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Abstract

In our work we use queuing theory both for security
(i.e. anonymity) and performance analysis. A well-known
anonymity technique, the MIX method, which is the basis
of most of today’s deplovinents, is the object of our
investigation. We show shortcomings and problems in the
MIX method and suggest possible workarounds. Our
investigation reveals the level of security of MIX based
systems and their performance characteristics on the
Internet.

1. Introduction

Leonard Kleinrock starts his famous book “Queuing
Systems™ [15} with the words “How much did you waste
waiting in ling this week?” With this question, he
cxpresses the aim of queuing theory: reducing waiting
times. However, this is not true for all circumstances. For
instance, in the anonymity area a short waiting time can be
the first indication of an attack. In this work, we present
this problem and analyze known techniques with the aid of
qucuing theory. We also discuss alternative techniques
which guarantce a given delay time.

In the next chapter we present the most popular
anonymity technique, the MIX method, and related works.
We analyze the direct implementation of the MIX concept
with the aid of queuing theory and show the importance of
timc. We present two variants, which delay messages
independent of traffic, and we evaluate their security
propertics. We conclude our work with performance
analysis.

2. Anonymity and the MIX Method

The challenge for anonymity-providing techniques is
to accomplish their basic goal even if:

a) The underlying communication network is global
and is not subject to any topology restrictions; and
b) The attacker F is able to tap all transmission lines

of the communication network and control all but
one intermediary switching node. The attacker £ is
not able to break the chosen cryptographic
techniques.
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The question now is how to hide the existence of any
communication relationship, i.e. that a message was sent
(sender anonymity) or received (receiver anonymity) by a
user. Although the content of a message can be effectively
protected by cryptographic techniques, the use of
cryptography alone cannot guarantee anonymity. The
omnipresent attacker £ can observe the sender of a
message and follow the message up to the receiver,
thereby detecting the communication relation without the
need to read the content of the packets.

Hence, the decisive point of anonymity techniques is
to organize additional traffic in order to confuse the
adversary and conceal the particular communication
relationship. The sender and/or receiver of a message must
be embedded in a so-called anonymity set.

The main questions related to an anonymity set are:

1. How is the anonymity set established?

2. What is the size of the anonymity set?

2.1 Related Works

Anonymity (i.c. privacy) has become a hot topic on
the Internet, as illustrated by several recent works and
deployments [4, 7, 11, 24). However, anonymity is not a
new topic. The first works, known to us, are [2, 3, 6, 18,
22, 23]. The main aim of these theoretical works is to
provide full or even perfect security. Of the suggested
techniques, the MIX concept is the most often
investigated.  Centralized MIX stations handle the
bookkeeping associated with the anonymity sets, and
provide flexible access to an anonymity service and can
therefore serve a large number of users. Other known
anonymity techniques require the end user to build his own
anonymity set (see e.g. DC-Network [3]). This
requirement can severely limit flexibility for the users,
since anonymity-building software has to run on the user’s
computer and the members of the anonymity set have to
be known beforehand (see [12, 13}).

Unfortunately, the MIX concept is not directly
applicable to the Internet {13] and therefore most new
works and deployments use a modified MIX (e.g. [1], [5],
[8], [9], [20], [24] and distantly related [21]). None of
them can provide the same security as the classical MIX
method but they are practical.



They do not build an anonymity set (e.g. {8, 21]) and
thus assume that the eavesdropper cannot listened to all
the lines between the intermediary nodes (in particular the
attack by £ described above can be applied here).

Some of these approaches (e.g. [1], [9], [20]) build an
anonymity set, but this set is not protected against attacks:
an attacker can contribute several times to the same
anonymity set. Note, that if the anonymity size is # and the
attacker can contribute (#-/) of members, then the
remaining one is of course observable (compare it with
[19]). In the security area, wiretapping (passive attack)
and sending messages to an open network are not
considered to be strong attacks (compare this also with the
cryptography area). We analyze the MIX concept and the
MIXmaster variant against this attack, since the
MIXmaster is known in the literature as the strongest
implementation of the classical MIX concept [16]. We do
not analyze all other variants (e.g. {1, 8, 16, 20, 21]) since
some of them provide less or same security and others are
less practical (see [12]).

