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Floating-Point Numbers

Scientific calculations are usually carried out in floating-point
arithmetic.

An n-digit floating point number in base β has the form

x = ±(·d1d2 · · · dn)β βe

where (·d1d2 · · · dn) is a β-fraction called the mantissa , and e is
an integer called the exponent . Such a floating-point number is
said to be normalized in case d1 6= 0, or else
d1 = d2 = · · · = dn = 0.

For most computers, β = 2, although on some, β = 16, and in
hand calculations and on calculators β = 10.
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Floating-Point Numbers

The precision or length n of floating-point numbers on any
particular computer is usually determined by the word length of
the computer and may therefore vary widely. They are single
precision, double precision .

Calculations in double precision usually doubles the storage
requirements and more than doubles running time as
compared with single precision.

The exponent e is limited to a range

m < e < M,

for certain integers m and M . In general, m = −M .
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Floating-Point Numbers

There are two commonly used ways of translating a given real
number x into an n β-digit floating-point number fl(x), rounding
and chopping.

In rounding fl(x) is chosen as the normalized floating-point
number nearest x; some special rule, such as symmetric
rounding (rounding to an even digit), is used in case of a tie.

In chopping fl(x) is chosen as the nearest normalized
floating-point number between x and 0.

If, for example, two-decimal digit floating-point numbers are
used, then

fl

(
2

3

)
=





0.67× 100, rounded

0.66× 100, chopped
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Floating-Point Numbers

And

fl(−838) =





−0.84× 103, rounded

−0.83× 103, chopped

On some computers, this definition of fl(x) is modified in case

|x| ≥ βM (overflow )

or
0 < |x| ≤ βm−n, (underflow ),

where m and M are the bounds on the exponents.

In this case, either fl(x) is not defined causing a stop, or else
fl(x) is represented by a special number which is not subject to
the usual rules of arithmetic when combined with ordinary
floating-point numbers.
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Round–off Error

The difference between x and fl(x) is called the round-off
error . The round-off error depends on the size of x and is
therefore, best measured relative to x. For if we write

fl(x) = x(1 + δ), (1.1)

where δ = δ(x) is some number depending on x, then it is
possible to bound δ independently of x, at least as long as x
causes no overflow or underflow.

For such an x, it is not difficult to show that

|δ| < 1

2
β1−n, in rounding

while
−β1−n < δ ≤ 0, in chopping.

The maximum possible value for |δ| is often called the unit
round-off and is denoted by u.
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Round–off Error

If x is rounded so that x̃ is the n–digit approximation to it, then

|x− x̃| ≤ 1

2
× 10−n. (1.2)

If the (n+ 1)st digit of x is 0, 1, 2, 3 or 4, then x = x̃+ ε, with

ε <
1

2
10−n, and therefore, the inequality (1.2) follows.

If (n+ 1)st digit of x is 5, 6, 7, 8 or 9, then x̃ = x̂+ 10−n, where x̂
is a number with the same n digits as x and all digits beyond
the nth are 0.

Now, x = x̂+ δ × 10−n, with δ ≥ 1

2
and x̃− x = (1− δ)× 10−n.

Since 1− δ ≤ 1

2
. Inequality (1.2) follows.
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Round–off Error

If x is a decimal number, the chopped or truncated n–digit
approximation to it is the number x̂ obtained by simply
discarding all digits beyond the nth. For it, we have

|x− x̃| < 10−n. (1.3)

The relationship between x and x̃ is such that x− x̃ has 0 in the
first n places and x = x̃+ δ × 10−n, with 0 ≤ δ ≤ 1. Hence, we
have

|x− x̃| = |δ| × 10−n < 10−n.

The inequality (1.3) follows.
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Normalized Scientific Notation

In the decimal system, any real number can be expressed in
normalized scientific notation .

This means that the decimal point is shifted and appropriate
powers of 10 are supplied so that all the digits are to the right of
the decimal point and first digit displayed is not 0.

For example,

732.5051 = 0.7325051 × 103 = 0.7325051e + 03

−0.005612 = −0.5612−2 = −0.5612e − 02.

