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Introduction 
 
Multi-server queueing systems with Poisson arrivals and Erlangian service times (M/Ek/n 
and variations) are among the most applicable of what are considered “easy” systems in 
queueing theory. The Erlangian family, Ek, of distributions encompasses service times 
ranging from the negative exponential (k=1) to constant (for infinite k), while the 
opportunity to set the number of parallel and independent servers, n, to an appropriate 
integer value adds flexibility to the model. Moreover, by selecting the proper value of k, 
Erlangian service times can be used to approximate reasonably well many general types 
of service times which have a unimodal distribution and a coefficient of variation less 
than or equal to 1. 
 
 
In view of their practical importance, it may be surprising that the existing literature on 
M/Ek/n systems is quite sparse. The probable reason is that, while it is indeed possible to 
represent these systems through a Markov process (hence the characterization as “easy”), 
serious difficulties arise because of  
 
(1) the very large number of system states that may be present with increasing Erlang 
order, k, and increasing number of servers, n, and  
 
(2) the complex state transition probabilities that one has to consider . 
 
 This makes it difficult to compute numerical solutions to systems with even modest 
values of k and n—while obtaining general closed-form expressions seems intractable. 
The practitioner is thus left with little to go on. 
 
 
This paper discuss the exact approach to the solution of M/Ek/n/n+q systems. This is 
necessary in order, first, to explain the complications mentioned above and, second, to 
introduce state descriptions of these systems. the “traditional” description is more natural 
And also heuristic approach 
 
 
 

The M(t)/Ek(t)/n and M(t)/Ek(t)/n/n+q queueing systems 

It has beendescribed  in detail how to obtain exact solutions for the M(t)/Ek(t)/n and 
M(t)/Ek(t)/n/n+q queueing systems .they started by reviewing the method of stages used 
to represent the Erlang distribution in the M(t)/Ek(t)/1 system to enable solution of such 
systems. Then, we extend this approach to the case of multiple servers with limited or 
unlimited queue size. Note that all the results in this section apply under both stationary 
and non-stationary conditions, unless otherwise specified. 
 



State description for single-server systems 
 
Each customer that enters the system can be considered as a package of k consecutive, 
exponentially distributed tasks to be performed by the service facility. The service rate 
for each stage is kμ(t), with a corresponding expected time of 1/kμ(t) per stage. The 
service rate for completing all stages is μ(t) with a corresponding expected service time 
of 1/μ(t). The usefulness of this approach is that we can derive a state transition diagram 
with independent, exponentially distributed transitions that completely describes the 
queue. Due to the memoryless property of Poisson processes, in any time increment δt, 
the state can change only as indicated in the diagram. In the M(t)/Ek(t)/1 system, the 
states are defined fully by the total number of stages (or tasks) remaining in the system to 
be completed for all customers 
 
 

State description for multi-server systems 
 
 

f the system has multiple servers, the total number of stages is not sufficient to define the 
state of the system because, for a particular number of stages, the distribution of such 
stages among the servers may not be unique. Instead, the state must identify: the number 
of uncompleted stages in the system; the number of customers in service and in the 
queue; and the distribution of uncompleted stages among the busy servers. 

We use two different, but equivalent, state representations in this work. The first, 
proposed recently is a (k+1)-tuple state description of the form (ak,ak−1,…,a1,aq) where ai 
indicates the number of servers with i stages remaining to be completed, for 1 i k, and 
aq indicates the number of customers in the queue, waiting for service. We shall refer to 
this as Description 1. 

Using Description 1, the number m of customers in the system is given by 

 

 
and the total number of stages left in the system, l, is 
 

 
 
 
 
Exact solution technique 



 
In this section, using Description 1 , we write the equations needed to obtain the state 
probabilities of the M(t)/Ek(t)/n and M(t)/Ek(t)/n/n+q systems. Let S0 be the array 
containing the state probabilities when m<n, and let S0(ak…,a1) be the probability of 
state (ak,…,a1,0) for which ?i=1kai<n. Let Q0 be the state probability array of states 
(ak,…,a1,0) when ?i=1kai=n, and m=n, with the state probabilities specified by 
Q0(ak,…,a1). 
 
Similarly, let Qs be the state probability arrays for the case in which aq>0, and let 
Qs(ak,…,a1) be the state probabilities of state (ak,…,a1,s) when there are s customers 
waiting for service in the queue. The total number of customers in the system in this case 
is n+s. If the system has infinite queue size, then 1less-than-or-equals, slants<?. If the 
queue size is limited, 1less-than-or-equals, slantsless-than-or-equals, slantq, where q is 
the maximum number of customers that can wait for service and the array Qq has the 
state probabilities Qq(ak,…,q1) when there are n+q customers in the system. 
 
 

Total number of states 

The total number of states in the system that need to be considered is given by 

 

 
 
 
Note that the first term indicates the number of states when the queue is empty, and the 
second term indicates the number of states for the customers waiting in the queue 
 
 
 

State-to-state transitions 

A transition between states occurs due to a stage completion (rate kμ(t)) or to an arrival of 
a new customer to the system (rate λ(t)). Table 2 shows the transitions for each type of 
state and their corresponding state-to-state transition rates. These state transitions lead 
directly to the Chapman–Kolmogorov equations for the M(t)/Ek(t)/n and M(t)/Ek(t)/n/n+q 
systems.  
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Table 2. State-to-state transitions for the exact solution technique 

 

 

 

 

Conclusion 

In this paper they also proposed heuristic to reduce the number of equations to be solved 
by combining each collection of states (l,m,r) into a single state (l,m) but I have studied 
only exact solution technique. They have shown that heuristic approximation scheme 
provides excellent, for most practical purposes, approximations to the typical quantities 
of interest; increases considerably the size of systems that can be solved with reasonable 
computational effort, as a result of the greatly reduced number of states required by the 
approximate model; and speeds up the solution of some large systems by a factor of 1000 
or more. 

Link to the paper           http://dspace.mit.edu/handle/1721.1/9631
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