2.2 MIX Concept

MIXes collect a number of packets from distinct users
(anonymity set) and process them so that no participant,
except the MIX itself and the sender of the packet, can
link an input message to an output message [2]. Therefore,
the appearance (i.e. the bit pattern) and the order of the
incoming packets have to be changed within the MIX. The
change of appearance is a cryptographic operation, which
is combined with a management procedure and a universal
agreement to achieve anonymity:

User protocol: All generated data packets with
address information are padded to equal length
(agreement), combined with a secret random number RN,
and encrypted with the public key of the MIX node. A
sequence of MIXes is used to increase the reliability of the
system.

MIX protocol: A MIX collects n packets (called
batch) from distinct users (identity verification), decrypts
the packets with its private key, strips off the RNs, and
outputs the packets in a different order (lexicographically
sorted or randomly delayed). Furthermore, any incoming
packet has to be compared with former received packets
(management: store in a local database) in order to reject
any duplicates. Every MIX (except the first) must include
an anonymous /oop back!, because only the first MIX can

1 Loop back: Every MIX knows the sender anonymity set. It
signs the received packets and broadcasts them to the respective
users. Each user inspects whether his own message is included
or not and transmits a yes or no. The MIX goes on if it receives
yes from all members of the anonymity set.
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decide whether or not the packets are from distinct
senders.

E.g. assume that 4 wants to send a message M to Z
(Fig. 1). A must encrypt the message two times with the
public keys ¢; of the respective MIXes and include the
random numbers RN;: ¢;(RN,, ¢co(RN,, Z ,M))

Loop Back
e g Y
9 ...1®

<

User A

User B

User C

PR

collect n messages
from distinct users

collect n messages
from distinct users

Fig.1: Cascade of two mixes

Applying this protocol, the MIX method provides full
security. The relation between the sender and the recipient
is hidden from an omnipresent attacker as long as:

a)  One honest MIX is in the line of the MIXes, which
the message passes.
b) The (n-1) other senders do not all cooperate with
the attacker.
[17] states that the MIX method provides

information-theoretic deterministic anonymity based on
complexity-theoretic secure cryptography.

2.3 The (n-1) Attack

Before a MIX can forward a packet, it has to collect »
messages from different users. This group function
ensures that each packet is from a distinct user. However,
a suggestion in the context of the Internet scenario cannot
assume this functionality, mainly because it can only be
ensured securely if a Public Key Infrastructure (PKI)
exists. Since PKI is not generally available to the public,
all implementations without this functionality are insecure
(see for a suggestion of group function assuming PKI
using blind signatures [1]). If a MIX cannot decide
whether the packets are from different senders, the
attacker can intercept the incoming packets, isolate each
packet, and forward it together with (»-/) of his own
packets. This is known as a trickle attack [9]). All MIX
variants like MIXmaster [5] are insecure against this
attack. One vulnerability of these variants is that the time
until » messages are collected by a MIX and hence the
end-to-end delay of a message is not known
(asynchronous communication model). Therefore it is
possible to delay a single message without any risk of



detection. There is no solution for this problem (known to
us), if the goal is complete (i.c. perfect) security is aimed
[19, 12].

Furthermore, in this work we show that these MIXes
and MIX variants are also insccure against a weaker
attacker model £: E is not able to intercept incoming
packets from distinct users, but he is able to cavesdrop on
the communication wire and to send his own messages
with a constant rate 4.

The concrete attack scenario is as follows: £ listens to
the input and output lines of the onc MIX station assumed
to be honest, and is able to send A, of his own mcssages.
One particularly feature of MIX cnables this attack:

Deterministic output behavior: Sending messages to
the MIX at a high rate results in a high output rate from
the MIX.

In the next scctions, we will analyze this disclosing
attack.
2.4 Measuring the Success of Disclosing Attack
on the MIX

In order to detcrmine the probability of a successful
attack, we assume that real messages arrive at the MIX
according to a Poisson process with ratc 4.

