for a wide range of parameter The author models a token-ring LAN or 
LAN segment as an M/GI/l  queue.  The customers are the packets which are being 
generated for transmission by the n nodes in the ring.  Assuming symmetric demand, he 
assumes each node  generates  the same average number  of  packets per second(say, uλ ,)  
and also that these packet-generation processes  are  independent  and  Poisson. Then the 
traffic volume for the LAN segment m a whole is a Poisson process with arrival rate  
                                              unλλ =                                           (1) 
The token is the server. Since the transmission protocol requires each packet to complete 
a round trip of the ring, the service time may be taken to be the time to transmit the 
packet all the way around the ring. Thus, assuming that the packet-size distribution is also 
the same for all nodes, the mean and variance of the service time are given, respectively, 
by 
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where p and v are the mean and variance, respectively, of the number of bytes per packet, 
and r is the transmission rate (in bytes/second).  (Note the dependence of μ/1 on n, which 
is due to the requirement that each of the n nodes must receive and retransmit the 
packet.)The average waiting time that a packet must wait for transmission is given by the 
Pollaczek-Khintchine formula: 
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Because  of  our symmetry assumptions,  this  average waiting time is the same for all 
nodes.  
Husselbaugh uses this formula (with minor variations) to measure congestion as a 
function of the number of inserted stations ‘n’ in the LAN. Curiously, in his analysis he 
holds λ  fixed, while allowing the mean service time to increase with ‘n’ according to the 
formula (2).  In light of the formula (1) definingλ , this makes sense only if one assumes 
that the transmission rate of each node decreases in inverse proportion to the number of 
nodes, n. He concludes from this analysis that congestion ‘‘is greatly influenced  by the 
number of transmissions per second i.e. μ , but hardly at all by the volume of data to be 
moved i.e. λ .’’  Since he is artificially holding λ  constant, this is hardly a surprising 
conclusion, but it has little bearing on the behavior of a real LAN, in which increasing the 
number of nodes will have the double-whammy effect of increasing both λ  and !/1 μ .The 
implicit constraint used in  to determine  the maximum acceptable  value of  n is that the 
waiting time in the queue should not exceed the service time ( μ/1≤qW ).The author 
proposes an alternative approach below, while at the same time taking explicit account of 
the dependence of both λ   and μ/1   on ‘n’. 
 
                   An Optimal Design Model for LAN Segmentation  
 
Consider a network consisting of a fixed  number of nodes N.  We wish to consider 
segmenting the network into k separate token-ring LAN’s, each consisting of n = N/L 
nodes, connected  by a bridge.  Let b(k) denote the amortized cost per unit time of the 
bridge, which he  assumes to be a non-decreasing function of the number of segments, k. 
We incur a cost h per unit time spent by each packet while waiting for transmission and 
being transmitted.  Let L denote the average number of packets in each segment, either 
waiting for transmission or being transmitted. Our objective is to choose a value of k to 
minimize the total cost per unit time:  
 
                                             c(k) = b(L) + khL .  
Now we need to develop a formula for L.  It follows from Little’s Law that  
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Since each of these variables is a non-decreasing function of  n = N/k, it follows that L is 
a non-increasing function of k.This optimization problem can be solved in many cases by 
complete enumeration of the possible values of  k. With some simplifying assumptions, 
we can solve the problem analytically, obtaining a closed-form solution that reveals 



interesting properties of the optimal solution as a function of the problem parameters. To 
this end, let us assume that: 
(AI) b(k)=b*k  
(A2) The packet-size distribution is exponential.  
(A3) The time delaty  at each node is negligible; i.e.,d = 0. 
 
Under these assumptions we have 
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If we treat k as a continuous variable then, using the fact that c(.) is a convex function, we 
can find the minimizing value of k by  differentiating c(k) and setting the derivative equal 
to zero.  This leads to the following formula for the optimal value, k': 
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The actual minimum value of k will be one of the feasible integer values on either side of 
k'.  (Recall that in order for a value of k to be feasible, it must not only be an integer but 
must be a divisor of N, so that the number of nodes in each segment, n = N/k, is also an 
integer.)Note that k' is proportional to uλ ,  the demand rate per node, and to μ/1 , the 
average packet transmission time. The dependence on N, h, and b  is only through the 
ratio Nh/b, and, since this ratio enters into the formula through its square root, k' is 
relatively insensitive to these parameters. 
 
Finally we note that, by varying the cost parameters, b and h, in this optimal design 
model, one can solve the constrained optimization problem, in which quality of service, 
as measured by the expected waiting time for a token, is guaranteed to be no larger than a 
given value. 
 


