

Indian Institute of Technology, Guwahati

MA 402 Seminar Report

“Probabilistic Model Checking”

Under the guidance of

Dr. N Selvaraju
Department of Mathematics

Indian Institute of Technology Guwahati

Submitted By,

Varun Aggarwala (04010150)
B. Tech, 7

th
 Semester

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati

Abstract

Probabilistic modeling finds its uses in uses in design and analysis of computer systems

and has seen unforeseen growth in the last decade. Its application varies from diverse

areas such as randomized distributed algorithms, communication protocols, biological

process modeling, power management and lots of other fields are cropping up.

Probabilistic model checking focuses on the probability of a given temporal logic

property being satisfied. Probabilistic Model Checking is an automated technique for

checking if a specified property holds in a probabilistic model such as “after a request of

service there is at least 90% probability that the service will be carried out within 1

second”. Queuing theory on the other hand helps us to understand and evaluate the

properties of a markovian system.

The survey presents an overview of model checking of both discrete and continuous time

Markov chains (DTMCs and CTMCs). We also discuss the syntax and semantic of PCTL

and CSL logic. Model checking algorithms for verifying DTMCs against specification in

the logic discussed in the survey, including quantitative properties with rewards will also

be considered.

Introduction:

Probability is an important aspect which is used in the design and analysis of computer

systems and has seen an enormous upwards swing in the last decade. Traditionally

probability has been used to analyze system performance, where by queuing theory was

used to obtain various estimates of mean waiting time, throughput etc. Probability has

also been used in various communication protocols and computer networks where

various properties like packet loss and the channel failure can be analyzed

probabilistically.

Probabilistic Model Checking has been defined as an automatic procedure for checking if

a desired property (specified in temporal logic) holds in a probabilistic model.

Conventional model checking focuses on the absolute correctness of a system which is

difficult to realize in an real world scenario because system are subjected to various

phenomenon of probabilistic type such as message loss, unpredictable environments,

faults and delays. So the concept of absolute correctness is out of the window and here

enters the realm of probabilistic model checking which can check properties like “the

process terminates with probability more than 50%”.

In case of Conventional model checking the model description is just the state transition

system. In case of Probabilistic model checking the model are probabilistic (variants of

Markov chains), so as to encode the probability of making a transition instead between

states instead of simply the possibility of such a transition. As a result of which we can

make quantitative statements about the system, in addition the qualitative statements

made by conventional model checking. Some of the real world scenarios captured by

probabilistic model checkers are.*

• For a randomized leader election algorithm “leader election is resolved with

probability 1”.

• For a communication medium “the packet will eventually be delivered within 10

ms with probability more than 0.5”.

• For a system which can suffer failures “the chance of shutdown is at maximum

0.1%”.

• For a sub clusters with N workstations each “in the long run, Premium QOS will

be delivered with probability at least 0.7”.

• For FGF (Fibroblast Growth Factor) Signaling “the long run probability that Grb2

is bound to FRS2 is greater than 0.4”.

* They have actually been modeled and verified using Probabilistic Model Checker

PRISM.

Preliminaries

Definition 1: Let be an arbitrary non-empty set and F is a family of subsets of . We

say that F is a field on if:

• The empty set is in F ;

• Whenever A is an element of F , then the complement \ A is in F ;

• Whenever A and B are elements of F , then A BU is in F .

A field of subsets F is an algebra if it is field which is closed under countable union

i.e. whenever
i

A F for i N , then
i N

U
i

A is also in F .

The elements of algebra are called measurable sets, and (, F) is a measurable

space.

Proposition 1: For any non empty set and A is a family of subsets of , there is a

unique smallest algebra containing A .

Definition 2: Let (, F) is a measurable space. A function u : F [0,1] is a

probability measure on (, F) and (, F , u) a probability space, if u satisfies the

following properties:

• () 1u = ;

• 1 1() ()k k

i i i i
u A u A

= =
=U for any countable disjoint sequence

1, 2
.....A A of F .

The measure u is known as probability distribution. is known as sample space and the

elements of F are called events.

Definition 3: A family of subsets of is called a semiring if

• The empty set is in F ;

• Whenever A and B are elements of F , then A BI is in F ;

• If A B is in F , then there are many finitely many pair wise disjoint subsets

1
,.....,

k
C C F such that

1
\

k

i i
B A C

=
= U .

