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Abstract

Robots are deployed by a Web search engine for col-
lecting information from different Web servers in or-
der to maintain the currency of its data base of Web
pages. In this paper, we investigate the number of
robots to be used by a search engine so as to maxi-
mize the currency of the data base without putting an
unnecessary load on the network. We use a queue-
ing model to represent the system. The arrivals to
the queueing system are Web pages brought by the
robots; service corresponds to the indexing of these
pages. The objective is to find the number of robots,
and thus the arrival rate of the queueing system, such
that the indexing queue is neither starved nor satu-
rated. For this, we consider a finite-buffer queue-
ing system and define the cost function to be mini-
mized as a weighted sum of the loss probability and
the starvation probability. Under the assumption
that arrivals form a Poisson process, and that ser-
vice times are independent and identically distributed
random variables with an exponential distribution, or
with a more general service function, we obtain ex-
plicit /numerical solutions for the optimal number of
robots to deploy.

Keywords: Web search engines; Web robots;

Queues.

1 Introduction

The World Wide Web has become a major informa-
tion publishing and retrieving mechanism on the In-

ternet. The amount of information as well as the
number of Web servers has been growing exponen-
tially fast in recent years. In order to help users
find useful information on the Web, search engines
such as Alta Vista, HotBot, Yahoo, Infoseek, Mag-
These

systems consist of four main components: a database

ellan, Excite and Lycos, etc. are available.
that contains web pages (full text or summary), a
user interface that deals with queries, an indexing
engine that updates the database, and robots that
traverse the Web servers and bring Web pages to the
indexing engine. Thus, the quality of a search engine
depends on many factors, e.g., query response time,
completeness, indexing speed, currency, and efficient
robot scheduling.

Our interest here focuses on the function served by
robots: establishing currency by bringing new pages
to be indexed and bringing changed /updated pages
for re-indexing. We investigate the problem of choos-
ing the number of robots to meet the conflicting de-
mands of low network traffic and an up-to-date data
base. The specific model, illustrated in Figure 1,
centers on the indexing engine, which is represented
by a finite, single-server queue/buffer, and multi-
ple robots acting as sources of arriving pages. The
times between successive page accesses are indepen-
dent and identically distributed for each robot; the



robots themselves are identical and function indepen-
dently. The indexing (service) times are independent,

identically distributed, and independent of the arrival
processes.

When a robot arriving with a page for the index-
ing buffer finds the buffer full, the page being deliv-
ered is lost, at least temporarily. In this situation,
a potential update or new page has been lost, and
network congestion has been created to no benefit.
On the other hand, if the buffer is ever empty, and
hence the indexing engine is idle, data base updating
is at a standstill waiting for the robots to bring more
pages. To reduce the probability of the first of these
two events, we want to keep the number of robots
suitably small, but to reduce the probability of the
second, we want to keep the number of robots suit-
ably large. To make the objective concrete, we will
formulate a cost function as a weighted sum of the
probabilities of an empty buffer and a full buffer. We
will then study the problem of finding the number of
robots that minimizes this cost function.

There is a large literature on search engines and their
components. The search engines themselves may well
be their own best source of references; we recommend
this entree to the research on any aspect of the sub-
ject. In particular, much can be found on the design
and control (including distributed control) of robots.
However, we have found very little on the modeling
and analysis of robot scheduling and the indexing
queue. The work in [2] is the only such effort we know
about. In [2], the authors propose a natural model
of Web-page obsolescence, and study the problem of
scheduling a single search engine robot so as to min-
imize the extent to which the search engine’s data
base is out-of-date.

Section 2 introduces the probability model, sets nota-
tion, and formalizes the optimization problem. Sec-
tion 3 solves the optimization problem for exponen-
tially distributed service times and presents an ex-
plicit computation of the optimal number of robots.
The sensitivity of the results to various model param-
eters is also addressed. Extensions to more general
service time distributions are given in Section 4. Sec-
tion 5 concludes with a brief discussion of ongoing
research and open issues.
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Figure 1: Model of search engine with 2 robots

2 The model

The search engine is modeled as a single server finite
capacity queue. The system capacity is K > 2 (in-
cluding the position in the server). There are N > 1
robots: each robot brings new pages to the queue ac-
cording to a Poisson process with rate A > 0. These
N Poisson processes are assumed to be mutually inde-
pendent and independent of the service times. Hence,
new pages are generated according to a Poisson pro-
cess with intensity AN. An incoming page finding a
full queue is lost.