In general, a nonzero real number x can be expressed as

x = ±r × 10n = ±r e + 0n,

where r is a number in the range
1

10
≤ r < 1, and n is an

integer (positive, negative, or zero).



Floating-Point Arithmetic Floating–Point Error Analysis Loss of Significance: Error Propagation Instability, & Condition Number Con

1 Floating-Point Arithmetic

2 Floating–Point Error Analysis

3 Loss of Significance: Error Propagation

4 Instability, & Condition Number

5 Convergence of Sequences



Floating-Point Arithmetic Floating–Point Error Analysis Loss of Significance: Error Propagation Instability, & Condition Number Con

Floating–Point Error

When an arithmetic operation is applied to two floating-point
numbers, the result usually fails to be a floating-point number of
the same length.

If, for example, we deal with two-decimal digit numbers and

x = 0.20 × 101 = 2, y = 0.77× 10−6, z = 0.30 × 101 = 3,

then

x+y = 0.200000077×101 , x·y = 0.154×10−5,
x

z
= 0.666 · · ·×100.

Hence, if ω denotes one of the arithmetic operations (addition,
subtraction, multiplication, or division) and ω∗ denotes the
floating-point operation of the same name provided by the
computer, then, we can be sure that usually

xω∗y 6= xωy.
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Backward Error Analysis

We can express the floating-point operation ω∗ as

xω∗y = fl(xωy). (2.1)

In words, the floating-point sum of two floating-point numbers
usually equals the floating-point number which represents the
exact sum of the two numbers. Hence (unless overflow or
underflow occurs) we have

xω∗y = (xωy)(1 + δ), for some |δ| ≤ u (2.2)

where u is the unit round-off.

In certain situation, it is more convenient to use the equivalent
formula

xω∗y = (xωy)/(1 + δ), for some |δ| ≤ u. (2.3)

Equations (2.2)-(2.3) express the basic idea of backward error
analysis.
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Backward Error Analysis

Example

For example, consider the value of the function

f(x) = x2
n

.

At a point x0 can be calculated by n squaring, i.e., by carrying
out the sequence of steps

x1 := x20, x2 := x21, · · · , xn := x2n−1

with f(x0) = xn.

In floating-point arithmetic, we compute the sequence of
numbers

x̂1 = x20(1 + δ1), x̂2 = (x̂1)
2(1 + δ2), · · · , x̂n = (x̂n−1)

2(1 + δn),

with |δi| ≤ u for all i.
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Backward Error Analysis

The computed answer is, therefore,

x̂n = x2
n

0 (1 + δ1)
2n−1 · · · (1 + δn−1)

2(1 + δn).

To simplify this expression, we observe that, if
|δ1|, · · · , |δr| ≤ u, then

(1 + δ1) · · · (1 + δr) = (1 + δ)r , for some δ with |δ| ≤ u.

Also, then

(1 + δ)r = (1 + η)r+1, for some |η| ≤ u.

Consequently,

x̂n = x2
n

0 (1 + δ)2
n

= f(x0(1 + δ)), for some |δ| ≤ u.

In words, the computed vale x̂n for f(x0) is the exact value of
f(x) at the perturbed argument x = x0(1 + δ).
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Backward Error Analysis

Example

consider calculation of the number s from the equation

a1b1 + · · · + arbr + ar+1s = c. (2.4)

We use the formula

s =
1

ar+1

(
c−

r∑

k=1

akbk

)
.

If we obtain s through the steps

s0 := c
si := si−1 − aibi, i = 1, · · · , r
s := sr/ar+1
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Backward Error Analysis

The corresponding numbers computed in floating-point
arithmetic satisfy

ŝ0 = c

ŝi = [ŝi−1 − aibi(1 + δ)](1 + δ), i = 1, · · · , r

ŝ = ŝr/[ar+1(1 + δ)]

Here, we have used Eqns. (2.2) and (2.3), and did not use the
subscripts for δ. Consequently,

ar+1(1 + δ)ŝ = ŝr

= ŝr−1(1 + δ)− arbr(1 + δ)2

= ŝr−2(1 + δ)2 − ar−1br−1(1 + δ)3 − arbr(1 + δ)2

...

