
Optimizing the Number of Robots for Web SearchEnginesJ. Talim � Z. Liu � P. NainINRIA, B.P. 93, 06902, Sophia Antipolis Cedex, Francefjtalim, liu, naing@sophia.inria.frE. G. Co�man, Jr.Bell Labs, Lucent TechnologiesMurray Hill, NJ 07974, USAegc@bell-labs.comAbstractRobots are deployed by a Web search engine for col-lecting information from di�erent Web servers in or-der to maintain the currency of its data base of Webpages. In this paper, we investigate the number ofrobots to be used by a search engine so as to maxi-mize the currency of the data base without putting anunnecessary load on the network. We use a queue-ing model to represent the system. The arrivals tothe queueing system are Web pages brought by therobots; service corresponds to the indexing of thesepages. The objective is to �nd the number of robots,and thus the arrival rate of the queueing system, suchthat the indexing queue is neither starved nor satu-rated. For this, we consider a �nite-bu�er queue-ing system and de�ne the cost function to be mini-mized as a weighted sum of the loss probability andthe starvation probability. Under the assumptionthat arrivals form a Poisson process, and that ser-vice times are independent and identically distributedrandom variables with an exponential distribution, orwith a more general service function, we obtain ex-plicit/numerical solutions for the optimal number ofrobots to deploy.Keywords: Web search engines; Web robots;Queues.

1 IntroductionThe World Wide Web has become a major informa-tion publishing and retrieving mechanism on the In-ternet. The amount of information as well as thenumber of Web servers has been growing exponen-tially fast in recent years. In order to help users�nd useful information on the Web, search enginessuch as Alta Vista, HotBot, Yahoo, Infoseek, Mag-ellan, Excite and Lycos, etc. are available. Thesesystems consist of four main components: a databasethat contains web pages (full text or summary), auser interface that deals with queries, an indexingengine that updates the database, and robots thattraverse the Web servers and bring Web pages to theindexing engine. Thus, the quality of a search enginedepends on many factors, e.g., query response time,completeness, indexing speed, currency, and e�cientrobot scheduling.Our interest here focuses on the function served byrobots: establishing currency by bringing new pagesto be indexed and bringing changed/updated pagesfor re-indexing. We investigate the problem of choos-ing the number of robots to meet the con�icting de-mands of low network tra�c and an up-to-date database. The speci�c model, illustrated in Figure 1,centers on the indexing engine, which is representedby a �nite, single-server queue/bu�er, and multi-ple robots acting as sources of arriving pages. Thetimes between successive page accesses are indepen-dent and identically distributed for each robot; the1



robots themselves are identical and function indepen-dently. The indexing (service) times are independent,identically distributed, and independent of the arrivalprocesses.When a robot arriving with a page for the index-ing bu�er �nds the bu�er full, the page being deliv-ered is lost, at least temporarily. In this situation,a potential update or new page has been lost, andnetwork congestion has been created to no bene�t.On the other hand, if the bu�er is ever empty, andhence the indexing engine is idle, data base updatingis at a standstill waiting for the robots to bring morepages. To reduce the probability of the �rst of thesetwo events, we want to keep the number of robotssuitably small, but to reduce the probability of thesecond, we want to keep the number of robots suit-ably large. To make the objective concrete, we willformulate a cost function as a weighted sum of theprobabilities of an empty bu�er and a full bu�er. Wewill then study the problem of �nding the number ofrobots that minimizes this cost function.There is a large literature on search engines and theircomponents. The search engines themselves may wellbe their own best source of references; we recommendthis entree to the research on any aspect of the sub-ject. In particular, much can be found on the designand control (including distributed control) of robots.However, we have found very little on the modelingand analysis of robot scheduling and the indexingqueue. The work in [2] is the only such e�ort we knowabout. In [2], the authors propose a natural modelof Web-page obsolescence, and study the problem ofscheduling a single search engine robot so as to min-imize the extent to which the search engine's database is out-of-date.Section 2 introduces the probability model, sets nota-tion, and formalizes the optimization problem. Sec-tion 3 solves the optimization problem for exponen-tially distributed service times and presents an ex-plicit computation of the optimal number of robots.The sensitivity of the results to various model param-eters is also addressed. Extensions to more generalservice time distributions are given in Section 4. Sec-tion 5 concludes with a brief discussion of ongoingresearch and open issues.
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Figure 1: Model of search engine with 2 robots2 The modelThe search engine is modeled as a single server �nitecapacity queue. The system capacity is K � 2 (in-cluding the position in the server). There are N � 1robots: each robot brings new pages to the queue ac-cording to a Poisson process with rate � > 0. TheseN Poisson processes are assumed to be mutually inde-pendent and independent of the service times. Hence,new pages are generated according to a Poisson pro-cess with intensity �N . An incoming page �nding afull queue is lost.We denote by F (x) = P f� � xg the probability dis-tribution of the service times (with � a generic servicetime) and by �� > 0 the mean service time. De�ne� = 1=��.In this notation, we de�ne the cost function as theweighted sum of two terms:� the probability of an empty bu�er P fX = 0g,where X is a random variable representing thestationary queue-length in a M/G/1/K queuewith arrival rate �N and service time distribu-tion F ;� the probability of losing an arriving page, that is,the probability that the queue length seen by anarrival in this M/G/1/K is K, which we denoteby P� fX = Kg.With � := N�=� > 0, the cost function is then de-�ned asC(�; ;K) := P fX = 0g+P� fX = Kg (1)2