We denote by F(z) = P {o <z} the probability dis-
tribution of the service times (with o a generic service
time) and by & > 0 the mean service time. Define
u=1/a.

In this notation, we define the cost function as the
weighted sum of two terms:

e the probability of an empty buffer P {X = 0},
where X is a random variable representing the
stationary queue-length in a M/G/1/K queue

with arrival rate AN and service time distribu-
tion F';

¢ the probability of losing an arriving page, that is,
the probability that the queue length seen by an
arrival in this M/G/1/K is K, which we denote
by P*{X = K}.

With p := NA/u > 0, the cost function is then de-

fined as

Clp,7,K)=7P{X =0} +P" {X =K} (1)



where 7 is a positive constant.

In the remainder of this paper we will resort to queue-
ing theory to compute C(p, vy, K) and to optimize this
quantity as a function of p, or equivalently of NV, the

number of robots. We first cover the situation where
the service times are exponentially distributed.

3 The M/M/1/K search engine
model

In this section, our search engine model is the well
known M/M/1/K queue. We first address the prob-
lem of finding the optimal number of sources (robots)
in this model.

3.1 Optimizing the number of robots

The following proposition gives the well known sta-

tionary queue-length probabilities at arbitrary epochs
for this queue [3]:

Proposition 1 For any p >0

1-— :
7,{)# fori=0,1,... K
1 — pi+l
P(X=i)=
0 fori> K.
When p = 1 the non-zero stationary queue-length

probabilities at arbitrary epochs are all equal and
given by Prob(X =i) = 1/(K + 1) for i =
0,1,... K. o

The expression for the cost function C(p,~, K) now
flows from Proposition 1 and the PASTA prop-
erty, which ensures that in the M/M/1/K queue
the stationary queue-length probabilities at arbitrary
epochs and the stationary queue-length probabili-
ties at arrival epochs are equal (i.e., P* (X =k) =
P (X =k)). We find that

1-p)(y+p"
(]_—)(’Tl) forp#l

Cp,7.K) = (2)

atl

for p = 1.
1+ K ore

Note that for any K > 2, v > 0, the mapping p —
C(p, K,7) is continuous and differentiable in (0, co),
including the point p = 1.

Lemma 1 For any v > 0, K > 2, the mapping p —
C(p,v,K) has a unique minimum in [0,00), to be
denoted p(v,K). Furthermore, 0 < p(v,K) < 1 if
v<1,p(1,K)=1and p(v,K)>1if v > 1.

[ed
Proof. Fix K > 2. We have
9C(p.7, K) _ R(p,v, K) 3)
ap (1—pftt)?
with
R(p,v.K) = p* —Kyp"*' + (y - 1)(K +1)p"
+KpEt — .

Tedius but elementary algebra show that the polyno-
mial R(p,~, K) in the variable p

(i) has a zero of multiplicity two (respectively,
three) at point p = 1 when v # 1 (respectively,
v=1);

(ii) has a zero of multiplicity one in [0, 1) and no zero

in (1,00) when v < 1;

(iii) has a zero of multiplicity one in (1,00) and no
zero in [0,1) when vy > 1;

(iv) has no zero other than 1 when v = 1.

We deduce from the above that

= (1(1 ;,fll)Q Qp, v, K)

aC(p,7,K)
dp

where Q(p,v,K) is a polynomial in the variable p
with a single zero p(v, K) in [0, 00) with p(y, K) < 1
ify <1, p(1,K) =1 and p(v,K) > 1if v > 1.
Furthermore, the inequality Q(0,v,K) = —y < 0
implies that, for any v > 0, we have Q(p,v,K) < 0
for 0 < p < p(v,K) and Q(p,v,K) > 0 for p >
p(v, K), which proves the lemma. I

It is worth observing that the optimum p(~v, K) does
not depend on the buffer size K when v = 1. This



means that if the same weight is given to the prob-
ability of starvation and to the loss probability, then
the optimal arrival rate is equal to the service rate,
independent of the buffer size.