= ŝ0(1 + δ)r − a1b1(1 + δ)r+1 − · · · − arbr(1 + δ)2.
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Backward Error Analysis

That is,

a1b1(1 + δ)r+1 + · · · + arbr(1 + δ)2 + ar+1(1 + δ)ŝ = ŝ0(1 + δ)r.

This shows that the computed value ŝ for s satisfies the
perturbed equation

a1b1(1 + δ)r+1 + · · ·+ arbr(1 + δ)2 + ar+1(1 + δ)ŝ = c(1 + δ)r.

Note that we can reduce all exponents by 1 in case ar+1 = 1,
that is, in case the last division need not be carried out.
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Absolute and Relative Errors

If the number x∗ is an approximation to the exact answer x,
then we call the difference as error ,

Error = x− x∗,

and therefore,

Exact = approximation + error.

The absolute error is defined as

|x− x∗|.

The relative error is defined as
∣∣∣∣
x− x∗

x

∣∣∣∣ .

Precisely, if α = (x− x∗)/x, then (x− x∗)/x∗ = α/(1 − α).
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Loss of Significant Digits

If x∗ is an approximation to x, then we say that x∗ approximates
x to r significant β-digits provided the absolute error |x− x∗| is
at most 1/2 in the rth significant β-digit of x.

This can be expressed in a formula as

|x− x∗| ≤ 1

2
βs−r+1

with s the largest integer such that βs ≤ |x|.
For instance,

x∗ = 3 agrees with x = π to one significant (decimal) digit,

x∗ = 22/7 = 3.1428 · · · is correct to the three significant
digits (as an approximation to π).
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Loss of Significant Digits

Suppose, we have to calculate the number

z = x− y

and that we have approximations x∗ and y∗ for x and y,
respectively, available, each of which is good to r digits.

Then
z∗ = x∗ − y∗

is an approximation for z, which is also good to r digits unless
x∗ and y∗ agree to one or more digits.

In this latter case, there will be cancelation of digits during the
subtraction, and consequently z∗ will be accurate to fewer than
r digits.
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Loss of Significant Digits

Consider, for example

x∗ = 0.76545421 × 101, y∗ = 0.76544200 × 101

and assume each to be an approximation to x and y,
respectively, correct to seven significant digits.

Then, in eight-digit floating-point arithmetic

z∗ = x∗ − y∗ = 0.12210000 × 10−3

is that exact difference between x∗ and y∗.

But as an approximation to z = x− y, z∗ is good only to three
digits, since the fourth significant digit of z∗ is derived from the
eighth digits of x∗ and y∗, both possibly in error.
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Loss of Significant Digits

Hence, while the error in z∗ (as an approximation to z = x− y)
is at most the sum of the errors in x∗ and y∗, the relative error in
z∗ is possibly 10, 000 times the relative error in x∗ or y∗.

Loss of significant digits is therefore dangerous only if we wish
to keep the relative error small.

Such loss can often be avoided by anticipating its occurrence.

Example

Consider, for example, the evaluation of the function

f(x) = 1− cos(x)

in six decimal digit arithmetic.
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Loss of Significant Digits

Since cos(x) ≈ 1 for x near zero, there will be loss of significant
digits for x near zero.

For we cannot calculate cos(x) to more than six digits, so that
the error in the calculated value may be as large as 5.10−7,
hence as large as, or larger than f(x) for x near zero. One
can use an alternative formula for f(x), such as

f(x) = 1− cos(x) =
1− cos2(x)

1 + cos(x)
=

sin2(x)

1 + cos(x)

which can be evaluated quite accurately for small x; else, one
could make use of the Taylor expansion for f(x),

f(x) =
x2

2
− x4

24
+ · · ·

which shows, for example, that for |x| ≤ 10−3, x2/2 agrees with
f(x) to at least six significant digits.
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Loss of Significant Digits

Example

Find the roots of the quadratic equation

ax2 + bx+ c = 0.