where  is a positive constant.In the remainder of this paper we will resort to queue-ing theory to compute C(�; ;K) and to optimize thisquantity as a function of �, or equivalently of N , thenumber of robots. We �rst cover the situation wherethe service times are exponentially distributed.3 The M/M/1/K search enginemodelIn this section, our search engine model is the wellknown M/M/1/K queue. We �rst address the prob-lem of �nding the optimal number of sources (robots)in this model.3.1 Optimizing the number of robotsThe following proposition gives the well known sta-tionary queue-length probabilities at arbitrary epochsfor this queue [3]:Proposition 1 For any � > 0P (X = i) =8><>: 1� �1� �K+1 �i for i = 0; 1; : : : ;K0 for i > K:When � = 1 the non-zero stationary queue-lengthprobabilities at arbitrary epochs are all equal andgiven by Prob (X = i) = 1=(K + 1) for i =0; 1; : : : ;K. �The expression for the cost function C(�; ;K) now�ows from Proposition 1 and the PASTA prop-erty, which ensures that in the M/M/1/K queuethe stationary queue-length probabilities at arbitraryepochs and the stationary queue-length probabili-ties at arrival epochs are equal (i.e., P� (X = k) =P (X = k)). We �nd thatC(�; ;K) = 8>>><>>>: (1� �)( + �K)1� �K+1 for � 6= 1 + 11 +K for � = 1. (2)

Note that for any K � 2,  > 0, the mapping � !C(�;K; ) is continuous and di�erentiable in (0;1),including the point � = 1.Lemma 1 For any  > 0, K � 2, the mapping �!C(�; ;K) has a unique minimum in [0;1), to bedenoted �(;K). Furthermore, 0 < �(;K) < 1 if < 1, �(1;K) = 1 and �(;K) > 1 if  > 1. �Proof. Fix K � 2. We have@C(�; ;K)@� = R(�; ;K)(1� �K+1)2 (3)withR(�; ;K) = �2K �K�K+1 + ( � 1)(K + 1)�K+K�K�1 � :Tedius but elementary algebra show that the polyno-mial R(�; ;K) in the variable �(i) has a zero of multiplicity two (respectively,three) at point � = 1 when  6= 1 (respectively, = 1);(ii) has a zero of multiplicity one in [0; 1) and no zeroin (1;1) when  < 1;(iii) has a zero of multiplicity one in (1;1) and nozero in [0; 1) when  > 1;(iv) has no zero other than 1 when  = 1.We deduce from the above that@C(�; ;K)@� = (1� �)2(1� �K+1)2 Q(�; ;K)where Q(�; ;K) is a polynomial in the variable �with a single zero �(;K) in [0;1) with �(;K) < 1if  < 1, �(1;K) = 1 and �(;K) > 1 if  > 1.Furthermore, the inequality Q(0; ;K) = � < 0implies that, for any  > 0, we have Q(�; ;K) < 0for 0 � � < �(;K) and Q(�; ;K) > 0 for � >�(;K), which proves the lemma.It is worth observing that the optimum �(;K) doesnot depend on the bu�er size K when  = 1. This3



