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Abstract  
 

Probabilistic modeling finds its uses in uses in design and analysis of computer systems 

and has seen unforeseen growth in the last decade. Its application varies from diverse 

areas such as randomized distributed algorithms, communication protocols, biological 

process modeling, power management and lots of other fields are cropping up. 

Probabilistic model checking focuses on the probability of a given temporal logic 

property being satisfied. Probabilistic Model Checking is an automated technique for 

checking if a specified property holds in a probabilistic model such as “after a request of 

service there is at least 90% probability that the service will be carried out within 1 

second”. Queuing theory on the other hand helps us to understand and evaluate the 

properties of a markovian system. 

 

The survey presents an overview of model checking of both discrete and continuous time 

Markov chains (DTMCs and CTMCs). We also discuss the syntax and semantic of PCTL 

and CSL logic. Model checking algorithms for verifying DTMCs against specification in 

the logic discussed in the survey, including quantitative properties with rewards will also 

be considered.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 



Introduction: 

 

Probability is an important aspect which is used in the design and analysis of computer 

systems and has seen an enormous upwards swing in the last decade. Traditionally 

probability has been used to analyze system performance, where by queuing theory was 

used to obtain various estimates of mean waiting time, throughput etc. Probability has 

also been used in various communication protocols and computer networks where 

various properties like packet loss and the channel failure can be analyzed 

probabilistically. 

Probabilistic Model Checking has been defined as an automatic procedure for checking if 

a desired property (specified in temporal logic) holds in a probabilistic model. 

Conventional model checking focuses on the absolute correctness of a system which is 

difficult to realize in an real world scenario because system are subjected to various 

phenomenon of probabilistic type such as message loss, unpredictable environments, 

faults and delays. So the concept of absolute correctness is out of the window and here 

enters the realm of probabilistic model checking which can check properties like “the 

process terminates with probability more than 50%”. 

In case of Conventional model checking the model description is just the state transition 

system. In case of Probabilistic model checking the model are probabilistic (variants of 

Markov chains), so as to encode the probability of making a transition instead between 

states instead of simply the possibility of such a transition. As a result of which we can 

make quantitative statements about the system, in addition the qualitative statements 

made by conventional model checking. Some of the real world scenarios captured by 

probabilistic model checkers are.* 

 

• For a randomized leader election algorithm “leader election is resolved with 

probability 1”. 

• For a communication medium “the packet will eventually be delivered within 10 

ms with probability more than 0.5”. 

• For a system which can suffer failures “the chance of shutdown is at maximum 

0.1%”. 

• For a sub clusters with N workstations each “in the long run, Premium QOS will 

be delivered with probability at least 0.7”. 

• For FGF (Fibroblast Growth Factor) Signaling “the long run probability that Grb2 

is bound to FRS2 is greater than 0.4”. 

 

 

 

 

 

 

* They have actually been modeled and verified using Probabilistic Model Checker 

PRISM. 

 

 



 

Preliminaries 

 
Definition 1: Let be an arbitrary non-empty set and F is a family of subsets of . We 

say that F is a field on if: 

 

• The empty set  is in F  ; 

• Whenever A  is an element of F , then the complement \ A is in F ; 

• Whenever A  and B are elements of F , then A BU  is in F . 

 

A field of subsets F is an algebra if it is field which is closed under countable union 

i.e. whenever 
i

A  F for i  N , then 
i N

U
i

A  is also in F . 

The elements of  algebra are called measurable sets, and ( , F ) is a measurable 

space.  

 

Proposition 1: For any non empty set  and A is a family of subsets of , there is a 

unique smallest  algebra containing A . 

 

Definition 2: Let ( , F ) is a measurable space. A function u : F [0,1]  is a 

probability measure on ( , F ) and ( , F , u ) a probability space, if u satisfies the 

following properties: 

 

• ( ) 1u = ; 

• 1 1( ) ( )k k

i i i i
u A u A

= =
=U for any countable disjoint sequence 

1, 2
.....A A of F . 

 

The measure u  is known as probability distribution. is known as sample space and the 

elements of F are called events.  

 

Definition 3: A family of subsets of is called a semiring if 

  

• The empty set  is in F  ; 

• Whenever A  and B are elements of F , then A BI  is in F ; 

• If A B is in F , then there are many finitely many pair wise disjoint subsets 

1
,.....,

k
C C F such that

1
\

k

i i
B A C

=
= U . 