We know that the roots are given by

x =
−b±

√
b2 − 4ac

2a
(3.1)

Let us assume that b2 − 4ac > 0, that b > 0,and that we wish to
find the root of smaller absolute value using (3.1); i.e.,

x =
−b+

√
b2 − 4ac

2a
(3.2)

If 4ac is small compared with b2, then
√
b2 − 4ac will agree with b to several

places. Hence, given that
√
b2 − 4ac will be calculated correctly only to as

many places as are used in the calculations.
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Loss of Significant Digits

To be specific, consider the equation

x2 + 111.11x + 1.2121 = 0.

Using (3.2) and five-decimal floating-point chopped arithmetic,
we calculate

b2 = 12, 345

b2 − 4ac = 12, 340√
b2 − 4ac = 111.09

x1 =
−b+

√
b2 − 4ac

2a
= −0.01000

while in fact, x1 = −0.010910

which is accurate to five digits.
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Loss of Significant Digits

Once an error is committed, it contaminates subsequent
results. This error propagation through subsequent
calculations is conveniently studied in terms of the two related
concepts of condition and instability .

The word condition is used to describe the sensitivity of the
function value f(x) to changes in the argument x. The
condition is usually measured by the maximum relative change
in the function value f(x) caused by a unit relative change in
the argument.

In a somewhat informal formula

max

{∣∣∣∣
f(x)− f(x∗)

f(x)

∣∣∣∣ /
∣∣∣∣
x− x∗

x

∣∣∣∣ : |x− x∗| ”small”
}

≈
∣∣∣∣
f ′(x)x

f(x)

∣∣∣∣
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Loss of Significant Digits

The larger the condition, the more ill-conditioned the function is
said to be. Here we have made use of the fact that

f(x)− f(x∗) ≈ f ′(x)(x− x∗),

i.e., the change in argument from x to x∗ changes the function
value by approximately f ′(x)(x− x∗).

Example

Consider the evaluation of the function

f(x) =
√
x.

Here, f ′(x) = 1/(2
√
x), hence the condition of f is,

approximately
∣∣∣∣
f ′(x)x

f(x)

∣∣∣∣ =
[1/(2

√
x)]x√
x

=
1

2
, which is well-codintioned.
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Loss of Significant Digits

By contrast, if

f(x) =
10

1− x2

then f ′(x) = 20x/(1 − x2)2, so that
∣∣∣∣
f ′(x)x

f(x)

∣∣∣∣ =
∣∣∣∣
[20x/(1 − x2)2]x

10/(1 − x2)

∣∣∣∣ =
2x2

|1− x2|

and this number can be quite large for |x| near to 1. Thus, for x
near to 1 or -1, this function is quite ill-conditioned. It very much
magnifies relative errors in the argument there.
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Loss of Significant Digits

Consider the function

f(x) =
√
x+ 1−

√
x

for “large”, say for x ≈ 104. Its condition there is
∣∣∣∣
f ′(x)x

f(x)

∣∣∣∣ =
1

2

|1/
√
x+ 1− 1/

√
x|x√

x+ 1−√
x

=
1

2

x√
x+ 1

√
x
≈ 1

2

which is quite good. But if we calculate f(12345) in six-decimal
arithmetic, we find that

f(12345) =
√
12346 −

√
12345

= 111.113 − 111.108 = 0.005

while, actually f(12345) = 0.00450003262627751 · · · .
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Loss of Significant Digits

So the calculated answer is in error by 10 percent. We analyze
the computational process. It consists of the following four
steps:

x0 := 12345, x1 := x0+1, x2 :=
√
x1, x3 :=

√
x0, x4 := x2−x3

(4.1)
Now, consider for example, the function f3, i.e., the function
which describes how the final answer x4 depends on x3. We
have

f3(t) = x2 − t

hence its condition is, approximately,
∣∣∣∣
f ′

3(t)t

f3(t)

∣∣∣∣ =
∣∣∣∣

t

x2 − t

∣∣∣∣ .
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Loss of Significant Digits

This number is usually near to 1, i.e., f3 is usually
well-conditioned except when t is near x2. In this latter case, f3
can be quite badly conditioned.

For example, in our particular case, t ≈ 111.11 while
x2 − t ≈ 0.005, so the condition is ∼ 22, 222, or more than
40,000 times as big as the condition of f itself.

