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ABSTRACT

Artificial neural networks are parallel computational models comprised of densely

interconnected adaptive processing units. A very important feature of these net-

works is their adaptive nature, where ”learning by example” replaces ~program-

ming” in solving problems. This feature makes such computational models very

appealing in application domains where one has little or incomplete understand-

ing of the problem to be solved but where training data is easily available. Ar-
tificial neural networks are viable computational models for a wide variety of
problems. These include pattern classification, speech synthesis and recognition.
function approximation. image compression, associative memory. forecasting. op-

timization, nonlinear system modeling, and control. The most wonderful thing is

Neural networks could do certain things which you simply couldn’t reprogrammed

computing.



Nomenclature

d Desived output of a nenron

E Squared error in the output of a neuron
f Activation function of a neuron

0 Output space of an artificial neuron

T Threshold value

A\\Y Connection or Weight matrix

W rn Weight due to »' input to m™ neuron
X Input space of an artificial neuron

ade Learning constant

1 Activation matrix
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Chapter 1

Introduction

When interest in neural networks revived some decades ago. few people helieved
that such systems would ever be of any use. Computers worked too well: it was felt
that they could be programmed to perform any desired task. Clearly. the fashion
has changed. Now. limitations of current computers in solving many problems
involving difficult to define rules or complex pattern recognition are widely recog-
nized: if anything. expectations for neural networks may be too high. The problem
is no longer to convince anyone that neural networks might be useful. but rather
to incorporate such networks into systems that solve real-world problems econom-
ically.

Neural networks are inspired by biological systems where large numbers of
neurons. that individually function rather slowly and imperfectly, collectively per-
form tasks that even the largest computers have not been able to match. They
are made of many simple processors connected to one another by variable memory
elements whose weights are adjusted by experience. They differ from the now
standard Von Neumann computer in that they characteristically process informa-
tion in a manner that is highly parallel than serial, and that they learn (memory
element weights and threshold are adjusted by experience) so that to a certain ex-
tent they can be said to program themselves. They differ from the usual artificial
intelligence systems in that (since neural networks can learn) the solution of the

real-world problems requires much less of the expensive and elaborate program-



ming and knowledge engineering required for such artificial intelligence products
as ruled-based expert svstems,

In their cnrrent state. newral networks are probably best at problems related
to pattern recognition. Some existing nenral network systems can efficiently and
rapidly learn to separate enormously complex decision spaces. Products that rec-
ognize characters. assembly line parts or signatures, that make complex decisions

mimicking or improving on human experts that can diagnose engine or assembly

line problems are already fielded.



Chapter 2
Fundamentals of Neural Networks

2.1 What is Neural Network?

Neural Networks use a set of processing elements (or nodes) analogous to neurons
in the brain. Hence the name, neural networks. These processing elements are
interconnected in a network that can then identify patterns in data as it is exposed
to the data. In a sense, the network learns from experience just as people do. This
distinguishes neural networks from traditional computing programs, that simply
follow instructions in a fixed sequential order.

In the simplest case, it has three layers: input layer, hidden layer and output laver,
It is the hidden layer that performs much of the work of the network. The output
layer. for example. predict sales (output) based on past sales. price and season
(inputs).

More on the Hidden Layer

Each node in the hidden layer is fully connected to the inputs. That means what
is learned in a hidden node is based on all the inputs taken together. This hidden
laver is where the network learns interdependencies in the model. Simply speaking
a weighted sum is performed. If we assume that there are n inputs in the input
layer and denote it’s weights by wy, wa, ..., w, and inputs by x, ry, ... 1,
Then, 2 times w; plus z; times w; on through x, and w,. This weighted sum is

caleulated for each hidden node and compared with a threshold value of the node

(%]



and it exceeds. then the corresponding output will e active. otherwise. it will

remain mactive,
Where does the Network gets it’s welghts from?

This we will consider in Network Learning,

The “artificial neuron” is the bhasic building block of an artificial neural net-

work. We will consider some of it’s models below.

2.2 McCulloch-Pitts Neuron Model

The Figure 1 shows McCulloch-Pitts model of a neuron. In the Figure, inputs

2;. for i=1.2....n, are 0 or 1, depending on the absence or presence of the input

impulse at instant k. The neuron’s output signal o at the instant k+1 is given

by taking weighted mean of the input at the instant k and comparing it with the
threshold T. as follows:

, 1, EL lb';'If)T
Pl 1 = (2.1)
0' Z?:l u‘r!xfk < T

where w; is the weight of the i** input z;.