Theorem 1: If F is a semiring on X and : [0,]u F satisfies

• () 0u = ;

• 1 1() ()k k

i i i i
u A u A

= =
=U for any finite disjoint sequence

1, 2
.....,

k
A A A F ;

• 1 1() ()k k

i i i i
u A u A

= =
U for any countable sequence

1, 2
.....A A F ,

Then u extends to a unique measure on the algebra generated by F .

Definition 4: Let (, F ,u) be a probability space. A function
0

:X R is called a

random variable.

Model Checking Discrete Time Markov Chains

Let AP be a fixed and finite set of atomic propositions, which are used to label states of a

Markov Chain, and express properties of a state. We assume that we can easily determine

the validity of an atomic proposition in a state.

Definition 5: A labeled DTMC D is a tuple (S, i
s P, L) where

• S is a finite set of states;

•
i

s S is the initial state;

• P: [0,1]S S is the transition probability matrix where
'

(, ') 1
s S

P s s = for

all s S;

• L: 2
AP

S is a labeling function which assigns to each state s S the set L(s) of

atomic propositions that are valid in the state.

 A labeled DTMC

1
D

The above diagram shows a labeled DTMC (S, i
s P, L). The initial state is show here with

an incoming arrow. The states S of the DTMC are {
0 1 2 3
, , ,s s s s } and the initial state

i
s =

0
s . The transition probability matrix is

P =

0 1 0 0

0 0.01 0.01 0.98

1 0 0 0

0 0 0 1

The atomic propositions AP = {try, fail, succ}. The Labeling function assigns to each of

the state L (
0

s) = , L (
1

s) = {try}, L (
2

s) = {fail}, L (
3

s) = {succ}.

Paths and Probability Measures

A path is defined to be as an execution of a DTMC D = (S, i
s P, L). A path is a non

empty sequence of states
0 1 2

......s s s where
i

s S and P (
1

,
i i

s s
+

)>0 for all i 0. A path can

both be finite or infinite. The th
i state of a path is denoted by (i). The length of path

 is denoted by | |. The finite path is denoted by fin and its last state by last (fin).

The set of infinite and finite paths of D starting in state s are denoted by D
Path (s) and

D

finPath (s) respectively. A finite path fin of length n is a prefix of an infinite path if

() ()fin i i= for all 0 i 1.

For any finite path fin

D

finPath (s) we can define probability ()s finP to be

1 0
()

((0), (1))...... ((1), ())
s fin

if n
P

P P n n otherwise

=
= where n=| fin |.

A cylinder set () ()D

finC Path s is defined as

()finC = { D
Path (s) | fin is a prefix of }

This is the same as set of all infinite paths with prefix fin . Let ()D
Path s is the

smallest sigma algebra on D
Path (s) which contains all the sets ()finC where fin

ranges over all the finite paths D

finPath (s). The set of cylinders form a semiring over

(D
Path (s), ()D

Path s) we can apply Theorem 1 and can define a probability measure

Pr
s
on (D

Path (s), ()D
Path s) as Pr

s
(()finC) = ()s finP for all fin D

finPath (s).

Pr
s
will be used to quantify that, starting from a state s S the DTMC D behaves in the

property specified by indentifying the set of paths which satisfy the property. We assume

that the set of paths is measurable so we can use Pr
s
in this regard.

Probabilistic Computation Tree Logic (PCTL)

We specify the properties for the DTMC model using PCTL (Probabilistic Computation

Tree Logic), which is almost a probabilistic extension of CTL (Computational Tree

Logic).

Definition 6: The syntax of PCTL logic is as follows:

| | | | []true a P= ¬
�

| k
X U=

Where a is an atomic proposition, � {<, ,>, }, p [0,1] and k NU { }.

We define to be a state formula evaluated over the states of DTMC while which is a

path formula is evaluated over the paths. For specifying a property in DTMC we always

use the state formula. Only when specifying something like this []P
�

 do we need to use

the path formula. The above formula only specifies that the formula is only satisfied if the

probability of taking a path from s satisfying is in interval specified by p� . There are

path formula which are made from X (“next”) and U (“bounded until”) operator.

X is satisfied when is satisfied in the next state. k
U is satisfied if is satisfied

inside k time steps and is true till that point.

Writing s a indicates that s satisfies where s is a state and is a PCTL formula.

Writing a indicates that path satisfies the PCTL path formula .