means that if the same weight is given to the prob-ability of starvation and to the loss probability, thenthe optimal arrival rate is equal to the service rate,independent of the bu�er size.We now return to the original problem, namely thecomputation of the number N of robots that mini-mizes the cost function C(�; ;K) with � = �N=�.The answer is found in the next result which is adirect corollary of Lemma 1.Proposition 2 For any  > 0, K � 2, let N(;K)be the optimal number of robots to use.Then, N(;K) = argminn C(n�=�; ;K) (4)with n 2 fb�(;K)�=�c; d�(;K)�=�eg, where forany real number x, bxc (respectively dxe) denotesthe largest (respectively smallest) integer less (respec-tively greater) than or equal to x. �In the next section we investigate the impact of theparameter  on the optimal number of robots.3.2 Impact of  on the optimal num-ber of robotsRecall that the parameter  is a positive constantthat allows us to stress either the loss probability orthe probability of starvation. Part of the impact of on �(;K), and therefore on N(;K), the optimalnumber of robots, is captured in the following result.Proposition 3 For any K � 2, the mapping ! �(;K) is nondecreasing in [0;1), withlim!1 �(;K) =1. �Proof. Pick two constants 0 < 1 < 2 and de�ne�(�; 1; 2;K) := C(�; 2;K)� C(�; 1;K)= 1� �1� �K+1 (2 � 1):We assume that �(2;K) < �(1;K) and show thatthis yields a contradiction.

Under the condition 1 < 2 the mapping � !�(�; 1; 2;K) is strictly decreasing in [0;1). There-fore,0 < �(�(2;K); 1; 2;K)��(�(1;K); 1; 2;K)= [C(�(2;K); 2;K)� C(�(1;K); 2;K)]+ [C(�(1;K); 1;K)� C(�(2;K); 1;K)]� 0 (5)where the last inequality follows from the de�nition of�(;K). Since �! �(�; 1; 2;K) is strictly decreas-ing on [0;1) we deduce from (5) that �(2;K) ��(1;K) must hold, which contradicts the assump-tion that �(2;K) < �(1;K). Therefore �(2;K) ��(1;K) and the mapping  ! �(;K) is nondecreas-ing in [0;1).On the other hand, one can check that@C(�; ;K)=@� � 0 for � = (=K)1=(K�1) when > 0. Hence, by Lemma 1, we conclude that�0(;K) := � K �1=(K�1) � �(;K); 8 > 0: (6)Letting  tend to in�nity on both sides of (6) yieldsthe second result of the proposition.Proposition 3 has a simple physical interpretation.As the parameter  increases the probability of star-vation becomes the main quantity to minimize. Theminimization is done by increasing the arrival rateor, equivalently, by increasing the number of robots.Figure 2 provides two numerical examples, illustrat-ing the monotonicity of the optimal number of robots.The next section focuses on the impact of the bu�ersize K on the optimal number of robots.3.3 Impact of K on the optimal num-ber of robotsIn this section, we examine the behavior of �(;K) asa function of K. The �rst result establishes an upperbound on �(;K) that complements the lower boundgiven in (6).4
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"K=20"Figure 2: The mapping  ! N(;K) (�=� = 5:7)Lemma 2 For any  � 1, K � 2�(;K) < ((K + 1))1=(K�1) := �1(;K): (7)�Proof. Thanks to Lemma 1, it is enough to showthat @C(�; ;K)=@� > 0 at the point � = �1(;K)or, equivalently from (3), that R(�1(;K); ;K) > 0.By writing R(�; ;K) in the formR(�; ;K) = �K+1 ��K�1 �K�+( � 1)(K + 1)�K +K�K�1 � ;we �nd thatR(�1(;K); ;K) =((K + 1)))K+1K�1 +( � 1)(K + 1) ((K + 1)) KK�1+(K(K + 1)� 1)which is strictly positive, in particular for K � 2 and � 1.Using Lemma 1 together with the lower and upperbounds on �(;K) reported in (6) and (7), respec-tively, we get that�0(;K) � �(;K) < 1; for 0 <  < 1 (8)and �1(;K) � �(;K); for  > 1: (9)