We now return to the original problem, namely the
computation of the number N of robots that mini-
mizes the cost function C(p,v,K) with p = AN/pu.

The answer is found in the next result which is a
direct corollary of Lemma 1.

Proposition 2 For any v > 0, K > 2, let N(v, K)
be the optimal number of robots to use.

Then,

N(v. K) = argmin, C(nA/p,v, K) (4)
with n € {|p(y, K)u/Al, [p(y, K)u/A1}, where for
any real number x, |x| (respectively [x]) denotes
the largest (respectively smallest) integer less (respec-

tively greater) than or equal to x. o

In the next section we investigate the impact of the
parameter v on the optimal number of robots.

3.2 Impact of v on the optimal num-

ber of robots

Recall that the parameter 7 is a positive constant
that allows us to stress either the loss probability or
the probability of starvation. Part of the impact of
~ on p(v, K), and therefore on N (v, K), the optimal
number of robots, is captured in the following result.

Proposition 3 For any K > 2, the mapping
v — p(v,K) is nondecreasing in [0,00), with
lim, oo p(7, K) = 0.

o

Proof. Pick two constants 0 < 7; < 72 and define

C(ﬂv Y2, I{) - C(p 71, I()

1-p
m(% - M)

A(pa’yla’YQ-,I() =

We assume that p(v2, K) < p(y1,K) and show that
this yields a contradiction.

Under the condition ;1 < <2 the mapping p —
A(p,v1,72, K) is strictly decreasing in [0, 00). There-
fore,

0 < A(p 727}()7717727]()
_A(p(’}/l,[(), Y1572, I()

= [C(p(’7271{)7’7271{) - C(p(’Yl,I‘y),’YQ,I()]
+ [C(p(’h ) R’)a 71, I() - C(p(’}/?, I{)'/ 71, A’)]
<0 (5)

where the last inequality follows from the definition of
p(v, K). Since p — A(p,v1,72, K) is strictly decreas-
ing on [0,00) we deduce from (5) that p(yq, K) >
p(v1, K) must hold, which contradicts the assump-
tion that p(y2, K) < p(71, K). Therefore p(y2, K) >
p(71, K) and the mapping v — p(~, K) is nondecreas-
ing in [0, 00).

On the other hand, can check that

aC(p,7,K)/dp < 0 for p = (yv/K)"/E=1 when
~v > 0. Hence, by Lemma 1, we conclude that

one

< p(v, K),

1/(K=1)
i ) Yy > 0. (6)

K):= (—
po(r, K) = (5
Letting 7 tend to infinity on both sides of (6) yields
the second result of the proposition. B

Proposition 3 has a simple physical interpretation.
As the parameter v increases the probability of star-
vation becomes the main quantity to minimize. The
minimization is done by increasing the arrival rate
or, equivalently, by increasing the number of robots.
Figure 2 provides two numerical examples, illustrat-
ing the monotonicity of the optimal number of robots.

The next section focuses on the impact of the buffer
size K on the optimal number of robots.

3.3 Impact of K on the optimal num-

ber of robots

In this section, we examine the behavior of p(v, K) as
a function of K. The first result establishes an upper
bound on p(7, K) that complements the lower bound
given in (6).
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Figure 2: The mapping v — N(v, K) (u/X = 5.7)

Lemma 2 Foranyy>1, K > 2

p(7, K) < (K + 1)) E Y = p (1, K). (7)

<

Proof. Thanks to Lemma 1, it is enough to show
that 0C(p,~v,K)/0p > 0 at the point p = p1(v, K)
or, equivalently from (3), that R(p1 (v, K),v, K) > 0.