Definition 7: D= (, , ,)i
S s P L be a labeled DTMC. We define the relationa , for any

state s S as

• sa true for all s S

• sa a a L(s)

• sa ¬ s /a

• sa s a s a

• sa []P
�

 Prob (,)D
s p�

Where Prob (,)D
s = Pr

s
{ ()D

Path s | a }

Also for any path ()D
Path s we have

a X (1)a
k

Ua i N (i k ()i a .(())j i j< a)

Some of the useful operators that can be specified using PCTL logic are

• Eventually Operator (diamond operator)

 means that is eventually satisfied.
k

 means that is satisfied within k time units

P
�

[
k

] = P
�

[true k
U]

This operator is also known as the F operator in some texts

• Always Operator (box operator) �

� means that is true in every state of the path

k
� means that is true in first k states of the path

� can be expressed in terms of as:
� = ¬ ¬

We are not equipped with the negation operator in the PCTL syntax so we solve

for the box operator using the fact that Prob (,)D
s ¬ = 1 - Prob (,)D

s

p
P [�] Prob (,D

s �) p

 1 - Prob (D
s , ¬) p

 Prob (D
s , ¬) 1- p

1

[]
p

P ¬

 This operator is also known as the G operator in some texts.

• A operator which means that for all the paths the PCTL state formula is satisfied

 A []
1

P []

• E operator which means that at least for one path the PCTL formula is satisfied

F []
0

P []

Model Checking PCTL

We present algorithms for model checking PCTL over the DTMC structure. The input to

the algorithm is a DTMC D = (, , ,)i
S s P L and a PCTL formula . The output is the set of

states containing all the states of the model which satisfy . This set is denotes by

Sat () = {s S | s a }. We will get the result by checking if only the initial state i
s

satisfies however the algorithm computes it for all the states.

The algorithm can be summarized as follows

 Sat (true) = S

 Sat (a) = {s | a L(s)}

 Sat (¬) = S \ Sat ()

 Sat () = Sat () I Sat ()

 Sat ([]P
�

) = {s S | Prob (,)D
s p� }

Model Checking for the first four cases is trivial but for the []P
�

 case we have to

calculate for all the states s of the DTMC Prob (,)D
s and then compare it to the bound p

specified. A point to note is that the model checking algorithm here is recursive in nature

and for formulas like
p

P [k
U] we assume that Sat () and Sat () are already

known.

• Model Checking P
�

[X] formula

This asks us for calculating the probabilities of the immediate transitions from state s S

of the DTMC D

Prob (,D
s X) =

'

'

()

(,)
s Sat

P s s

The vector Prob
D (X) of the probabilities for all the states can be computed as follows

 Prob
D (X) = P.

�

Where
�

 is a state indexed column vector defined as

�

 =
1 ()

0

if s Sat

otherwise

• Model Checking P
�

[k
U] formula

This asks us to find the probability Prob (,D
s

k
U) for all states s where k N.

For this let us define

 Yes
S = Sat ()

 0
S
> = Reach (,) i.e. states from where one can reach a state from a

state

 No
S = S\ 0

S
>

 ?
S = S\ No

S U
Yes

S

ThereforeProb (,D
s

k
U) can be defined as

 Prob (,D
s

k
U) =

' 1 ?

'

0

1

(,).Prob (,)

No

Yes

i D k

s S

if s S

if s S

P s s s U if s S

 So Prob (,D
s

k
U) =

?

' 1

'

(,).Prob (,)i D k

s S

P s s s U +
'

(,)
yes

i

s S

P s s

Equivalently in matrix form this can be specified as

 X = A.X + P.b

Where

A is the sub matrix for ?
S

b is the column vector for Yes
S

This can be solved through direct method which can be

• Gaussian Elimination

• LU Decomposition

This can also be solved using iteration

0Prob (,)D

s U = 0
1Prob (,)D k

s U
+ =

?

'

'

(,).Prob (,)i D k

s S

P s s s U +
'

(,)
yes

i

s S

P s s

Extending DTMCs and PCTL with Rewards

For a DTMC D = (S, i
s P, L) we can define a reward structure (,p

�
). This structure can

help us define two types of rewards

• State rewards which are assigned to states by means of a reward function

p
�

: S
0

R . The state reward is acquired in state s per time-step.