 

Theorem 1: If F is a semiring on X and : [0, ]u F  satisfies 

 

• ( ) 0u = ; 

• 1 1( ) ( )k k

i i i i
u A u A

= =
=U for any finite disjoint sequence 

1, 2
.....,

k
A A A F ; 

• 1 1( ) ( )k k

i i i i
u A u A

= =
U for any countable sequence 

1, 2
.....A A F , 

Then u extends to a unique measure on the algebra generated by F . 

 



Definition 4: Let ( , F ,u ) be a probability space. A function 
0

:X R is called a 

random variable. 

 

 

Model Checking Discrete Time Markov Chains 
 

Let AP be a fixed and finite set of atomic propositions, which are used to label states of a 

Markov Chain, and express properties of a state. We assume that we can easily determine 

the validity of an atomic proposition in a state. 

 

Definition 5: A labeled DTMC D is a tuple (S, i
s  P, L) where 

• S is a finite set of states; 

• 
i

s S is the initial state; 

• P: [0,1]S S  is the transition probability matrix where 
'

( , ') 1
s S

P s s = for 

all s S; 

• L: 2
AP

S is a labeling function which assigns to each state s S the set L(s) of 

atomic propositions that are valid in the state. 

 
     A labeled DTMC 

1
D  

 

The above diagram shows a labeled DTMC (S, i
s  P, L). The initial state is show here with 

an incoming arrow. The states S of the DTMC are {
0 1 2 3
, , ,s s s s } and the initial state 

i
s =

0
s . The transition probability matrix is  

 

P = 

0 1 0 0

0 0.01 0.01 0.98

1 0 0 0

0 0 0 1

  

 

The atomic propositions AP = {try, fail, succ}. The Labeling function assigns to each of 

the state L (
0

s ) =  , L (
1

s ) = {try}, L (
2

s ) = {fail}, L (
3

s ) = {succ}. 

 

 



Paths and Probability Measures 
 

A path is defined to be as an execution of a DTMC D = (S, i
s  P, L). A path is a non 

empty sequence of states 
0 1 2

......s s s where 
i

s S and P (
1

,
i i

s s
+

)>0 for all i 0. A path can 

both be finite or infinite. The th
i state of a path is denoted by (i). The length of path 

 is denoted by | |. The finite path is denoted by fin  and its last state by last ( fin ). 

The set of infinite and finite paths of D starting in state s are denoted by D
Path (s) and 

D

finPath (s) respectively. A finite path fin of length n is a prefix of an infinite path  if 

( ) ( )fin i i= for all 0 i 1. 

 

For any finite path fin

D

finPath (s) we can define probability ( )s finP to be 

1 0
( )

( (0), (1))...... ( ( 1), ( ))
s fin

if n
P

P P n n otherwise

=
=  where n=| fin |. 

 

A cylinder set ( ) ( )D

finC Path s is defined as 

( )finC = { D
Path (s) | fin is a prefix of }  

 

This is the same as set of all infinite paths with prefix fin . Let ( )D
Path s is the 

smallest sigma algebra on D
Path (s) which contains all the sets ( )finC  where fin  

ranges over all the finite paths D

finPath (s). The set of cylinders form a semiring over 

( D
Path (s), ( )D

Path s ) we can apply Theorem 1 and can define a probability measure 

Pr
s
on ( D

Path (s), ( )D
Path s ) as Pr

s
( ( )finC ) = ( )s finP  for all fin  D

finPath (s). 

 

Pr
s
will be used to quantify that, starting from a state s S the DTMC D behaves in the 

property specified by indentifying the set of paths which satisfy the property. We assume 

that the set of paths is measurable so we can use Pr
s
in this regard. 

 

Probabilistic Computation Tree Logic (PCTL) 
 

We specify the properties for the DTMC model using PCTL (Probabilistic Computation 

Tree Logic), which is almost a probabilistic extension of CTL (Computational Tree 

Logic). 

 

Definition 6: The syntax of PCTL logic is as follows: 

 

| | | | [ ]true a P= ¬
�

 

 

| k
X U=  

 



Where a is an atomic proposition, � {<, ,>, }, p [0,1] and k NU { }. 

