MoM Advances

* Brief review of Dyadic analysis:
® Like vector analysis, dyadic analysis is for dyads

® Dyadic operations and theorems provide an effective tool for
manipulation of field quantities (Tai, C.T., “Dyadic Green’s
Functions in Electromagnetic Theory,” New York: IEEE Press, 2nd ed.,
1993)

® Dyad notation was first introduced by Gibbs in 1884 (Gibbs,
J. W, “The scientific papers of | Willard Gibbs” Vol. 2, pp. §84-90, New
York: Dover, 1961. )
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® D)/ddS are extension OJFVGCIOTS

q
e Consider a vector D in Cartesian coordinates represented as

—

e D = D15C\1 -+ D25C\2+D35C\3 — ?=1 DiJ’C\i

® [t is just a compact and convenient notation of a vector and

its components in which
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—_ — —
® Now consider three such different vectors D1, D, and D5

® where

* D; = %, Du®;,

* Dy = 3} Dip%; and
* D3 = Y7, Di3%;

® [ooks like a column vector
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® In compact notation,
—_ . 3 A .
* D] — Zii=1 Dl-jxl-,] — 1,2,3
e which constitute a dyad D with two-sided arrow head like
this
eD=Y3 D%
— Lj=1VjXj
. 3 3 A A
* = j=1(2i:10ij %) %)

— \'3 3 &2

MoM by Prof. Rakhesh Singh Kshctrimayum 1/22/2021




MoM Advances

* The doublets X; X

form the nine unit dyad basis in dyadic analysis

J
°® X1X{ = XX, XXy =Xy, X1X3 = XZ
® XoX1 =YX, XXy =YY, X2X3 =Y

o R3R) = 2R, RyRy = 29, 3%y = 22

e which is an extension of three unit basis vectors in vector analysis

* Note that X;X; # X;X;, i # J so the ordering is important
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® Matrix notation of a dyad ﬁ

o N Dll DlZ D13
° D= (D1D2D3) = <D21 D>, D23)
D31 D32 D33
® In general dyads an be formed by product of two vectors
/T and B where /T is 3X1 matrix and B is a 1 X3 matrix
® which we usually call as juxtaposition of two vectors side by

side without any operation

« D =AB
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® We can also find the transpose of dyad 5

o D =37 Djxj = ¥iy Xi_q Dij Xi%;

® Or, in terms of x, y and z

>

o +D,, 9% + Dyy 99 + Dy 92+ D528 + Dy 29 + D,y 22

° as
y [D] = Xj- 1x]
o =1 X1 Dij Bi%
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® Or, in terms of x, y and z

—qT
* |D| = Dyy2%+Dyy X9 + Dy X2

o +Dyy 9% + Dy 99 + Dy §5+Dyy 28 + Dyyy 29 + D,y 2%

> T >
* For a symmetric dyad [D] =D

® One very important symmetric dyad is ““demfactor” or “unit

dyad for which D;; = O; j
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® Note that

* Dij=06;;=1fori=jand

* Dij=06;;=0fori+#j

e Hence 011 = 0, = 033 = 1 impliesD{; = D,, =
D33 =1 811 015 O3 1 0

e and all other values are zero T= (521 82 523> = (o 1

o o o
® Therefore, unit dyad is given by 31 T3z T3

L

o | = 5(:\15('\1 ~+ 5(,'\25(:\2 —+ 5(,'\35(:\3 — 5555"‘5}5;"‘22
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Dyad itself does not have any physical interpretation
When it acts on a vector, it has meaningtul interpretation

(a) Scalar product with a vector gives another vector

-

For example' Anterior scalar product with vector C

* C-D=(CR+Cy9+C,2) D =C%-D+C,9 -
D+C,5-D

e C,%-D

o = Cy% + (DyyXX+Dyy X9 + Dy %2 + Dy R +
D,

)75? + Dy, Y2+D,y2X + Dy 2V + D, 22

(Dxxxx+nyxy + D, Xz
= CxDxxerCxny)? + C,D,,2
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* C,y D

o =CyP+ (DyxXR+Dyyx9 + Dy, 22 + D)y 9% + Dy 99 +
Dy, 92+D;y 2% + Dy 29 + Dy, 27)

o =Cy9 - (Dyxd% + D,y 99 + Dy, 97)

e =C,D,x+C,Dy,9 + C,D,,2

e C,2-D

o = Cy2+ (DyxRR+DyyR9 + Dyz 2 + Dy 9% + Dy, 99 +
Dy, 92+D, 2% + Dy 29 + Dy, 27)

o =C,2 + (Dy2% + Dyy29 + Dy, 22

o =C,Dy%+C,Dyyd + C,D,y2

® Orin compact notation

- &

© C-D =37, Xj-1 CiDy%

* gives another vector
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-

® Posterior scalar product with vector C

eD-C=D-(CR+Cy9+Cy2)=D-Cy %
+D-C, 9+D - C,2

o (DyxXR+Dyyx9 + Dyz %2 + Dy 9% + D), 99 +
Dy, 92+Dy 2% + Dy 29 + Dyy22) - Co% =
(DyxRR+Dyp 9% + Dyy28) - Cy X =
Dy Cx®+Dyx Cy ) + Dy Cr2
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® Similarly,

o (DyxRR+DyyR9 + Dyz %2 + Dy §% + Dy, 99 +
Dy, 924D, 2% + Dpy29 + D;,22) - €9 =
(ny??erDyy}A’)A’ T DzyZAy) Gy y =
DyyCy2+D,,C,9 + D,y C,,2

o (DyxRR+DyyR9 + Dyz 22 + Dy 9% + D), 99 +
Dy, 92+D;3 2% + Dpy29 + D,,22) - C,2 =
(Dyp%2+D,,92 + D;,22) + Cy 2 = Dy, C,2+D,,C,9 +
D,,C,2

® Orin compact notation

- &

— 3 3 o
e C-D = i=1Zj=1 DjiCin
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-

° Dyad D anterior and posterior scalar product with vector C

® gives different vectors

Q
® Anterior vector product with vector C

e CxD=(CxA)B
® Posterior vector product with vector C

e DxC=A(BxC()

>
° Dyad D anterior and posterior vector product with vector C

® gives different dyads
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* How to get this equation?