• Transition rewards which are assigned to transitions by means of a reward

function : S X S
0

R . The transition reward is acquires each time a transition

occurs from one state to another.

Reward structure can be used to represent various additional information about the

system modeled by the DTMC for example the cost incurred in spending some time in an

particular state like in Power consumption the active states requires more power.

The PCTL logic is extended to incorporate the reward structure as follows

[]
K

r
R C
�

| []
K

r
R I

=

�
 | []

r
R F

�

Where � {<, ,>, }, k N, r
0

R and is a PCTL state formula

Some example of reward based specification using these formulae are

•
100

3
[]R C : The expected power consumption within the first 100 time steps of

operation is less than equal to 3.

•
10

4
[]R I

= : The expected number of messages delivered after 10 time steps are at

least 4.

•
5
[]R F succ : The expected number of successful messages is at least 5.

Model Checking Continuous Time Markov Chains

Discrete time Markov chains are not capable enough of modeling continuous time.

Therefore we resort to introducing a new model with discrete state space but with

continuous time.

Definition 8: A labeled CTMC C is a tuple C = (S, i
s , R, L) where

• S is a finite set of states;

•
i

s S is the initial state;

• R:
0

S S R is the transition rate matrix.

• L: 2
AP

S is a labeling function which assigns to each state s S the set L(s) of

atomic propositions that are valid in the state.

The transition rate matrix R assigns rates to every pair of states in the CTMC model

which are used as parameters of the exponential distribution. '(,) 0R s s implies that a

transition can occur between states s and '
s with probability of being triggered in t time

units is 1 -
'(,).R s s t

e .

If in a state s there is more than one state '
s with R(s, '

s) > 0 than there is a race condition.

The first transition to occur then describes the next state of the CTMC. In the case of race

condition the probability of going to any of the next state '
s is

 P(s, '
s) = R(s, '

s)/
''

(, '')
s S

R s s

However if there are no outgoing transition from a state s, then P(s, '
s) = 1 iff s = '

s and 0

if s '
s .

 A labeled CTMC C

The above diagram is a CTMC C = (S, i
s , R, L). The initial state is show here with an

incoming arrow. The states S of the CTMC are {
0 1 2 3
, , ,s s s s } and the initial state i

s =
0

s .

The transition rate matrix R is

 R =

0 1.5 0 0

3 1.5 0 0

0 3 0 1.5

0 0 3 0

The atomic propositions AP = {empty, full}. The Labeling function assigns to each of the

state L (
0

s) = empty, L (
1

s) = { }, L (
2

s) = { }, L (
3

s) = {full}.

Paths and Probability Measures

A infinite path of a CTMC C = (S, i
s , R, L) is defined as an non empty sequence

0 0 1 1 2
......s t s t s where R(

1
,

i i
s s

+
)>0 and

0i
t R

> for all 0i . A finite path is a sequence

0 0 1 1 1 1k k k
s t s t s t s such that state

k
s is absorbing (

'

(, ')
s S

R s s = 0). The value
i

t represents

the time spent in state i. The th
i state of a path is denoted by (i). For an infinite

path we denote by time (, i) the time spent in the state
i

s . @t denotes the state s

occupied at time t. For a finite path =
0 0 1 1 1 1k k k

s t s t s t s , time (,i) is defined for all i k

and time (, k) = .

C

Path (s) denotes the set of all infinite and finite paths of the CTMC C starting in state s.

If the states
0

s …
n

s S satisfy (, ')R s s > 0 for all 0 i < n and
0 1
,...,

n
I I are non empty

intervals in
0

R then the cylinder set C (
0 0 1
, ,..., ,

n n
s I I s) is defined as the set containing

all paths 0()C
Path s such that (i) =

i
s for all i n and time (, i)

i
I for all I < n.

We denote by ()C
Path s the smallest sigma algebra on ()C

Path s which contains all

cylinder sets C (
0 0 1
, ,..., ,

n n
s I I s). The set of cylinders form a semiring over

(()C
Path s , ()C

Path s) therefore by Theorem 1 we can define the unique probability

measure Pr
s
on the smallest sigma algebra ()C

Path s .

We also consider for a CTMC C additional properties like

• Transient behavior which describes the state of the CTMC at a particular time

instant. For a CTMC C = (S, i
s , R, L), the transient probability , (')C

s t
s is defined

as the probability of having started in state s and being in state '
s at time t.