 

We define  to be a state formula evaluated over the states of DTMC while which is a 

path formula is evaluated over the paths. For specifying a property in DTMC we always 

use the state formula. Only when specifying something like this [ ]P
�

 do we need to use 

the path formula. The above formula only specifies that the formula is only satisfied if the 

probability of taking a path from s satisfying is in interval specified by p� . There are 

path formula which are made from X (“next”) and U (“bounded until”) operator. 

X is satisfied when  is satisfied in the next state. k
U is satisfied if is satisfied 

inside k time steps and  is true till that point. 

 

Writing s a indicates that s satisfies  where s is a state and  is a PCTL formula. 

Writing a indicates that path satisfies the PCTL path formula . 

 

Definition 7: D= ( , , , )i
S s P L  be a labeled DTMC. We define the relationa , for any 

state s S as 

 

• sa true  for all s S 

• sa a   a L(s) 

• sa ¬   s /a  

• sa   s a s a  

• sa [ ]P
�

  Prob ( , )D
s p�  

 

Where Prob ( , )D
s = Pr

s
{ ( )D

Path s  | a } 

Also for any path ( )D
Path s we have 

a X    (1)a  
k

Ua   i N  (i k ( )i a .( ( ) )j i j< a ) 

  

Some of the useful operators that can be specified using PCTL logic are  

 

• Eventually Operator (diamond operator)  

 

 means that is eventually satisfied. 
k

 means that  is satisfied within k time units 

P
�

[
k

] =  P
�

[true k
U ] 

This operator is also known as the F operator in some texts 

 

• Always Operator (box operator) �  

 
�  means that  is true in every state of the path 

k
� means that  is true in first k states of the path 



�  can be expressed in terms of  as: 
�  = ¬ ¬  

 

We are not equipped with the negation operator in the PCTL syntax so we solve 

for the box operator using the fact that Prob ( , )D
s ¬  = 1 - Prob ( , )D

s  

p
P [� ]   Prob ( ,D

s � ) p  

        1 - Prob (D
s , ¬ ) p   

         Prob (D
s , ¬ )  1- p 

                               
1

[ ]
p

P ¬   

 This operator is also known as the G operator in some texts. 

 

• A operator which means that for all the paths the PCTL state formula is satisfied 

            A [ ]        
1

P [ ] 

 

• E operator which means that at least for one path the PCTL formula is satisfied 

F [ ]        
0

P [ ] 

 

 

Model Checking PCTL 
 

We present algorithms for model checking PCTL over the DTMC structure. The input to 

the algorithm is a DTMC D = ( , , , )i
S s P L  and a PCTL formula . The output is the set of 

states containing all the states of the model which satisfy . This set is denotes by  

Sat ( ) = {s S | s a }. We will get the result by checking if only the initial state i
s  

satisfies  however the algorithm computes it for all the states. 

 

The algorithm can be summarized as follows 

 

  Sat (true) = S 

  Sat (a)       = {s | a L(s)}  

  Sat (¬ )  = S \ Sat ( ) 

  Sat ( ) = Sat ( ) I Sat ( ) 

  Sat ( [ ]P
�

) = {s S | Prob ( , )D
s p� } 

 

Model Checking for the first four cases is trivial but for the [ ]P
�

 case we have to 

calculate for all the states s of the DTMC Prob ( , )D
s and then compare it to the bound p 

specified. A point to note is that the model checking algorithm here is recursive in nature 

and for formulas like 
p

P [ k
U ] we assume that Sat ( ) and Sat ( ) are already 

known. 

 

• Model Checking P
�

[ X ] formula 



 

This asks us for calculating the probabilities of the immediate transitions from state s S 

of the DTMC D 

Prob ( ,D
s X ) = 

'

'

( )

( , )
s Sat

P s s  

The vector Prob
D (X ) of the probabilities for all the states can be computed as follows 

  Prob
D (X ) = P.

�
 

Where 
�

 is a state indexed column vector defined as  

 
�

 = 
1 ( )

0

if s Sat

otherwise
 

 

• Model Checking P
�

[ k
U ] formula 

 

This asks us to find the probability Prob ( ,D
s

k
U ) for all states s where k N. 

For this let us define 

 

 Yes
S  = Sat ( ) 

 0
S
>  = Reach ( , ) i.e. states from where one can reach a state from a                              

state 

 No
S  = S\ 0

S
>  

 ?
S  = S\ No

S U
Yes

S  

 

ThereforeProb ( ,D
s

k
U ) can be defined as 

 Prob ( ,D
s

k
U ) = 

' 1 ?