We conclude that the process defined in (4.1) is an unstable
way to evaluate f . A stable is the following:

f(x) =
1√

x+ 1 +
√
x
.

In six-decimal arithmetic, this gives

f(1234) =
1√

12346 +
√
12345

=
1

222.221
= 0.00450002

which is in error by only 0.0003 percent.
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Loss of Significant Digits

The computational process is

x0 := 12345, x1 := x0+1, x2 :=
√
x1, x3 :=

√
x0, x4 := x2+x3,

Here, for example, f3(t) = 1/(x2 + t), and the condition of this
function is, approximately

∣∣∣∣
f ′(t)t

f(t)

∣∣∣∣ =
∣∣∣∣

t

x2 + t

∣∣∣∣ ≈
1

2

for t ≈ x2, which is the case here. Thus, the condition of f3 is
quite good; it is as good as that of f itself.
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Convergence of Iterative Algorithms

Many of the algorithms that will be developed here will be
iterative in nature. These algorithms will generate a sequence
of approximations that converge toward the desired solution.

Definition

The sequence {xn} converges to the value L provided that

lim
n→∞

xn = L,

or, equivalently,
lim
n→∞

|xn − L| = 0.

L is called the limit of the sequence. A sequence for which
limn→∞ xn does not exist is said to diverge .

The two principal measures of convergence speed are known
as rate of convergence, and order of convergence.
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Rate of Convergence

Definition

Rate of Convergence Let {pn} be a sequence that converges
to a number p. If there exists a sequence {βn} that converges
to zero and a positive constant λ, independent of n, such that

|pn − p| ≤ λ|βn|

for all sufficiently large values of n, then {pn} is said to
converge to p with rate of convergence O(βn).

Example

Consider the following two sequences
{
n+ 3

n+ 7

}
,

{
2n + 3

2n + 7

}
.
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Rate of Convergence

Since

lim
n→∞

n+ 3

n+ 7
= 1, and lim

n→∞

2n + 3

2n + 7
= 1,

it follows that both sequences converge to the limit 1.

Table : Corresponding terms in two sequences that converge to 1.

n (n+ 3)/(n+ 7) (2n + 3)/(2n + 7)

1.0000e+000 5.0000e-001 5.5556e-001
2.0000e+000 5.5556e-001 6.3636e-001
3.0000e+000 6.0000e-001 7.3333e-001
8.0000e+000 7.3333e-001 9.8479e-001
9.0000e+000 7.5000e-001 9.9229e-001
1.0000e+001 7.6471e-001 9.9612e-001
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Rate of Convergence

Now, we determine the rate of convergence of each sequence.
After some simplification

∣∣∣∣
n+ 3

n+ 7
− 1

∣∣∣∣ =
4

n+ 7
< 4 · 1

n
.

Hence, we may take λ = 4 and βn = 1/n in the definition of rate
of convergence. It follows that the sequence

{
n+ 3

n+ 7

}

converges to 1 with rate of convergence O(1/n).

Similarly, we can show that
∣∣∣∣
2n + 3

2n + 7
− 1

∣∣∣∣ =
4

2n + 7
< 4 · 1

2n
.
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Rate of Convergence

Hence, we may take λ = 4, and βn = 1/2n in the definition of
rate of convergence, so the sequence

{
2n + 3

2n + 7

}

converges to 1 with rate of convergence O(1/2n). These results
confirm our numerical evidence since 1/2n approaches zero
faster than 1/n as n → ∞.
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Rate of Convergence

Definition

Let f be a function defined in the interval (a, b) that contains
x = 0, and suppose that lim

x→0
f(x) = L. If there exists a function

g for which lim
x→0

g(x) = 0 and a positive constant K such that

|f(x)− L| ≤ K|g(x)|

for all sufficiently small values of x, then f(x) is said to
converge L with rate of convergence O(g(x)).
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Rate of Convergence

Example

Determining rate of convergence for a function Consider
the function

f(x) =
cos(x)− 1 + x2/2

x4
.

What us the limit of f as x → 0? Furthermore, at what rate
does f converges to this limit?