 , (')C

s t
s = Pr

s
{ ()C

Path s | @t = 's }

• Steady State behavior which describes the state of the CTMC in the long run.

 ,(') lim (')C C

s s t
t

s s=

Continuous Stochastic Logic (CSL)

We specify the properties for the CTMC model using CSL (Continuous Stochastic Logic),

which is a probabilistic extension of CTL (Computational Tree Logic).

Definition 9: The syntax of the CSL logic is as follows

 | | | | [] | []
p

true a P S= ¬
� �

 | I
X U=

Where a is an atomic proposition, � {<, ,>, }, p [0,1] and I is an interval of
0

R

As for PCTL []P
�

 formula specifies that the probability of taking a path from s

satisfying path formula is in interval specified by p� . Path formula for CSL and PCTL

are same except for the fact that the parameter of the until operator is an interval I of non

negative reals, rather than an integer bound as was in the case of PCTL. The path formula
I

U is true when is satisfied at some instant in interval I and holds at all previous

time instants. The S operator specifies the steady state behavior of CTMC. Intuitively the

state formula []
p

S
�

 means that the steady state probability of being in state satisfying

meats the bound p� .

s a indicates that the CSL formula is satisfied in a state s.

a indicates that path formula is satisfies in a path .

Definition 10: C= (, , ,)i
S s P L be a labeled CTMC. We define the relationa , for any

state s S as

• sa true for all s S

• sa a a L(s)

• sa ¬ s /a

• sa s a s a

• sa []P
�

 Prob (,)C
s p�

• sa []
p

S
�

'

(')C

ss
s p

a
�

Where Prob (,)C
s = Pr

s
{ ()C

Path s | a }

Also for any path ()C
Path s we have

a X (1)a
I

Ua (@ [0,).(@)t N t x t xa a

The box and the diamond operator for the case of CSL are derived exactly in the same

manner as in the PCTL case.

CSL does not explicitly include operators to reason about transient probabilities, but it

can be stated by a trick. The probability of satisfying a formula at time instant t is

 [,]
[]

t t

p
P
�

Some examples of the CSL formulae are

•
[0,4.5]

0.9
[]P served

>
 : The probability that a request is served within the first 4.5

seconds is greater than 0.9.

•
[1,2]

0.75
[]down P failU up¬ : When a shut down occurs ,the probability of system

being up within 1 or 2 hours without further failures is greater than 0.75.

The Probabilistic Model Checker PRISM

PRISM [7, 8] is a probabilistic model checker tool developed at University of

Birmingham. It accepts probabilistic models described in the PRISM modeling language,

which is a high level state based language. PRISM has direct support for three types of

probabilistic models: Discrete Time Markov Chains (DTMCs), Continuous Time Markov

Chains (CTMCs) and Markov Decision Processes (MDPs).

Tool Overview:

• PRISM works by first parsing the model description and then constructing an

internal representation of the probabilistic model, computing the reachable state

space of the model and discarding any unreachable states. This represents the

feasible configurations that can arise in the modeled system.

• Now, the specification is parsed and model checking algorithms are performed on

the model.

• PRISM can report a true/false answer, indicating if a property is satisfied by the

model. PRISM can also return quantitative results like the probability of a certain

event occurring in the model. PRISM also supports the idea of experiments by

which one can see the outcome of properties of the model as a function of the

model.

 A screenshot of PRISM GUI

PRISM is bundled with a graphical user interface, which can illustrate the results of a

model checking experiment. It also has a built in text editor for the PRISM language. A

command line version of the tool is also available. PRISM is a free, open source

application. At present PRISM operates on UNIX, Windows and Macintosh operating

system. Prism can be downloaded from the website.*

Implementation: PRISM is a symbolic model checker which means that its

implementation uses data structures based on binary decision diagrams (BDDs). These

data structures provide compact representation and efficient manipulation of large,

structured model by exploiting their regular structure. The reason for this is that the

models are specified in a structure, high level modeling language PRISM. Actually

PRISM uses multi terminal binary decision diagrams developed to improve the

efficiency of probabilistic analysis.

The underlying computation in PRISM is a combination of:

• Graph algorithms for reachability analysis, conventional model checking

and probabilistic model checking.