As before, let there be an attacker £ sending messages
to the MIX at the rate A,. The MIX outputs a batch when
it has received n messages. If the attacker starts sending n-
I messages immediately after a batch has been processed.
the attack is successful if, during the time he needs to send
those messages. not more than onc real message arrives at
the MIX. The length of this interval is =(n-1)/ A, and the
number of real messages arriving during it is Poisson »
distributed, so thc probability that the attack was
successful is [14]

exp(—Ar) + Atexp(—At)

=(l+(n~l)1——

e

A

To calculate the probability that an arbitrary message can
be attacked successfully, we have to divide this probability
by the mecan number of real messages arriving within one
interval, this is the expectation for the Poisson distribution
At plus a correction for the case that no real message
arrives during the interval. Then, the MIX waits for the
next arriving message, and the interval is extended until
the message arrives. This case happens with probability
exp(-At), so the mean number of arrivals is At + exp(-1t)
and the probability of a successful attack on an arbitrary
message is (see Figure 2):
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exp(—Af) + At exp(-At)
At +exp(~Ar)

N0, 8 100
Figure 2: Probability of success for an attack on a mes-

sage passing through a MIX with constant batch size n

2.5 Extending Mix to MIXmaster and the

Success of Disclosing Attack

The MIXmaster for email by Cottrell [5] was the first
real application in the Internet. which used the MiIX
concept. It includes the following parts of the MIX
concept: same function for change of appecarance (for
cncryption RSA (1024 Bit) and TDES (168 Bit) arc used).
replay detection by cvaluating a package identity (32 Bit
random number). uniform sizing. [nstead of batching and
rcordering messages. a so-called  pool-mode is uscd.
(Strictly spcaking there arc two proccssing modces, but we
will only analyze the pool-mode. since the sccurity
analysis is similar for both modcs). The MIXmaster in
pool-modec collccts 1 packets. When packet (nt+ 1) arrives,
the MIXmaster chooscs onc of the (n+/) packets at
random. and forwards it to its destination address. [t is not
possible to predict how long a message might be kept in
the pool (nor is it known for the sendcr).

A successful attack consists of three steps:

i.  Attacker fills up the pool with his own messages,

sending at rate A, 2.

A “real” message arrives.
ni.  Attacker sends messages at the rate A 5, until the
MIXmaster forwards the real message.

To calculate the probability for step i, we assume that
the attacker always sends at rate X, and that the system is
in the steady state. At a given arbitrary time the probability

2 The attacker knows the number of his messages in the pool,
since he observes all incoming and outgoing messages.



for each message in the pool to be a genuine message is
/(> +)p). Thus the probability that the attacker will
successfully fill the pool is:

]n

ferte] |

Applying the PASTA-Property [10] this probability is
always correct.

Now, we have to calculate the probability of
forwarding the genuine message after m steps. Since a
message in the MIXmaster is chosen with the probability
1/fn+1), the probability that the genuine message will be
chosen in the m™ step is (if no other genuine message

n

arrives in this time):
m
(2
n+l (n + 1)m+l

The length of this interval is =m/A, and the
probability that no other genuine message will arrive is
exp(-At). Bringing all parts together and using the theorem
of total probability the attack success is (see figure 3):
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Figure 3: Probability of success for an attack on a
message passing through a MIXmaster with constant
pool sizen
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3. MiIXes capable of Delaying

MiIXes capable of delaying messages independent of
traffic avoid the direct dependence on the packet arrival
rate and are therefore not vulnerable to the attacks shown
in the previous section. Such MiIXes change the
appearance of messages the same way as the classical
MIX nodes but do not collect a fixed number of messages.
We present and analyze two possible realizations T-MIX
(Time-MIX) and SG-MIX (Stop-and-Go MIX) [12].

3.1 T-MIX

A T-MIX operates with a fixed time interval of length
T between the outputs of two batches. The probability of a
message being successfully attacked by an eavesdropper is
simply the probability that no other message arrives in the
same interval. The number of other messages arriving in
that interval is Poisson distributed and therefore cquals
exp(-AT).