Solution. From Taylor’s theorem, we know that

cos(x) = 1− x2

2
+

x4

24
− x6

720
cos(ξ), 0 < ξ < x.

Hence,
cos(x)− 1 + x2/2

x4
=

1

24
− 1

720
x2 cos(ξ)
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Rate of Convergence

Finally, because
∣∣∣∣
cos(x)− 1 + x2/2

x4
− 1

24

∣∣∣∣ =
1

720
|x2 cos(ξ)| ≤ 1

720
|x2|,

it follows that limx→0 f(x) = 1/24, and the rate of convergence
is O(x2).
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Order of Convergence

Order of convergence provides a different measure of
convergence speed than rate of convergence.

Whereas rate of convergence examines individually the terms
in the sequence of error values, en = pn − p, order of
convergence examines the relationship between successive
error values, measuring the effectiveness with which each
iteration reduces the approximation error.

Definition

Let {pn} be a sequence that converges to a number p. Let
en = pn − p for n ≥ 0. If there exist positive constants λ and α
such that

lim
n→∞

|pn+1 − p|
|pn − p|α = lim

n→∞

|en+1|
|en|α

= λ.

then {pn} is said to converge to p of order α with asymptotic
error constant λ.
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Order of Convergence

It follows that for a sequence that converges of order α, the
error satisfies the asymptotic relation |en+1| ≈ λ|en|α.

An iterative method is said to be of order α if the sequence it
generates converges of order α. The most common values of α
in practice are: α = 1 (known as linear convergence ), α = 2
(quadratic convergence ), and α = 3 (cubic convergence ).

Non-integer values for α are possible.

Note that when α = 1, the sequences of error values satisfies

|en+1| ≈ λ|en| ≈ λ2|en−1| ≈ · · · ≈ λn|e0|.

Hence, a linearly convergent sequence converges with rate of
convergence O(λn).
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Order of Convergence

Example

Consider the recursive scheme

xn+1 =
1

2

(
xn +

a

xn

)
. (5.1)

(this is used to determine the square root of a positive real
number a). Here, we are interested to determine the order of
convergence of the generated sequence.

To accomplish this, we must be able to compute the error in the
(n+ 1)st term in the sequence, xn+1 −

√
a, with the error in the

nth term, xn −√
a.
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Order of Convergence

We start by subtracting
√
a from both sides of (5.1) and some

simplification yields

xn+1 −
√
a =

1

2

(
xn +

a

xn

)
−
√
a

=
x2n − 2xn

√
a+ a

2xn

=
(xn −√

a)2

2xn
.

Accordingly,

lim
n→∞

|xn+1 −
√
a|

|xn −√
a|2 = lim

n→∞

1

2xn
=

1

2
√
a
.

Hence, the sequence generated by this scheme has order of
convergence equal to 2 and asymptotic error constant 1/(2

√
a).
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Order of Convergence

We have to check whether the sequence actually achieve
quadratic convergence in practice? To answer to this question
we need to select an a, generate the resulting sequence and
examine the ratio |en|/|en−1|2. If this ratio approaches a
constant as n increases (the ratio should, in particular,
approach the asymptotic error constant 1/(2

√
a)), then we have

numerical evidence of quadratic convergence.

Table : Quadratic Convergence for Example.

n xn en = |xn − 3| en/e
2

n−1

0.0000e+000 9.0000e+000 6.0000e+000 0
1.0000e+000 5.0000e+000 2.0000e+000 5.5556e-002
2.0000e+000 3.4000e+000 4.0000e-001 1.0000e-001
3.0000e+000 3.0235e+000 2.3529e-002 1.4706e-001
4.0000e+000 3.0001e+000 9.1554e-005 1.6537e-001
5.0000e+000 3.0000e+000 1.3970e-009 1.6666e-001
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Order of Convergence

Note that the ration |en|/|en−1|2 approaches a constant, thereby
providing numerical confirmation of the quadratic convergence
of the sequence. Further, the error ratio appears to be
approaching 1/6 = 1/(2

√
9), providing numerical confirmation

that the asymptotic error constant for Eqn. (5.1) is λ = 1/(2
√
a).
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