By combining (8) and (9) with the limitslimK"1 �0(;K) = limK"1 �1(;K) = 1 ( > 0) andthe identity �(1;K) = 1 (see Lemma 1), we concludethat limK!1 �(;K) = 1 (10)for any  > 0. In other words, we have shown that theoptimal arrival rate converges to the service capacitywhen the bu�er size increases to in�nity.The limiting result (10) can be used to �nd an ap-proximation for the optimal number of robots to bedeployed when K is large. Indeed, the relationlimK!1N(;K) =limK!1 arg minfn2b�=�c;d�=�eg C(�n=�; ;K);(11)which follows from (4) and (11), suggests the follow-ing approximation, for large K:N(;K) �8<: d�=�e if C(�+; ;1) � C(��; ;1)b�=�c if C(�+; ;1) > C(��; ;1)(12)with the notation C(�; ;1) := limK!1 C(�; ;K).Since C(�; ;1) = (1 � �) for � � 1 andC(�; ;1) = 1 � 1=� for � � 1 (use (2)), we mayrewrite (12) asN(;K) � 8<: d�=�e if (�+ � 1)=�+ �  (1� ��)b�=�c if (�+ � 1)=�+ �  (1� ��)(13)with �+ := (�=�) d�=�e and �� := (�=�)b�=�c.The limiting result (10) may seem counterintuitive at�rst. Indeed, one may be tempted to argue that thecomponent P (X = K) in the cost function C(�; ;K)converges to 0 as the bu�er size increases to in�nityand to conclude from this that C(�; ;K) is mini-mized when P (X = 0) converges to 0, which occurswhen the arrival rate converges to in�nity. This inter-pretation is not correct though, as limK!1 P (X =K) = (�� 1)=� > 0 when � > 1 (see Proposition 1).5



It is not an easy task to study the behavior of�(;K) as a function of K. We suspect the mappingK ! �(;K) to be increasing when 0 <  < 1 anddecreasing when  > 1, but we have not been able toprove it. The conjectured behavior of the mappingK ! �(;K) (resp. K ! N(;K)) is illustrated inFigure 3 (resp. Figure 4). Figure 5 displays the be-havior of the optimal number of robots as a functionof the ratio �=� when the bu�er size is in�nite. Inboth curves the parameter  is held �xed and takenequal to 0:5 and 2, respectively.We see from Figure 5 that the optimal number ofrobots N(;1) is equal to 6 when the bu�er size isin�nite for  2 f0:5; 2g. Figure 4(b) tells us thatfor K � 13 (resp. K � 18) N(;1) gives the cor-rect value for N(;K) when  = 0:5 (resp.  = 2),which seems to indicate that the accuracy of the ap-proximation (13) may be very sensitive to the modelparameters.
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4 The M/G/1/K queue searchengine modelThe queueing model in Section 3 is again consideredin this section but we now relax the assumption thatthe service times are exponentially distributed, i.e.we model the search engine as an M/G/1/K queuewith service time distribution F .4.1 PreliminariesWe �rst introduce additional notation and de�ni-tions. For <(�) � 0, let F(�) = E[exp(���)] bethe Laplace-Stieltjes transform (LST) of the servicetime distribution.We denote by [!n]f the coe�cient of !n in the Taylorseries expansion of f . For � � 0, j!j � 1, de�neG�(!) := F(� (1� !)=��)� !: (14)For � � 0, let !0(�) be the zero of G�(!) havingthe smallest modulus, with �(�) its multiplicity. Itis known from Takàcs' lemma [1, pp. 653-654] that!0(�) = 1 with �(�) = 1; if � < 1; !0(�) = 1 with�(1) = 2; and !0(�) < 1 with �(�) = 1; if � > 1.The cost structure (1) is kept unchanged. As in Sec-tion 3, we �rst calculate (Lemma 3) the unknownprobabilities entering the de�nition of C(�; ;K),namely P fX = 0g and P� fX = Kg, in the casewhere X represents the stationary queue length in anM/G/1/K queue with service time distribution F .Lemma 3 For � � 0P fX = 0g = 11 + ��K(�) (15)andP� fX = Kg = P fX = Kg = 1 + (�� 1)�K(�)1 + ��K(�) (16)with �K(�) := [!K�2] 1G� : (17)�

Proof. The proof is based on Cohen's analysis of theM/G/1/K queue in [1, Chapter III.6].Fix � � 0 and introduceB := 1 + �2�i ZDr 1G�(!) � d!!K�1with Dr any circle in the complex plane with center0 and radius strictly less than !0(�).According to [1, p. 575], we haveP fX = 0g = 1B (18)andP fX = Kg = 12�iB ZDr � �� 1G�(!) + 11� !� d!!K�1 :(19)The integrals in the right-hand sides of (18) and (19)can be evaluated by the theorem of residues [6, p.102]which gives (15) and (16), respectively. The proof isconcluded by noting that the �rst equality in (16) isa consequence of the PASTA property [7].By Lemma 3 we can rewrite the cost function (1) asC(�; ;K) = 1 +  � �K(�)1 + ��K(�) (20)with �K(�) given by (17).In the next section we devise an algorithm for com-puting �K(�) in the case where F(�) is rational (e.g.the service time distribution F is phase-type).Remark 1 Since C(�; 1;K) = P fX = 0g +P fX = Kg � 1; we deduce from (20) that �K(�) � 1for � � 0. In particular, �K(0) = 1.4.2 Computing the cost functionFrom now on we assume that � > 0 a.s. (servicetimes have no mass at zero) and that the LST of theservice times is a rational function. More precisely,we consider the situation whereF(�) = B(�)A(�)7



with A(�) := Pqi=0 ai �i and B(�) := Pri=0 bi �i arerelatively prime polynomials (they have no commonroots). Since A(�) and B(�) are relatively primepolynomials the coe�cients a0 and b0 cannot bothbe equal to 0 (otherwise A(�) and B(�) would havethe common factor �); this in turn implies that b0 6= 0since 1 = F(0) 6= 0. Lastly, we observe that q > r un-der the condition lim�!+1 F(�) = 0, which followsfrom the assumption that � > 0 a.s.Recall the de�nition of G�(!) (see Lemma 3). Theabove setting implies that1G�(!) = Q(!; �)R(!; �) (21)withQ(!; �) := A(�(1� !)=��) = qXi=0 ai(�)!i (22)R(!; �) := B(�(1� !)=��)� !A(�(1� !)=��)= q+1Xi=0 bi(�)!i (23)whereai(�) := (�1)i qXj=i �ji� aj��j �j ; for 0 � i � q (24)andb0(�) := rXj=0 bj��j �jbi(�) := (�1)i" rXj=i �ji�aj��j �j+ qXj=i�1� ji� 1� bj��j �j#; for 1 � i � rbi(�) := (�1)i�1 qXj=i�1� ji� 1�aj��j �jfor r + 1 � i � q + 1: (25)Note that fai(�); bi+1(�); 0 � i � qg are all polyno-mials of degree q and that b0(�) is a polynomial ofdegree r.

The next result provides an e�cient scheme of con-volution type for computing �K(�) and subsequentlythe cost C(�; ;K) in (20).Lemma 4 For K � 2, � � 0,(i) b0(�) 6= 0;(ii) �K(�) can be computed by means of the followingrecursion:
�K(�) =

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:
a0(�)b0(�) for K = 2aK�2(�)b0(�) � K�2Xi=1 bi(�)b0(�) �K�i(�)for 3 � K � q + 2� q+1Xi=1 bi(�)b0(�) �K�i(�)for K � q + 3: (26)�Proof. From (25) and the de�nition of the poly-nomial B(�) we see that b0(�) = B(�=��). There-fore, b0(�) = 0 would imply that F(�=��) = 0 sinceA(���) 6= 0 (as A and B have no common roots),which would yield a contradiction, since F(�=��) =E[exp(���=��)] > 0. Consequently, b0(�) 6= 0 for all� � 0 and K � 2.The proof of (ii) is an easy induction on K using�K(�) = (1=(K � 2)!) lim!#0 dK�2G�(!)�1=d!K�2.It is omitted for the sake of conciseness.The complexity of computing f�K(�); K � 2g can bereduced even further. Indeed, we observe from (26)that for K � q + 3, �K(�) satis�es a linear relationof order q + 1, namely,�K(�) = c1�K�1(�) + c2�K�2(�)+ � � �+ cq+1�K�q�1(�) (27)for K � q + 3, with cn := �bn(�)=b0(�).8