• Numerical Computation for quantitative model checking, e.g. solution of

linear equation systems (for CTMCs and DTMCs)

PRISM modeling language: The fundamental components of the PRISM language are

modules and variables. Variables are typed (can be integers, real or Boolean) and can be

local to a module or global. The model is composed of modules which interact with each

other. A module is composed of local variables and the values of these variables

determine the state of the module. We define global state of the module as a function of

local state of the modules and the global variables. The behavior of the module is

specified in terms of set of commands.

Case Study 1: Synchronous Leader election Protocol.

This case study is based on the synchronous leader election protocol of Itai and Rodeh [6].

The protocol is a solution to the problem stated below:

“Given a synchronous ring of N processors design a protocol such that they will be able

to elect a leader (a uniquely designated processor) by sending messages around the ring.”

The protocol proceeds in rounds and is parameterized by a constant K. Each round begins

by all processors (independently) choosing a random number (uniformly) from {1 ... K}

as an id. The processors then pass their ids around the ring. If there is a unique id, then

the processor with the maximum unique id is elected the leader, and otherwise the

processors begin a new round.

We assume that the ring is synchronous: there is a global clock and at every time slot a

processor reads the message that was sent at the previous time slot (if it exists), makes at

most one state transition and then may send at most one message.

The model is constructed as a DTMC and some of the properties verified for the model

are

• With probability 1, eventually a leader is elected.

 The property, in case of N = 4 is specified in terms of PCTL as

 P>=1 [true U (s1=3 & s2=3 & s3=3 & s4= 4)]

 Conclusion: The property holds in all states.

• The probability of electing a leader in L rounds.

 The property, in case of N = 4 is specified in terms of PCTL as

 P=? [true U<=L*(N+1) (s1=3 & s2=3 & s3=3 & s4= 4)]

 DTMC for N=3 and K=2

The graph shows the expected value of L over the value of N = 4 and various values of K.

Conclusion

Probabilistic Model checking provides a nice alternative to study the properties of a

markov chain. Also many state space reduction techniques can be used to reduce the size

of markov chain, which is an added advantage over the queuing theory techniques.

References

[1] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal

Aspects of Computing, 6(5):512-535, 1994

[2] J. P. Katoen. Stochastic Model Checking. In Christos G. Cassandras, and John

Lygeros, editors, Stochastic Hybrid Systems: Recent Developments and Research Trends.

Taylor and Francis, 2006.

[3] M. Kwiatkowska. Model Checking for Probability and Time: From Theory to Practice.

In Proc. 18th IEEE Symposium on Logic in Computer Science (LICS'03), pages 351-360,

IEEE Computer Society Press. Invited paper. June 2003.

[4] M. Kwiatkowska, G. Norman and D. Parker. Stochastic Model Checking. In M.

Bernardo and J. Hillston (editors) Formal Methods for the Design of Computer,

Communication and Software Systems: Performance Evaluation, volume 4486 of Lecture

Notes in Computer Science (Tutorial Volume), pages 220-270, Springer. To appear 2007.

[5] J. P. Katoen, M. Khattri and I. Zapreev. A Markov reward model checker. In

Quantitative Evaluation of Systems (QEST). pages 243–244. IEEE CS Press, 2005.

[6] A. Itai and M. Rodeh. Symmetry breaking in distributed networks. Information and

Computation, 88(1):60-87, 1990.

[7] A. Hinton, M. Kwiatkowska, G. Norman and D. Parker. PRISM: A Tool for

Automatic Verification of Probabilistic Systems. In H. Hermanns and J. Palsberg

(editors) Proc. 12th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS'06), volume 3920 of LNCS, pages 441-

444, Springer. March 2006.

[8] PRISM web site. www.cs.bham.ac.uk/~dxp/prism

[9] J. P. Katoen, T. Kemma, I. Zapreev and D. Jansen. Bisimulation minimization mostly

speeds up probabilistic model checking.. In Proceedings of the 13th International

Conference on Tools and Algorithms for Construction and Analysis of Systems

(TACAS'07). Springer, 2007.

[10] J. Heath, M. Kwiatkowska, G. Norman, D. Parker and O. Tymchyshyn. Probabilistic

model checking of complex biological pathways. In C. Priami (editor) Proc.

Computational Methods in Systems Biology (CMSB'06), volume 4210 of Lecture Notes in

Bioinformatics, pages 32-47, Springer Verlag. October 2006.

[11] M. Huth and M. Ryan. Logic in Computer Science, 2
nd

 edition.