2.3 Main Artificial Neuron Model

A general neuron symbol is shown in Figure 2. The neuron output signal o is

given by following relationship
o= f(w'x) = f(O_ wiz:)
i=1

where w is a weight vector defined as w=[w w;...w,]' and x is the input vector

X = [2125......z,)". The function f(w'x) is as an activation function. Its domain

is the set of activation values, net, of the neuron model and is defined as

net = w'x.



. ! 11s oy the ve —— §
Here. the ontput 1s givey by the value of the activation function at T —
s given by the weighted mean of (10 mputs as in equation 2.3, Typical activation
functions nsed are

finet) = (2/(1 4 crp=Anet))) — (2.1)

for continuous ease where \ 0is proportional to the nevron gain determining
the steepness of the continuons function [{(net) near net = 0. When A—~c. if gives

the relation,

) 1. net >0

finet) = (2.5)
9. net <0

for discrete case. The continuoys activation function is shown in Figure 3(a) for

various .\. For unipolar continuous case.

fnet) =1/(1 + exp(—Anet))

(2.6)
and for discrete case.
1. net>0
f(net) = 2.7
0. net <0

Corresponding figure is shown in Figure 3(b).
Given a layer of m neurons, their output values 01,02, -..., 0, can be arranged

in a layer’s output voltage o = [01,0y, ....,0p)' where o; is the output signal of the

i" neuron. The domains of the vector o are defined in m-dimensional as follows

for i = 1.2......m (Hecht-Nielson 1990). For bipolar case,
(=1.1)" = [oeR™, 0;(—1,1)]. (2.8)
For unipolar case,

(0.1)™ = [0eR™, 0;€(0, 1)]. (2.9)

2.4 Models of Artificial Neural Networks

The network models can be broadly classified into two.



9.4.1 Feedforward Network

ycrvation value and output for the i neuron is given by

n
net, = Z Wiy, (2.10)
=1
:mtf.lil = f[w:x] {2”}
for i = 1200 m where w, = [wirtiy....w;)' where w,; is the weight due to H

- — . . . .
nput on the 2™ neuron. Introducing the nonlinear matrix operator [, the mapping

of the input space X to the output vector o is expressed as

o =T[Wx] (

[
—
]
—_—

where nonlinear matrix operator I is given by

0 -0
0 f0 -+ 0
=1 . . _
L0 0 - fO
and f() denotes the activation function. The matrix W is given by
Wy Wy e Wiy -|
W = Wa W o+ Wy
\_ Wml Wm2 - Wmn |

The mapping of an input pattern into an output pattern as shown in Figure 4 is of
the feed forward and instantaneous type, since it involves no time delay between

the input x. and the output 0. We can rewrite in the explicit form involving time

1 as
o(t) = T[Wx(t)]. (2.13)

Even though the feed forward network has no explicit feedback connection when
x(t) is mapped into o(t), the output values are often compared with "teacher’s”
mformation, which provides the desired output value, and also an ervor signal can

be employed for adapting the network’s weights.



9.4.2 Feedback Network

The mapping of the output to o(t) into off +A) can be written as

o(f +A) = ['[Wo(t)] (2.14)

The time A elapsed between t and t+A is introduced by the delay elements in the
feedback loop as shown in Figure 5(b). Initialize 0(0) = x(0). The input is then
removed and the system remains autonomous for t>0. Tt finds an equilibrium
state after some transition. For a discrete neural system, the performance at time

kA is given by

o**! = T[wo"], (2.15)

for k=1.2..... where k is the instant number. Refer to Figure 5(a).

2.5 Neural Processing

Process of computation of o for a given x performed by the network is known as

Recall. Recall corresponds to the decoding of the stored content which may have

been encoded in the network previously.

2.5.1 Association

Assume that a set of patterns can be stored in a network. Later if the network is
presented with a pattern similar to a number of the stored set, it may associate
the input with the closest stored pattern. This process is called Autoassociation.
Typically. a degraded input pattern serves as a cue for retrieval of it's original

form.

In heteroassociative processing, the associations between the pairs of patterns

are stored as in Figure 6.

2.5.2 Classification

Let us assume that a set of input patterns is divided into a number of classes. or

categories. In response to an input pattern from the set. the classifier 1s supposed



to weall the information vegarding elass membership of the

input pattern.
1 the network’s response is (e el

ass number hut he

iput pattern does not
exactly correspond o any of {he patto

msan the set. e processing is called Recog-
mtion. Refer Figare 7.

2.6 Neural Network Learning Rules

The Neural networks are adaptive, 1(' weights are modifiable depending on the

input signal it veceives, it's output values, and the associ

ated teacher response.
He

re. we will consider some of the learning rule for the network

2.6.1 Hebbian Learning Ryle

Some cases. teacher signal not available and no error information. neuron modifv
it’s weights based on the input/output. Here weight vector w; = [ujuwy...uy,)'
increases in proportion to the produet of mput x and learning signal r. In Hebbian
Learning

r = f(w'x)

or. Aw; = cf(w'x)x.