By writing R(p,~, K) in the form
R(p, 7, K) = p"*" (p" 7' = K¥)
+y =K +1)p" + Kp 7! -,
we find that
R(p1(v, K),7,K) =

(K +1)7)® 5

+(y = 1)(K + 1) (K + 1)7) %7

+y(K(K+1)-1)

which is strictly positive, in particular for K > 2 and
v > 1. |

Using Lemma 1 together with the lower and upper
bounds on p(v, K) reported in (6) and (7), respec-
tively, we get that

po(v, K) <p(y,K)<1l, for0<y<1 (8)

and

p1(v, K) > p(v, K), fory>1. 9)

By combining (8) and (9) with the limits
lim 1o po (7, K) = limgqoe p1(7, K) =1 (v > 0) and
the identity p(1, K) = 1 (see Lemma 1), we conclude

that

Jim p(y,K) =1 (10)

for any v > 0. In other words, we have shown that the
optimal arrival rate converges to the service capacity
when the buffer size increases to infinity.

The limiting result (10) can be used to find an ap-
proximation for the optimal number of robots to be
deployed when K is large. Indeed, the relation

Aim N(y, K) =

lim ar i

min C(An/u,~v, K
Koo 8 e lu/r /ATy (/w3 K)

3

(11)

which follows from (4) and (11), suggests the follow-
ing approximation, for large K:

(/]
L/ A]

if C(p+7 s OO) S C(p,, s OO)

N(v. K) ~

if O(p+7 s OO) > C(ﬂ—a s OO)
(12)

with the notation C(p,~, oc) :=limg_ C(p, 7, K).

Since C(p,v,00) = (1 — p) for p < 1 and

C(proc) = 1~ 1/p for p > 1 (use (2)), we may
rewrite (12) as

[/ AT
L1/ A

if (o4 —1)/p+ <7y (1—p-)
N(v,K) ~

if (04 —1)/p+ > (1—p-)
(13)

with pg := (M) [p/A] and p— == (A/p) /A

The limiting result (10) may seem counterintuitive at
first. Indeed, one may be tempted to argue that the
component P(X = K) in the cost function C(p,~, K)
converges to 0 as the buffer size increases to infinity
and to conclude from this that C(p,~, K) is mini-
mized when P(X = 0) converges to 0, which occurs
when the arrival rate converges to infinity. This inter-
pretation is not correct though, as limg_ ., P(X =
K)=(p—1)/p> 0 when p > 1 (see Proposition 1).



It is not an easy task to study the behavior of
p(v, K) as a function of K. We suspect the mapping

K — p(v,K) to be increasing when 0 < v < 1 and * I 4= 056
decreasing when v > 1, but we have not been able to E 7 =20
prove it. The conjectured behavior of the mapping T 7
K — p(v,K) (resp. K — N(v,K)) is illustrated in re N
Figure 3 (resp. Figure 4). Figure 5 displays the be- = N
havior of the optimal number of robots as a function o T e
of the ratio /A when the buffer size is infinite. In s -
both curves the parameter v is held fixed and taken § E— S I N E—
equal to 0.5 and 2, respectively.
We see from Figure 5 that the optimal number of (8) n/A =57
robots N (7, 00) is equal to 6 when the buffer size is
infinite for v € {0.5,2}. Figure 4(b) tells us that a T =050
for K > 13 (resp. K > 18) N(v,00) gives the cor- E 7 =201
rect value for N(v, K) when v = 0.5 (resp. 7 = 2), “r 7
which seems to indicate that the accuracy of the ap- N 7
proximation (13) may be very sensitive to the model T N
parameters. o - -
(b) p/A=6

| Figure 4: The mapping K — N (v, K)
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Figure 3: The mapping K — p(7, K) Figure 5: The mapping /A — N(v,00)



4 The M/G/1/K queue search
engine model

The queueing model in Section 3 is again considered
in this section but we now relax the assumption that
the service times are exponentially distributed, i.e.
we model the search engine as an M/G/1/K queue
with service time distribution F.

4.1 Preliminaries

We first introduce additional notation and defini-
tions. For R(f) > 0, let F(§) = Elexp(—0c)] be
the Laplace-Stieltjes transform (LST) of the service
time distribution.

We denote by [w"]f the coefficient of w™ in the Taylor

series expansion of f. For p > 0, |w| < 1, define

Gp(w) :=F(p(1 —w)/7) —w. (14)

For p > 0, let wo(p) be the zero of G,(w) having
the smallest modulus, with v(p) its multiplicity. It
is known from Takacs’ lemma [1, pp. 653-654] that
wo(p) = 1 with v(p) = 1, if p < 1; woe(p) = 1 with
v(1) =2;and wo(p) < 1 with v(p) =1,if p > 1.