'

0

1

( , ).Prob ( , )

No

Yes

i D k

s S

if s S

if s S

P s s s U if s S

 

 

 So Prob ( ,D
s

k
U ) = 

?

' 1

'

( , ).Prob ( , )i D k

s S

P s s s U + 
'

( , )
yes

i

s S

P s s  

 

Equivalently in matrix form this can be specified as  

 X = A.X + P.b 

Where  

A is the sub matrix for ?
S  

b is the column vector for Yes
S  

 

This can be solved through direct method which can be 

• Gaussian Elimination 

• LU Decomposition 

 



This can also be solved using iteration 

 
0Prob ( , )D

s U  = 0 
1Prob ( , )D k

s U
+  = 

?

'

'

( , ).Prob ( , )i D k

s S

P s s s U +
'

( , )
yes

i

s S

P s s  

 

 

Extending DTMCs and PCTL with Rewards 

 

For a DTMC D = (S, i
s  P, L) we can define a reward structure ( ,p

�
). This structure can 

help us define two types of rewards  

 

• State rewards which are assigned to states by means of a reward function  

p
�

: S
0

R . The state reward is acquired in state s per time-step. 

• Transition rewards which are assigned to transitions by means of a reward 

function : S X S
0

R . The transition reward is acquires each time a transition 

occurs from one state to another. 

 

Reward structure can be used to represent various additional information about the 

system modeled by the DTMC for example the cost incurred in spending some time in an 

particular state like in Power consumption the active states requires more power. 

 

The PCTL logic is extended to incorporate the reward structure as follows 

 

[ ]
K

r
R C
�

| [ ]
K

r
R I

=

�
 | [ ]

r
R F

�
 

Where � {<, ,>, }, k N, r
0

R and is a PCTL state formula 

 

Some example of reward based specification using these formulae are 

 

• 
100

3
[ ]R C : The expected power consumption within the first 100 time steps of 

operation is less than equal to 3. 

• 
10

4
[ ]R I

=  : The expected number of messages delivered after 10 time steps are at 

least 4. 

• 
5
[ ]R F succ  : The expected number of successful messages is at least 5. 

 

 

 

 

 

 

 

 

 



Model Checking Continuous Time Markov Chains  

 
Discrete time Markov chains are not capable enough of modeling continuous time. 

Therefore we resort to introducing a new model with discrete state space but with 

continuous time. 

  

Definition 8: A labeled CTMC C is a tuple C = (S, i
s , R, L)  where 

• S is a finite set of states; 

• 
i

s S is the initial state; 

• R: 
0

S S R is the transition rate matrix. 

• L: 2
AP

S is a labeling function which assigns to each state s S the set L(s) of 

atomic propositions that are valid in the state. 

 

The transition rate matrix R assigns rates to every pair of states in the CTMC model 

which are used as parameters of the exponential distribution. '( , ) 0R s s  implies that a 

transition can occur between states s and '
s with probability of being triggered in t time 

units is 1 - 
'( , ).R s s t

e . 

If in a state s there is more than one state '
s  with R(s, '

s ) > 0 than there is a race condition. 

The first transition to occur then describes the next state of the CTMC. In the case of race 

condition the probability of going to any of the next state '
s  is  

 

 P(s, '
s ) = R(s, '

s )/ 
''

( , '')
s S

R s s  

However if there are no outgoing transition from a state s, then P(s, '
s ) = 1 iff s = '

s and 0 

if s '
s . 

  

  
              A labeled CTMC C 

 

The above diagram is a CTMC C = (S, i
s , R, L). The initial state is show here with an 

incoming arrow. The states S of the CTMC are {
0 1 2 3
, , ,s s s s } and the initial state i

s =
0

s . 

The transition rate matrix R is 

 

    R = 

0 1.5 0 0

3 1.5 0 0

0 3 0 1.5

0 0 3 0

 



The atomic propositions AP = {empty, full}. The Labeling function assigns to each of the 

state L (
0

s ) = empty, L (
1

s ) = { }, L (
2

s ) = { }, L (
3

s ) = {full}. 