G (R, )= (2 ) x2)( x2) v (27 ()

® S.-G. Pan and I. Wolff, “Scalarization of Dyadic Spectral Green’s Functions and
Network Formalism for Three-Dimensional Full-Wave Analysis of Planar Lines and
Antennas,” IEEE Trans. Microw. Theory and Tech., Vol. 42, no. 11, Nov. 1994, pp.
2118-2127

® Steps:
* Maxwell’s equations for fields,
® Green’s function dyadic version of Maxwell’s equations,

° spectral domain Green’s function dyadic version of Maxwell’s
equations in spectral domain
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® Scalarization of dyadic spectral Green’s functions so that they
can be determined from two sets of z—dependent in-

homogenous transmission line equations

e How to convert rnulti—layered structure to TE/TM circuit

models? How to find the length of the transmission lines?

° Height of the substrate for every layer decides the length of
that substrate

® For example the substrate height is h, for layer 1 then the

transmission line length would be h,
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¢ |n the equivalent circuit model current sourceis 1 A. Why?

® We are interested in finding the Green’s function
. E(F)=[G,, (77 ) (F)ar

V
® What is D and D,?

® Denominator of the equivalent TE and TM impedance

ZTE — 77 1 ZTM — 770'80
e 070 e
! DTE ! kODTM

e How do we find them?

TE TE ™ —7TM
777 VA

TE 7 TM d
eq  ~TE TE " “eq 5 TM ™
1 Z +Z 1 Z"+Z
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® The far field radiation pattern of rectangular PMA after

transforming to spherical coordinates may be obtained as

tollows:
- jeXp(/;j,BoV) [COS¢EX +sin¢Ey]
- J'eXp(/I—rjﬂo’”) [—sin¢COS Hl:?x + COS¢@CoS Qﬁy]

E =GIJ +GLJ,  E =GrJ +G2J,
E(F)= ]G (7 ) (7 )
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e Note that spectral dyadic Green’s functions are functions of

—

k,=kx+k .
® [t can be shown that
k. =k sinfcosg;k =k sinfsing;k =k sinf
® The directivity of PRMA may be obtained as

U(6,¢ 47U (6,4

plog)- 2128 470(0)
“ [ [U(0,4)sinodods
6=0 ¢=0
2 2 2
U(9,¢):‘E(8,¢) rzz‘EH‘ +‘E¢ P
770 770
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e Electric Field Integral Equation

2% (Evsource (]7;) n Evradiated (F)) -0

2{Esoufce(f)+ [ @EJ(F,F')oje(F')dF'j:O

patch
je(x',y'):Jx (x',y')chrJy (x',y')f/

“«>

G, (x,y;x',y' ) =G, (x,y;x',y' ))Efc+ G (x,y;x',y' ))Acf/ +G2 (x,y;x',y' ))A/fc+ Gy (x,y;x',y' ))A/)A/

@ MoM by Prof. Rakhesh Singh Kshctrirnayum 1/22/2021 /




MoM Advances

* Using dyadic analysis, one may convert the vector EFIE into
scalar EFIE as follows

()= [ G o o o, (6.0 Y [] G s ), (5 iy

patch patch

e (x,y) == [[ G5 (xwix .y ) (x 0 axdy = [[ G (xpsxy ) (xy Jax dy

patch patch
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® Since we have derived spectral dyadic Green’s functions in

the previous section, we may take its inverse Fourier

transform as follows

[ G2 (ko e ™ e an

1

where variables p,q may be either x or y

3 (. ) -
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® Substituting this in the scalar EFIE, we have,

E’ e(x,y)

:_(21)2 T T[H G (ko k ) (xy Jaxdy + [[ G (k) (x y)dxdy} o, dk,
T | —o0—0\ patch patch

£ (x,7)

:_(21)2 T TL ﬁ ng(kx,ky)Jx(x',y' xdy + ”hGW (k k x ,V )dxdy}z dk dk
T —o-o\ patch patc
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® As usual in MoM, we may approximate the unknown current

density in terms of known basis functions

J . (x,y) = iI;B; (x,y);Jy (x,y) = i[nany (x,y)
n=1 n=1

® where piecewise sinusoidal (PWS) basis functions used are

sin| £, (Ax—|v—x, )]

o) — Jy—p <D |,
Bn (x,y)— sin(ksAx) ,‘y yn‘ﬁ 5 ,‘x xn‘SAx
Sin[ks(Ay—‘y—ynD} Ax
A i
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® Putting this in the scalar EFIE, we have,

—472'2E;: ooooo (x’y) _
i z HJ Gy, (kook, )12 B; (x Jax dy +Sj [ Gk k0B (x,y x'dy'}f"x( e b )k
_47[2E;0urce (x,y) _
izz[sﬂ ég (kX’ky)I:B; (x',y' x'dy' +S” GEWJ (kx,ky)[nany (x',y' x'dy'}jk’“(xx)ejky(yy)dkxdky
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