The cost structure (1) is kept unchanged. As in Sec-
tion 3, we first calculate (Lemma 3) the unknown
probabilities entering the definition of C(p,~, K),
namely P{X =0} and P*{X = K}, in the case
where X represents the stationary queue length in an
M/G/1/K queue with service time distribution F.

Lemma 3 Forp >0

1

PAX=0i=1 + pax(p)

(15)

and

1+ (p—1)ak(p)
1+ pak(p)
(16)

P {X=K}=P{X=K}=

with

(17)

Proof. The proof is based on Cohen’s analysis of the
M/G/1/K queue in [1, Chapter II1.6].

Fix p > 0 and introduce

A / L dw
2mi Jp, Gp(w) wh-1

with D, any circle in the complex plane with center

B:=1+

0 and radius strictly less than wg(p).

According to [1, p. 575], we have

P{X:O}:% (18)
and
. 1 p—1 1 dw
PiX=K}= %—B/D (gpw) 1 —w> SR
(19)

The integrals in the right-hand sides of (18) and (19)
can be evaluated by the theorem of residues [6, p.102]
which gives (15) and (16), respectively. The proof is
concluded by noting that the first equality in (16) is
a consequence of the PASTA property [7]. ]

By Lemma 3 we can rewrite the cost function (1) as

v —ak(p)

Clp,y,K)=1+
(0,7, K) 1L+ pak(p)

(20)

with ax(p) given by (17).

In the next section we devise an algorithm for com-
puting ax(p) in the case where F(6) is rational (e.g.
the service time distribution F' is phase-type).

Remark 1 Since C(p,1,K) = P{X =0} +
P{X = K} <1, we deduce from (20) that ax(p) > 1
for p > 0. In particular, ak(0) = 1.

4.2 Computing the cost function

From now on we assume that ¢ > 0 a.s. (service
times have no mass at zero) and that the LST of the
service times is a rational function. More precisely,

we consider the situation where



with A(f) := Y7, a;0" and B(f) := >_1_, b; 6" are
relatively prime polynomials (they have no common
roots). Since A(f) and B(#) are relatively prime
polynomials the coefficients ag and by cannot both
be equal to 0 (otherwise A(f) and B(f) would have
the common factor 6); this in turn implies that by # 0
since 1 = F(0) # 0. Lastly, we observe that ¢ > r un-
der the condition limg_. 4 F(8) = 0, which follows
from the assumption that o > 0 a.s.

Recall the definition of G,(w) (see Lemma 3). The
above setting implies that

1 Qw,p
G,(@) ~ R(w,p (21)
with
Qunp) = Ap(1-0)/5) =3 wlp)e' (22)
1=0
Rlwp) = Blp(l—w)/5) — wA(p(1 - w)/5)
q+1
= Y () (23)
2=0
where
ai(p) =<—1>iz(j>—fpf, for0<i<q (24)
and
hoip) = -y
bip) = 1)%[2 YEL
+ i <z’il>%p]]’ for1<i<r
D S N -V

(25)

Note that {a;(p),b:+1(p),0 < i < ¢} are all polyno-
mials of degree ¢ and that bg(p) is a polynomial of
degree 7.

The next result provides an efficient scheme of con-
volution type for computing ax (p) and subsequently
the cost C(p,7, K) in (20).

Lemma 4 For K > 2, p >0,

(ii) ak(p) can be computed by means of the following

recursion:
(ao(p) -
D) for K =2
ax-200) N~ bilp)
b(o) 2 bo(p) V)
ak(p) =

for3< K <q+2

g+1

b;
B Zl bo((l;)) ar-i(p)

L for K > q+ 3.
(26)

Proof. From (25) and the definition of the poly-
nomial B(#) we see that by(p) = B(p/5). There-
fore, bo(p) = 0 would imply that F(p/7) = 0 since
A(ps) # 0 (as A and B have no common roots),
which would yield a contradiction, since F(p/5) =
Elexp(—po /7)) > 0. Consequently, by(p) # 0 for all
p>0and K > 2.