 

Paths and Probability Measures 
 

A infinite path of a CTMC C = (S, i
s , R, L) is defined as an non empty sequence 

0 0 1 1 2
......s t s t s  where R(

1
,

i i
s s

+
)>0 and 

0i
t R

> for all 0i . A finite path is a sequence 

0 0 1 1 1 1k k k
s t s t s t s  such that state 

k
s  is absorbing (

'

( , ')
s S

R s s  = 0). The value 
i

t  represents 

the time spent in state i. The th
i state of a path is denoted by (i). For an infinite 

path we denote by time ( , i) the time spent in the state
i

s . @t denotes the state s 

occupied at time t. For a finite path =
0 0 1 1 1 1k k k

s t s t s t s , time ( ,i) is defined for all i k 

and time ( , k) = .  

 
C

Path (s) denotes the set of all infinite and finite paths of the CTMC C starting in state s. 

If the states
0

s … 
n

s S satisfy ( , ')R s s > 0 for all 0  i < n and 
0 1
,...,

n
I I are non empty 

intervals in 
0

R then the cylinder set C (
0 0 1
, ,..., ,

n n
s I I s ) is defined as the set containing 

all paths 0( )C
Path s  such that (i) = 

i
s for all i n and time ( , i) 

i
I  for all I < n. 

 

We denote by ( )C
Path s the smallest sigma algebra on ( )C

Path s  which contains all 

cylinder sets C (
0 0 1
, ,..., ,

n n
s I I s ). The set of cylinders form a semiring over 

( ( )C
Path s , ( )C

Path s ) therefore by Theorem 1 we can define the unique probability 

measure Pr
s
on the smallest sigma algebra ( )C

Path s . 

 

We also consider for a CTMC C additional properties like 

 

• Transient behavior which describes the state of the CTMC at a particular time 

instant. For a CTMC C = (S, i
s , R, L), the transient probability , ( ')C

s t
s  is defined 

as the probability of having started in state s and being in state '
s  at time t. 

   , ( ')C

s t
s  = Pr

s
{ ( )C

Path s | @t = 's } 

 

• Steady State behavior which describes the state of the CTMC in the long run. 

   ,( ') lim ( ')C C

s s t
t

s s=  

    

 

Continuous Stochastic Logic (CSL) 
  

We specify the properties for the CTMC model using CSL (Continuous Stochastic Logic), 

which is a probabilistic extension of CTL (Computational Tree Logic). 

 



Definition 9:  The syntax of the CSL logic is as follows 

  

 | | | | [ ] | [ ]
p

true a P S= ¬
� �

 

 | I
X U=  

Where a is an atomic proposition, � {<, ,>, }, p [0,1] and I is an interval of 
0

R  

 

As for PCTL [ ]P
�

 formula specifies that the probability of taking a path from s 

satisfying path formula is in interval specified by p� . Path formula for CSL and PCTL 

are same except for the fact that the parameter of the until operator is an interval I of non 

negative reals, rather than an integer bound as was in the case of PCTL. The path formula 
I

U is true when is satisfied at some instant in interval I and  holds at all previous 

time instants. The S operator specifies the steady state behavior of CTMC. Intuitively the 

state formula [ ]
p

S
�

 means that the steady state probability of being in state satisfying  

meats the bound p� . 

s a indicates that the CSL formula is satisfied in a state s. 

a indicates that path formula  is satisfies in a path . 

 

Definition 10: C= ( , , , )i
S s P L  be a labeled CTMC. We define the relationa , for any 

state s S as 

 

• sa true  for all s S 

• sa a   a L(s) 

• sa ¬   s /a  

• sa   s a s a  

• sa [ ]P
�

  Prob ( , )C
s p�  

• sa [ ]
p

S
�

  
'

( ')C

ss
s p

a
�  

 

Where Prob ( , )C
s  = Pr

s
{ ( )C

Path s  | a } 

Also for any path ( )C
Path s we have 

a X    (1)a  
I

Ua   ( @ [0, ).( @ )t N t x t xa a  

 

The box and the diamond operator for the case of CSL are derived exactly in the same 

manner as in the PCTL case. 

 

CSL does not explicitly include operators to reason about transient probabilities, but it 

can be stated by a trick. The probability of satisfying a formula  at time instant t is 

    [ , ]
[ ]

t t

p
P
�

  

 

 



Some examples of the CSL formulae are  

 

• 
[0,4.5]

0.9
[ ]P served

>
 : The probability that a request is served within the first 4.5 

seconds is greater than 0.9. 

 

• 
[1,2]

0.75
[ ]down P failU up¬  : When a shut down occurs ,the probability of system 

being up within 1 or 2 hours without further failures is greater than 0.75.  