We can then invoke the theory of linear relations [5,Theorem 2.2, p. 48] to conclude from the above that�K(�) = q+1Xi=1 �Ki (�) �iXj=1 Kj�1 di;j(�); K � 2;(28)where f�i(�); 1 � i � mg, 1 � m � q + 1, are thedistinct roots of the (characteristic) polynomialP (x) = xq+1 � c1xq � c2xq�1 � � � � � cq+1;with �i the multiplicity of �i.The unknown coe�cients fdi;j(�); 1 � j � �i; 1 �i � mg in (28) are computed from the initial condi-tions on �2(�); : : : ; �q+2(�) that can themselves beobtained from (26).Remark 2 SincePq+1i=0 bi(�) by de�nition of R(!; �)(take ! = 1 in (23)), the linear relation of order q+1in (27) can be reduced to a linear relation of order q.This procedure is illustrated in Section 4.4.4.3 Asymptotic behavior of the opti-mal number of robotsUnlike in the M/M/1/K case, an explicit computa-tion for the optimal number of robots to deploy isout of reach. Even the task of showing the unique-ness of this optimum is non-trivial. In this section,we will content ourselves with the derivation of basicasymptotics.We �rst show the existence of a �nite optimum.Lemma 5 For any  > 0, K � 2, there exist �-nite real numbers 0 � �1(;K) < �2(;K) < � � � <�n(;K), 1 � n < 1, that minimize the costC(�; ;K) over [0;1). �Proof. It is easily shown by an induction on K using(26) that �K(�) is a rational function in the variable�, namely, �K(�) = f(�)=g(�) with f(�) and g(�)polynomials of degree qK�1 and rK�1, respectively(g(�) = b0(�)K�1). Since q > r this implies that�K(�) has a limit which is in�nite as � ! 1; since

�K(�) � 1 for all � � 0 and K � 2 as pointed out inRemark 1, we deduce that, necessarily,lim�!1�K(�) = +1; (29)which together with (20) implies thatlim�!1C(�; ;K) = 1:On the other hand, (29) also implies that there ex-ists �0 � 0 such that �K(�0) > , which in turnimplies that C(�0; ;K) < 1 from (20). This showsthat the mapping � ! C(�; ;K) reaches is mini-mum in [0;1). The number of points in [0;1) whereC(�0; ;K) is minimum is �nite as a consequence ofthe fact that � ! C(�; ;K) is a rational functionbecause �K(�) is. This concludes the proof.The next result shows that the optimal number ofrobots increases to in�nity as the coe�cient  in-creases to in�nity.Proposition 4 For K � 2,lim!1 �1(;K) = +1: �Proof. Throughout the proof, K � 2 is held �xed.We know (see the proof of Lemma 5) that �K(�) =f(�)=b0(�)K�1, with f a polynomial of degree qK�1.Since b0(�) 6= 0 for � � 0 (see Lemma 4), we deducethat the mapping �! �K(�) is continuous on [0;1),which in turn implies from (20) and the condition�K(�) � 1 for all � � 0 (see Remark 1) that, for any > 0, the mapping �! C(�; ;K) is also continuouson [0;1).Assume that lim inf!1 �1(;K) = L < 1. Thenthere exists a sequence fngn with limn!1 n = +1such that limn!1 �1(n;K) = L. With the continu-ity of the mappings � ! �K(�) and � ! C(�; ;K)on [0;1); this implies that (see (20))limn!1C(�1(n;K); n;K) = +1:To complete the proof we need to showthat lim!1 C(�1(;K); ;K) < 1 whenlim!1 �1(;K) = +1.9



We see from (29) that, for any  > 0, one can �nd� = h(;K) such thatP fX = 0g = 11 + ��K(�) < 1By de�nition (2) of the cost C(�; ;K) this impliesthat C((g(;K); ;K) � 2 for any  > 0, therebyshowing that lim!1 �1(;K) = +1 must hold.We now turn our attention to the analysis of the be-havior of the optimal number of robots as the bu�ersize increases to in�nity. Lemma 6 below gives theasymptotics of �K(�) as K gets large. From thisresult we will deduce the asymptotic behavior ofC(�; ;K) (Proposition 5) and then the optimal num-ber of robots (Proposition 6) as K goes to in�nity.Lemma 6 For � � 0,�K(�) � D(�)K�(�)�1!0(�)K (K !1)where D(�) is given by
D(�) := 8>>>>>>>>>><>>>>>>>>>>:

� Q(1; �)R(1)(1; �) for 0 � � < 12 Q(1; 1)R(2)(1; 1) for � = 1�!0(�)Q(!0(�); �)R(1)(!0(�); �) for � > 1 (30)with R(i)(!; �) := @iR(!; �)=@!i for i = 1; 2. �Lemma 6 follows directly from the de�nition of�K(�), the coe�cient of !K�2 in the Taylor seriesexpansion of 1=G�(!) (K � 2), the de�nition of !0(�)and �(�) (see the beginning of Section 4.1), and [5,Theorem 4.1, p. 159].Proposition 5 For any  > 0C(�; ;K) �8><>: (1� �) for 0 � � < 10 for � = 1�� 1� for � > 1as K !1. �

Proof. De�nition (20) of C(�; ;K) and Lemma 6already imply thatC(�; ;K) � 8>>><>>>: 1 +  �D(�)1 + �D(�) for 0 � � < 10 for � = 1�� 1� for � > 1as K ! 1. It remains to evaluate D(�) for 0 � � <1.We have (cf. (22), (23), (30))D(�) = 11� �Hwith H := (A0(0)�B0(0))=(�� A(0)) = �F 0(0)=�� = 1(hint: A(0) = B(0)). Hence, D(�) = 1=(1� �) andC(�; ;K) � (1� �) (K !1)for 0 � � < 1.From Proposition 5 we get the followingProposition 6 For any  > 0, the cost C(�; ;K)is minimized at � = 1 when K !1. �In direct analogy with the M/M/1/K case (see (12))Proposition 6 suggests the following approximationfor the optimal number of robots N(;K) when K islarge:N(;K) �8<: d�=�e if C(�+; ;1) � C(��; ;1)b�=�c if C(�+; ;1) � C(��; ;1)or equivalently from Proposition 5N(;K) � 8>>><>>>: d�=�e if �+ � 1�+ � (1� ��)b�=�c if �+ � 1�+ � (1� ��).We observe that the above approximation is the sameas the one found in the M/M/1/K case (13), thus sug-gesting that it may not be very accurate in general10



for moderate values of K. Indeed, we would expectthe optimal number of robots to depend on the dis-tribution of the service times and not just its mean.4.4 ExampleIn this example the server must complete two tasks:it �rst checks whether the information contained ina page has changed; if it has, the server updates thedata base accordingly.We assume that the times required to perform thetasks have exponential distributions, with rate �1for the reading task and �2 for the updating task.These durations are further assumed to be indepen-dent, as well as independent from page to page. Let0 � p � 1 be the probability that an update has tobe performed. Note that if p = 0 this model reducesto the M/M/1/K queue studied in Section 3.In this setting the LST of the service time distributionis F(�) = p �1�2�1 � �2 � 1�2 + � � 1�1 + ��+(1� p) �1�1 + �and the mean service time is�� = 1�1 + p�2 :From the above we readily deduce that (see (14))1G�(!) = "p�1�2 + (1� p)�1(�2 + f(!; �))�!(�1 + f(!; �))(�2 + f(!; �))#=(�1 + f(!; �))(�2 + f(!; �))for j!j < 1, � > 0, with f(!; �) := �(1� !)=��.The coe�cients of the polynomials Q and R in (21)are easily identi�ed; we �nd that� a0(�) = (�=��)2 + (�1 + �2)�=�� + �1�2� a1(�) = �2(�=��)2 � (�1 + �2)�=��� a2(�) = (�=��)2