The proof of (ii) is an easy induction on K using
ak(p) = (1/(K — 2)))limyq dl"_zgp(w)_l/dwl"_?
It is omitted for the sake of conciseness. n

The complexity of computing {ax(p), K > 2} can be
reduced even further. Indeed, we observe from (26)
that for K > q + 3, ax(p) satisfies a linear relation
of order ¢ + 1, namely,

ag(p) = aax-1(p)+ c2ax-—2(p)

+Fegr1ar—g-1(p) (27)

for K > q+ 3, with ¢, := —b,(p)/bo(p).



We can then invoke the theory of linear relations [5,

Theorem 2.2, p. 48] to conclude from the above that

q+1 Vi
ax(p) = Z A (p) Z K7V d, 5(p), K >2,
i=1 =1

(28)

where {\i(p), 1 < i <m}, 1 <m < g+ 1, are the
distinct roots of the (characteristic) polynomial

_ +1 -1
P(z) =27 —cpa? — o " — - — Cgp1,

with v; the multiplicity of A;.
The unknown coefficients {d; ;(p),1 < j < v;,1 <
i < m} in (28) are computed from the initial condi-

tions on as(p),...
obtained from (26).

,0g1+2(p) that can themselves be

Remark 2 Since Zfiol bi(p) by definition of R(w, p)
(take w =1 in (23)), the linear relation of order g +1
in (27) can be reduced to a linear relation of order q.
This procedure is illustrated in Section 4.4.

4.3 Asymptotic behavior of the opti-
mal number of robots

Unlike in the M/M/1/K case, an explicit computa-
tion for the optimal number of robots to deploy is
out of reach. Even the task of showing the unique-
ness of this optimum is non-trivial. In this section,
we will content ourselves with the derivation of basic
asymptotics.

We first show the existence of a finite optimum.

Lemma 5 For any v > 0, K > 2, there exist fi-
nite real numbers 0 < p1(v,K) < pa(7, K) < -+ <
(7, K), 1 < n < oo, that minimize the cost
C(p,v,K) over [0, 00). o

Proof. It is easily shown by an induction on K using
(26) that ax(p) is a rational function in the variable

p, namely, ax(p) = f(p)/g(p) with f(p) and g(p)

K-1 K-1

polynomials of degree ¢ and r , respectively

(9(p) = bo(p)"71).
ar(p) has a limit which is infinite as p — oo; since

Since ¢ > r this implies that

ak(p)>1for all p> 0 and K > 2 as pointed out in
Remark 1, we deduce that, necessarily,

lim ax(p) = +oo, (29)

p—»OO
which together with (20) implies that

plirr;o C(p,v,K)=1.
On the other hand, (29) also implies that there ex-
ists pg > 0 such that ax(py) > 7, which in turn
implies that C(po,~,K) < 1 from (20). This shows
that the mapping p — C(p,v,K) reaches is mini-
mum in [0, 00). The number of points in [0, co) where
C(po,~, K) is minimum is finite as a consequence of
the fact that p — C(p,v,K) is a rational function

because ax(p) is. This concludes the proof. I

The next result shows that the optimal number of
robots increases to infinity as the coefficient « in-
creases to infinity.

Proposition 4 For K > 2,

lim pi(v, K) = +oc.

y—oc

o

Proof. Throughout the proof, K > 2 is held fixed.
We know (see the proof of Lemma 5) that ax(p) =
f(p)/bo(p)5—1, with f a polynomial of degree ¢/* 1.
Since bg(p) # 0 for p > 0 (see Lemma 4), we deduce
that the mapping p — ax(p) is continuous on [0, o),
which in turn implies from (20) and the condition
ag(p) > 1 for all p > 0 (see Remark 1) that, for any
~ > 0, the mapping p — C(p, 7, K) is also continuous

on [0, 00).

Assume that liminf, .. p1(7,K) = L < oo. Then
there exists a sequence {7y, }, with lim, . v, = +0
such that lim,, . p1(7vn, K) = L. With the continu-
ity of the mappings p — ax(p) and p — C(p,7, K)
on [0, 00), this implies that (see (20))

lim C(p1(yn, K), Vn, K) = +o0.