 

The Probabilistic Model Checker PRISM 

 
PRISM [7, 8] is a probabilistic model checker tool developed at University of 

Birmingham. It accepts probabilistic models described in the PRISM modeling language, 

which is a high level state based language. PRISM has direct support for three types of 

probabilistic models: Discrete Time Markov Chains (DTMCs), Continuous Time Markov 

Chains (CTMCs) and Markov Decision Processes (MDPs). 

 

Tool Overview:  

 

• PRISM works by first parsing the model description and then constructing an 

internal representation of the probabilistic model, computing the reachable state 

space of the model and discarding any unreachable states. This represents the 

feasible configurations that can arise in the modeled system. 

 

• Now, the specification is parsed and model checking algorithms are performed on 

the model. 

 

• PRISM can report a true/false answer, indicating if a property is satisfied by the 

model. PRISM can also return quantitative results like the probability of a certain 

event occurring in the model. PRISM also supports the idea of experiments by 

which one can see the outcome of properties of the model as a function of the 

model. 

 



 
 

    A screenshot of PRISM GUI 

 

PRISM is bundled with a graphical user interface, which can illustrate the results of a 

model checking experiment. It also has a built in text editor for the PRISM language. A 

command line version of the tool is also available. PRISM is a free, open source 

application. At present PRISM operates on UNIX, Windows and Macintosh operating 

system. Prism can be downloaded from the website.* 

 

Implementation:  PRISM is a symbolic model checker which means that its 

implementation uses data structures based on binary decision diagrams (BDDs). These 

data structures provide compact representation and efficient manipulation of large, 

structured model by exploiting their regular structure. The reason for this is that the 

models are specified in a structure, high level modeling language PRISM. Actually 

PRISM uses multi terminal binary decision diagrams developed to improve the 

efficiency of probabilistic analysis.  

The underlying computation in PRISM is a combination of: 

 

• Graph algorithms for reachability analysis, conventional model checking 

and probabilistic model checking. 

 

• Numerical Computation for quantitative model checking, e.g. solution of 

linear equation systems (for CTMCs and DTMCs) 

 



PRISM modeling language:  The fundamental components of the PRISM language are 

modules and variables. Variables are typed (can be integers, real or Boolean) and can be 

local to a module or global. The model is composed of modules which interact with each 

other. A module is composed of local variables and the values of these variables 

determine the state of the module. We define global state of the module as a function of 

local state of the modules and the global variables. The behavior of the module is 

specified in terms of set of commands. 

 

 

Case Study 1: Synchronous Leader election Protocol. 

 
This case study is based on the synchronous leader election protocol of Itai and Rodeh [6]. 

The protocol is a solution to the problem stated below: 

 

“Given a synchronous ring of N processors design a protocol such that they will be able 

to elect a leader (a uniquely designated processor) by sending messages around the ring.” 

   

The protocol proceeds in rounds and is parameterized by a constant K. Each round begins 

by all processors (independently) choosing a random number (uniformly) from {1 ... K} 

as an id. The processors then pass their ids around the ring. If there is a unique id, then 

the processor with the maximum unique id is elected the leader, and otherwise the 

processors begin a new round.  

We assume that the ring is synchronous: there is a global clock and at every time slot a 

processor reads the message that was sent at the previous time slot (if it exists), makes at 

most one state transition and then may send at most one message. 

 

The model is constructed as a DTMC and some of the properties verified for the model 

are 

• With probability 1, eventually a leader is elected. 

 The property, in case of N = 4 is specified in terms of PCTL as  

 

  P>=1 [true U (s1=3 & s2=3 & s3=3 & s4= 4)] 

 

 Conclusion: The property holds in all states. 

 

• The probability of electing a leader in L rounds. 

 The property, in case of N = 4 is specified in terms of PCTL as  

  

 P=? [true U<=L*(N+1) (s1=3 & s2=3 & s3=3 & s4= 4)] 

 

 

 

 

 

 

 



         DTMC for N=3 and K=2 

 

  
  

The graph shows the expected value of L over the value of N = 4 and various values of K. 

 

 

Conclusion 

 
Probabilistic Model checking provides a nice alternative to study the properties of a 

markov chain. Also many state space reduction techniques can be used to reduce the size 

of markov chain, which is an added advantage over the queuing theory techniques.  
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