and� b0(�) = ((1� p)�1)�=�� + �1�2� b1(�) = �(�=��)2 + (1� p)�1 + �1 + �2) �=��+�1�2� b2(�) = 2(�=��)2 + (�1 + �2)�=��� b3(�) = �(�=��)2.Applying Lemma 4 we see that the unknown quantity�K(�) in (20) is given by�2(�) = a0(�)b0(�) (31)�3(�) = a1(�)b0(�) � a0(�)b1(�)b0(�)2 (32)�4(�) = a2(�)b0(�) � a1(�)b1(�)b0(�)2+a0(�)b1(�)2b0(�)3 � a0(�)b2(�)b0(�)2 (33)and�K(�) = �b1(�)b0(�) �K�1(�)� b2(�)b0(�) �K�2(�)�b3(�)b0(�) �K�3(�) for K � 5: (34)As pointed out in Remark 2, the identityP3i=0 bi(�) = 0 may be used to reduce the order ofthe linear relation (34). De�neuK(�) := �K(�)� �K�1(�) (35)for K � 3. Then (34) becomesuK(�) = ��1 + b1(�)b0(�)�uK�1(�)+b3(�)b0(�) uK�2(�) for K � 5:The solution to this linear relation of order 2 is givenby [5, Theorem 2.2, p. 48]uK(�) = �1(�)K d1(�) + �2(�)K d2(�) for K � 3;(36)11



with �1(�) and �2(�) the (distinct) roots of the poly-nomial b0(�)x2 + (b0(�) + b1(�))x� b3(�), namely,�i(�) = �(b0(�) + b1(�))�p�(�)2 b0(�) ; i = 1; 2;with �(�) := (b0(�) + b1(�))2 + 4 b0(�)b3(�). (Theproof that �(�) > 0 for all � > 0 is left to the reader.)The coe�cients di(�) in (36) are computed from theinitial conditions u2(�) and u3(�). We �ndd1(�) = �2(�) (�3(�)� �2(�))� (�4(�)� �3(�))�1(�)3 (�2(�)� �1(�))d2(�) = �4(�)� �3(�)� �1(�) (�3(�)� �2(�))�2(�)3 (�2(�)� �1(�))where �i(�) (i = 2; 3; 4) are given in (31)-(33).Combining (35) and (36), we �nally get�K(�) = �2(�) + d1(�) KXi=2 �1(�)i+d2(�) KXi=2 �2(�)i; K � 2:Figure 6 represents what we have found to be typicalbehavior of the cost function C(�; ;K) as a functionof �. One can observe that the minimum is uniqueand obtained, say, at � = �(;K). We have computed�(;K) for various values of the parameters , K andthe probability p that a page has to be updated.Figure 7 displays the mapping K ! �(;K) for twovalues of the probability p (p = 1 and p = 0:5) and = 1; Figure 8 displays the mapping K ! �(;K)for two values of  ( = 0:5 and  = 2) and p = 1. Asin the M/M/1/K case, we observe in Figure 8 that�(;K) is increasing when  < 1 and decreasing when > 1.5 Concluding remarksSimple queueing models (the M/M/1/K andM/G/1/K queues) of search engines have been pro-posed, analyzed, and optimized in order to �nd the
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optimal number of robots to use. The cost functionis a weighted sum of the loss probability and the star-vation probability.Extensions of these models to dynamic models wherethe number of active robots may change over time asa function of the workload in the queue have beenproposed in a companion paper [4].Several interesting, open issues remain, includingthe situation where the robots are not homogeneousand/or are allocated to di�erent parts of the network.For instance, one may wish to determine the optimalnumber of robots to be allocated to a given area.References[1] Cohen, J. W ., The Single Server Queue, North-Holland Publishing Company, 1982.[2] Co�man Jr., E. G, Liu, Z. and Weber, R. R.,�Optimal robot scheduling for web search en-gines�, J. Scheduling, 1, pp. 14-22, 1998.[3] Kleinrock, L., Queueing Systems, Vol. I, Wiley& Sons, New York, 1975.[4] Talim, J., Liu, Z., Nain, P. and Co�man, Jr.,E. G., �Optimal number of robots for searchengines: the dynamic case.� Preprint, Oct. 1997.[5] Sedgewick, R. and Flajolet, P., Analysis of al-gorithms, Addison-Wesley Publishing Company,1996.[6] Titchmarsh, E. C., The Theory of Functions,Oxford University Press, 2nd Edition, 1939.[7] Wol�, R. L., �Poisson Arrivals See Time Aver-ages,� Opns. Res., 30, pp. 223-231, 1982.
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