To complete the need to show
that limy_.. C(p1(7,K),7. K) <

lim,_ o p1 (7, K) = +00.

proof we
oo when



We see from (29) that, for any v > 0, one can find
p = h(v, K) such that
1 1
P{X=0}=—"——< -
{ 1=1 +par(p) v
By definition (2) of the cost C(p,~, K) this implies
that C((g(v,K),v,K) < 2 for any v > 0, thereby
showing that lim,_ o p1 (v, K) = +0o must hold. g

We now turn our attention to the analysis of the be-
havior of the optimal number of robots as the buffer
size increases to infinity. Lemma 6 below gives the
asymptotics of ax(p) as K gets large. From this
result we will deduce the asymptotic behavior of
C(p,v, K) (Proposition 5) and then the optimal num-

ber of robots (Proposition 6) as K goes to infinity.

Lemma 6 For p >0,

D(p) K1)

ak(p) ~ oo (K (K — o0)
where D(p) is given by
R%()l(’lp)) for0<p<1
1,1
D(p) := 2% forp=1
wo(p) Q(wo(p), p)
| "Rl 07!
(30)
with R (w, p) := d'R(w, p)/Ow’ fori=1,2. o

Lemma 6 follows directly from the definition of
ax(p), the coefficient of w*~2 in the Taylor series
expansion of 1/G,(w) (K > 2), the definition of wy(p)
and v(p) (see the beginning of Section 4.1), and [5,

Theorem 4.1, p. 159].

Proposition 5 For any v > 0

(I=p)yy for0<p<1

0 forp=1

p—1
p

C(p, v, K) ~
forp>1

as K — . o
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Proof. Definition (20) of C(p,~, K) and Lemma 6
already imply that

7 — D(p)
1+ ——2 foro<p<1
) 1+ pD(p)
Clp,7,K)~<¢ 0 forp=1
-1
L forp>1
P

as K — oo. It remains to evaluate D(p) for 0 < p <
1.

We have (cf. (22), (23), (30))

1

D(p)zl_pH

with H := (A'(0) — B'(0))/(7 A(0)) = =F'(0)/5 =1
(hint: A(0) = B(0)). Hence, D(p) = 1/(1 — p) and
C(Pa%K) ~ (1 - p)’Y (Ry - OO)

for0<p<1. n

From Proposition 5 we get the following

Proposition 6 For any v > 0, the cost C(p,v, K)
is minimized at p = 1 when K — oo. o

In direct analogy with the M/M/1/K case (see (12))
Proposition 6 suggests the following approximation
for the optimal number of robots N(vy, K) when K is
large:

[/ AT
L/ A

if O(p+7 Vs OO) < C(ﬂ—a Vs OO)
N(v. K) ~
if C(p+7 Y OO) 2 C(p,, Y OO)

or equivalently from Proposition 5

/N i <1 mp )y
P+
N(y, K) ~

/A 2= s (-,
P+

We observe that the above approximation is the same
as the one found in the M/M/1/K case (13), thus sug-
gesting that it may not be very accurate in general



for moderate values of K. Indeed, we would expect
the optimal number of robots to depend on the dis-
tribution of the service times and not just its mean.

4.4 Example

In this example the server must complete two tasks:

it first checks whether the information contained in
a page has changed; if it has, the server updates the
data base accordingly.

We assume that the times required to perform the
tasks have exponential distributions, with rate g
for the reading task and pus for the updating task.
These durations are further assumed to be indepen-
dent, as well as independent from page to page. Let
0 < p <1 be the probability that an update has to
be performed. Note that if p = 0 this model reduces
to the M/M/1/K queue studied in Section 3.

In this setting the LST of the service time distribution
is

1 1
]_—(9) — 1 2 < - )
Hi—po \p2+60 i +0
M1
+(1 -
(1-p) i 0
and the mean service time is
_ 1 P
oc=—+—.
251 M2

From the above we readily deduce that (see (14))

Go(w) [pmuz + (1 =p)ua(pz + f(w,p)) =

w(pr + f(w, p))(p2 + flw, p))]

[(a + fw, p)) (k2 + f(w, p))
for |w| < 1, p >0, with f(w,p) := p(1 —w)/5.