Note that because messages from an active attacker do
not influence the bchavior of the T-MIX at all, a
disclosing attacker has no advantage over a passive
cavesdropper. We have scen that a T-MIX is not
absolutely secure against even passive attacks. But, if we
choose the interval length T so that AT = 50, the
probability that any message can be tracked from a passive
and disclosing attacker is equally negligible. We could do
even more and include a few dummy messages generated
by the T-MIX in each batch, but we think small amount of
additional obscurity gained is not worth the trouble.
Server-gencrated dummies can only hide the truc
recipient, in any case, and are of no use if the recipient of a
message cooperates with the attacker.

To use T-MIXes an appropriate time interval T must
be chosen. If every participant selects the intermediary
nodes to use independently and with cqual probability,
then the arrival rate A will be nearly cqual at cvery node.
This value of the arrival rate should be digitally signed and
published regularly by every node. These values can be
collected and averaged by the users or T-MIX nodes. The
mean value of A can then be used to calculate the values of
T accordingly. In practice, the arrival process is not time-
homogeneous, and the fluctuations of A should be taken
into account.

3.2 SG-MIX

T-Mixes provide cnough sccurity against the
disclosing attacker £. What is nceded is a technique that
provides sccurity against £ without requiring identity
verification. SG-MiXes provide such security and we will



next sketch the level of security that can be guaranteed
with this technique without identity verification.

The SG-MIX [12, 13] operates in the same way as a
classical MIX, but does not collect a fixed number of
messages. A sender selects the SG-MIXes to be used from
those available with equal probability. He calculates for
every node i a time window (TSni, TSn«) and draws a
random delay time 7' from an exponential distribution with
suitable parameter ». This information is appended to the
packet before encrypting it with the SG-MIX's public key.
The SG-MIX i extracts (TS.;, TS..); and T, after
decryption. If the arrival time of the packet is earlier or
later than given by the time window the message will be
discarded. After T; units of time have elapsed, the SG-
MIX i forwards the packet to the next hop or to its final
destination.

The security of the SG-MIX does not rely on shuffling
a batch of messages but rather on delaying each message
individually and independently by a random amount of
time. If the delay times are individually drawn from the
same exponential distribution, the knowledge of the time a
specific message arrived at the SG-MIX node does not
help the attacker to identify the corresponding outgoing
message as long as there is at least one other message in
the queue at some time during the delay. Because of the
memoryless property of the exponential distribution, if »
messages are in the queue, it is equally probable for any
one of them to depart next, regardless of their arrival
times. Therefore, an attacker can correlate arrival and
departure of a message only if no other message is in the
queue during the whole delay time.

The resulting probability that an arbitrary message can
be tracked by an eavesdropper is given by (see for detailed
analysis [12, 13])
exp(=4/u)

1+A/u

with A denoting the rate of message arrivals.

Let us consider an example: Assume a SG-MIX node
with a mean arrival rate A = 10 packets/s and parameter p
= 0.2 packets/s, which implies a mean delay of 5 seconds.
Then the probability of an arriving packet finding the
server empty is exp(-50) =~ 1.9 10%.

In order to provide probabilistic anonymity against F
SG-MIX must be able to fend off delaying attacks. When
running such an attack the intruder must delay all
incoming data packets for a certain amount of time in
order to “flush” the SG-MIX. Therefore we introduce the
time stamps (TS.;, TSnx) to detect the delay of an
incoming data packet and discard it. This prevents
blocking attacks. The SG-MIX technique allows the
calculation of the time windows very accurately as the user
knows in advance the time a message will be delayed.

P(Success) =
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We define for the pair of time stamps of node i (TS,
TSnax); the time window At; during which a packet must
arrive at SG-MIX i. If a At value is given, then the success
probability of a blocking attack is (see for detailed analysis
[12, 13]):

Obviously, when At is given, a linear decrease of p
leads to an exponentially decreasing probability for the
success of a blocking attack. The only successful attack
occurs when the adversary blocks the incoming messages
of all SG-MIXes for quite a long time before the attacked
message arrives, since he cannot know which SG-MIX
node will be selected by the user for any particular
message. This is usually impossible to do “on demand*
and, in any case, would block the whole network, i.e.
result in the loss of many messages due to time-outs,
which would surely not go undetected.