Here. Au; denotes the amount by which 7, neuron’s weight is updated. For single
weight.

_\.U'U = CO;{X;. {218r
for j = 1.2....n. It requires weight initialization at small random values around
wi = 0 prior to learning (Hebb 1949). The rule states that if the cross product
of the input and output. or correlation term 0;r; is positive, this result in the
increase in the weight; otherwise it decreases. It represents a purely feed forward,

unsupervised learning. See Figure 8(a).



9
9.6.2 Delta Learning
1 this learning. teacher’s signal is givey, by
r= = Fwx) (wix) (2.19)

which can be derived from the conditioy of the least squared error hetween 0, and

.. Squared error is given by
i3

E =1/2(d; - 0;)?

(2.20)
or. E=1/2[d; - f(wix)]? (2.21)
or. VE =—(d; - o) f'(w'x)x (2.22)
The components of the gradient are
OE [Owy; = —(d; — Oi)f’(WEX)Ij1 (2.23)
j= 1.2......n. Minimization of error requires the weight changes to be in the nega-

tive gradient direction, hence, Aw; = -NVE where 7 is a positive constant. There-

fore the weight adjustment becomes

Aw,; = c(d; — 0;) f'(net,;)x. (2.24)

The weights are initialized to arbitrary values in this method of training (McClel-

land and Rumelhert 1986). Refer Figure 8(b). The extension ©f Delta Learning

to multilayer networks give the backpropagation algorithm.

2.6.3 Winner-Take-All Learning Rule

This rule is an example of competitive learning and it is used for unsupervised
learning (Hecht-Nielson 1987). Neurons in the layer, say m'th, has the maximum
response due some input x. This neuron is declared as the winner. \s a result of
this learning event, the weight vector wy, = [WyWne... 10, containing weights
highlighted in the figure 7(c) is the only one adjusted in the given unsupervised

learning, It's increment is given by

‘lwm = (.I(X - Wr'u} \

(R
1
ot
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sea=0isa small Tearning constan Iypically doepos
I ' ¥

T

o 1SN as learning progresses.
qnmet selection is based on (e NP Crif o s ;
[he winne! | } following “riterion of maximnm activation

p neurons participating iy

ANONA all i competition;

'
"' = max (w X
w, X ,fl,z‘_._._p( ! ) 1‘2.2‘)}

"Lis corresponds to finding oe :
This correspot ng the weigh vector that is clogesy 1,

the input x.
The rule then reduces to in(‘l‘t‘.lllﬂl‘lting w

m by a fraction x — Wm. Note that only:

(he winning neuron fan-in weight vectoy i adjusted. See Figure 8(c)

9.7 Representations in Connectionist Models

Four kinds of representations are possible in a pet (see figure 9)

First. information can be completely loca]:

for a given set of stimuli. a single
unit in the hidden layer becomes active and passes information to the output

Javer. This hidden unit might be thought of as passing categorical information to

the output. recognizing a set of features. This representation might be thought as

“svmbolic”. The difference between a localist net (as in the standard AJ approach)
and a hidden unit net with local units is that the latter can learn the features of

the input domain that determine the input for the local hidden units.

In the second kind of local representation. hidden units are connected to a

small subset of the mput or output units that pick out some similar featyure (e.g..

they may represent a set of vowels or set of verbs) that the network has discovered

can be “used” for correct categorization. This type of representation is local in

the hidden layer because of clustering over some set of symbols (or features) in
the input (or output) representation. It might be thought of as a “supersymbol”.

In the third kind of representation, some set of hidden units is uniformly con-
nected to some set of inputs or output units. In such a distributed representation a
single input causes many hidden units to become activated. This kind of represen-

tation has also been referred to as "subsymbolic” (Smolensky. 1988). presumably

hecauge many hidden units are involved in coding information in the input or



L1

(he output. These features in the input has been chosen a —_—

lnmlilinh]t',

Fourth and the last. distributed representations may he created by a set of
hidden units that are not fixed a priori. Such nets can encode an unknown feature
rvpn'spmation. with cach hidden unit responding to one or more aspects of featires
in the input representation. If the input representation is local (one unit per
symbol) then the subset of hidden units can be said to be “distributing” the

«vmbol into a set of hidden unit features.