The coefficients of the polynomials @ and R in (21)
are easily identified; we find that

o ao(p) = (p/5)* + (11 + p2)p/ + papiz
o ai(p) = —2(p/7)? = (11 + u2)p/7

e as(p) = (p/5)°

11

and

e bo(p) = ((1 = p)u1)p/o + pape

o bi(p) = —(p/3)* + (1 = p)ua + 1 + p12) p/ 7
+pi1 2

o ba(p) = 2(p/7)* + (1 + p2)p/5

o bs(p) = (/).

Applying Lemma 4 we see that the unknown quantity
ar(p) in (20) is given by

_ ao(p)
() = 320 ()
- P
_ a(p) _ar(p)bi(p)
T R0
ao(p)b1(p)? _ an(p)b2(p)
e ey P
and
_blo) _ ba(p)
)= T ) gy 82
bs(p) .
(o) ag_3(p) for K >5. (34)
As pointed out in Remark 2, the identity
Z?:o bi(p) = 0 may be used to reduce the order of

the linear relation (34). Define
ur(p) = ax(p) —ax-1(p) (35)

for K > 3. Then (34) becomes

o = (o)
bs(p) .
+bg(p) ur—a2(p) for K > 5.

The solution to this linear relation of order 2 is given
by [5, Theorem 2.2, p. 48]

ur(p) = M (p)"™ di(p) + Aa(p)* da(p) for K >3,
(36)



with A1 (p) and A2(p) the (distinct) roots of the poly-

nomial by(p)x? + (bo(p) + b1(p))z — bs(p), namely, H
—(b b + /A oor
Mip) = (bo(p) + b1 (p)) ) i1,

2bo(p)

with A(p) = (bo(p) + 01(p))* + 4bo(p)bs(p). (The
proof that A(p) > 0 for all p > 0 is left to the reader.) oa
The coefficients d;(p) in (36) are computed from the 03
initial conditions us(p) and uz(p). We find °2r

01 L L L L L
0.4 0.6 0.8 1 12 14 16

a(p) = ) (a3<p>—a2<p>> ( 1(p) = as(p))
1(p M(p)? (A2(p) = M (p)) Figure 6: The mapping p — C(p,y, K) with p1 =
da(p) = as(p) — a3(P) A(p) (az(p) — az(p)) 0.5, p2 =01, p=1y=2and K =15

A2(p)? (A2(p) — As(p))

where a;(p) (i = 2,3,4) are given in (31)-(33).

Combining (35) and (36), we finally get

Oé}((p) = + d1 Z )\1 1.035
K ] 1025 |
+da(p) > Xa(p)', K >2.

=2

Figure 6 represents what we have found to be typical

behavior of the cost function C(p,, K) as a function

of p. One can observe that the minimum is unique
and obtained, say, at p = p(y, K). We have computed

p(v, K) for various values of the parameters v, K and
the probability p that a page has to be updated. 0995 |-

Figure 7 displays the mapping K — p(v, K) for two
values of the probability p (p = 1 and p = 0.5) and
v = 1; Figure 8 displays the mapping K — p(v, K)
for two values of v (y =0.5and y =2) and p=1. As
in the M/M/1/K case, we observe in Figure 8 that e
p(v, K) is increasing when v < 1 and decreasing when
v > 1. 06 |-

5 Concluding remarks
Simple queueing models (the M/M/1/K and  Figure 7: The mapping K — p(v, K) with v =1

M/G/1/K queues) of search engines have been pro-
posed, analyzed, and optimized in order to find the

12



Figure 8: The mapping K — p(vy,K) with p =1

13

optimal number of robots to use. The cost function
is a weighted sum of the loss probability and the star-
vation probability.

Extensions of these models to dynamic models where
the number of active robots may change over time as
a function of the workload in the queue have been
proposed in a companion paper [4].

Several interesting, open issues remain, including
the situation where the robots are not homogeneous
and/or are allocated to different parts of the network.
For instance, one may wish to determine the optimal
number of robots to be allocated to a given area.
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