The SG-MIX protocol allows the sender to calculate
an accurate arriving time for each message. SG-MIXes or
Trusted Third Parties (TTP) can use this feature to detect
delaying attacks. For this purpose they send a message via
an arbitrary path through the SG-MIX network to
themselves using the SG-MIX protocol. If the related
packets arrive within the calculated time period, the TTP
can assume that there are currently no ongoing blocking
attacks. If the packets arrive significantly later than
expected or do not arrive at all, this is an indication for an
ongoing blocking attack.

The keep-alive timer (i.e. timeout parameter) for such
a feedback control mechanism must be chosen very
carefully. If the parameter too small, then every variation
of the transmission delay will result in an alarm (false
positive). If the parameter is too large, blocking attacks
will remain undetected (false negatives).

While it is clearly impossible to guarantee perfect
untraceability by this method in the rigorous sense, it is
secure in the same probablistic sense as most
cryptosystems, if the parameter p is suitably chosen.

P(success) = exp(ﬂﬂ‘éﬁ_
u

4. Performance

To estimate the delays incurred for messages passing
through an anonymity-providing node, we will model
these nodes as 2-server systems (see Figure 3). The first
server decrypts the messages and performs other tasks
such as replay attack detection. The service times of this
server are dependent only on server power and message
size and therefore can be assumed to be constant. The
appropriate model is then an M/D/1 server. The second
server queues the messages until transmission. Because it
does very little computing compared to the first server, it



can be viewed independently even if both servers are in
reality one computer.

t
"t b ty
‘MDA . ‘ ‘
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Figure 4:
2-server system

Anonymity providing node seen as a

We will now derive the mean time a message spends
in the server, that is, the expectation of ¢, . Let 1/u, be the
time the first server needs to process a message and A the
ratc of the message arrival process. Assuming that the
system is stable, ie. p=lup<i, we can dctermine the
cxpectation for the delay in the first server using the
Pollaczek-Khintchine formula and Little’s Theorem [14]:

, 1 ol
Elty +t)=—|14+———
to+iv) /‘D[ Z(I—P)j

For a MIX with constant batch size n, the time spent
in the sccond scrver is the time it needs to fill the batch. In
a stable scrver system. the rate with which messages Icave
the server equals the arrival rate, the mean intcrarrival time
at the sccond server is therefore 174 and the expectation of
the delay
n-1

Ly )=
24
and so we get (see Figurc 4)
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Figure 3: Mean fotal message delay y=E(ty) in a MIY
with constant different batch sizes n (bottom-up) n=3,
n=20and n=50 and (up=1)

Obviously the cxpectation of f; for a MIX with
constant timc intervals of length 7' is 7/2 and the mcan
total dclay
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E(ty)= L(H—L—}rl.
up\ Al-p)) 2
For an SG-MIX server, the mean delay in the second
server is simply the expectation of the chosen exponential
distribution 1/uw, and we get

-2 P
2(1—,0)] Hw

While these average delay times are of the same order
of magnitude for all three methods, it is important to note
the differences:

SG-MIX is the only method where the user knows
cxactly how much delay the message will suffer, apart
from the usually rather small network and queuing delays.
This knowledge is important not only to compute the time
windows mentioned in the previous section, but also to
calculate turn-around times needed for congestion control
in network protocols.

T-MIXes guarantee a finitc upper bound for the delay
time. This is true neither for MIXes with fixed batch size
where delays depend on the arrival of other messages, nor
for SG-MIX nodes because of the characteristics of the
exponential distribution.

E(fx);(n
HD

S. Conclusions
In this work we have analyzed the MIX concept and
somc variants with the aid of queuing theory. We show
that queuing thcory is not only good for performance
cvaluation but can also uscd for security cvaluation.
Thanks are due to Joshua Mittleman for his helpful
comments and reading of the manuscript. The author owes
also Jan Egner a debt of gratitude for his contribution to
this work.
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