What distinguishes connectionist representations from the other kinds of rep-

resentation? Distributed models differ from localist one in which feature repre-

sentations for the input are chosen a priori (as they are in AT in that the relation
between the inputs and features is made accessible to the learning rule. So the real
difference between the symbolic and the connectionist Sttt e g
of representation but in the distributed representations commitment to learning.
In a sense, the usual representational question has been turned on it's head: In-
stead of asking what the representation for a cup or a chair is, connectionists want

to know under what conditions a useful representation for a cup or chair would be

Jearned.
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Figure q Examples of various sorts of local and distribgted representa-
tions. {u) First example shows a completly local representation, (b) the
next example is a local representation of a category, “dog”, (c) the third
case shows a distributed representation, where a number of hidden units
can code fur a single input, (d) and finally in the fourth case also shows a
distributed representation, however with hidden units which can code for
possibly arbitrary feature combinations in order to represent thé concept.



Chapter 3

Expert System for Medjcal

Diagnosis

3.1 Introduction

The conventional approach to building an expert system requires a human expert

to formulate the IF-THEN rules by which the input data can be analyzed. This

“rule-based” approach, although it provides an impressive array of tools for knowl-
edge representation, has unfortunately not proved useful for study of learning. A

learning should be able to acquire and update it’s rule automatically on the basis
of it's existing rules while learning to solve new problems, In practice. however.
the existing rules are often unable to handle new problems, which make the entire
svstem very “brittle”. The programmer must then typically introduce new rules
into the system and test their interactions thereby creating a "bottleneck™. This
need to keep intervening and revising on the part of the programmer does not seem
to be leading in the direction of a system that can learn autonomously, The recur-
rent difficulties are all related to specifying the size, nature and interdependencies
of the rules whenever either the task or the rules change (Langley 1983).

Among the several approaches to automated diagnosis, knowledge-based svs-
tems using Bavesian approach is also widely used. The approach based on Bayes

theorem involves comparisons of relative likelihoods of different diagnosis. Symp-

12
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(oms of diseases have 1o be assumed to be statis| ically independent in the Bayesian

approach. This assumption underlying the Bayes theorem. however, does not ap-

ply widely in diagnostic practice. This is because several symptoms often arise

due to same organic cause,
An interesting alternative is Connectionism Spiitoach-whidhsconsists i seme
old ideas about representation. spreading activation and associative memory all

p.'u-kngpd in something that looks like a cay o he———

nected by cartoon synapses. What would be nmissing here is the explanation func-

tion of the result.

3.2 Connectionist Expert System for Diagnosis

Let us take a look at the training and recall phases of error back-propagation-
trained networks. Assume that a feed forward layered network is trained using
the training vector pairs (zy,d;), (22,ds)...(2p, dp). Recognition is tested with the
input being z;(1<i<p) corrupted by noise. The network is expected to reproduce
o; at it's output in spite of the presence of noise. If no noise has been added. the
network performs either a simple classification or association task.

If the trained network is tested with an input substantially different from any
of the training set members, the expected response is supposed to solve the gener-
alization problem. The generalization of the knowledge of the domain. which the
network has learned during training, should cause it to respond correctly to any
unseen before new input vector. Typical examples of generalization are diagnosis
and prediction.

Let us take a look at how a connectionist expert system medical diagnosis can
be built (Gallant 1988: Hripesak 1988). A block diagram of an example expert
svstem is shown in Figure 1. Input nodes take the information about the selected
symptoms, test results, or a relevant medical history of the patient. If the answer
to the symptom question is yes, or -1, if the answer is no. The unknown answer

should thus be made 0 to eliminate the effect of the missing parameter on the



conclusion. With the Tinput nodes, the network is capable of handling that many
panary or numerical disease or patient data. The number of identifiable diseases
can be made equal to the number output nodes I,

Special care must be taken when choosing the number hidden nodes. Too
low a number of hidden nodes J can cause diffienltics in mapping | inputs into
K outputs: too large a value for J will increase unnecessarily the learning and
diagnosis times and/or cause uncertainty of the training objective. In general, for
J larger than needed. weights become more difficult to estimate reliably from the
(raining data.

Let us review an example of a connectionist expert svstem for fault diagnosis
of an automobile engine (Marko et al). The input and output data are controlled
by and monitored by an electronic engine control computer. \Waveforms of ana-
log/digital data such as those shown in Figure 11(a) are obtained first from an
engine without faults. These multichannel data serve as a reference and they are
used for training of the expert system modeling the fault-free operation of an en-
gine. Figure 11(b) displays signals with a defective spark plug on cylinder 4. which
causes a misfire at this cylinder in each engine cycle. Figure 11(c) displays the data
from an engine with a defective fuel injector. In particular in this case, the fault
can only be identified from simultaneous comparison of many traces of data. The
task of defective engine diagnosis has been solved by a back-propagation trained
single-hidden layer network. The connectionist expert system for engine diagnosis
makes it possible to identify 26 different faults such as a shorted plug, an open
plug. a broken fuel injector, etc. The training set consist of 16 sets of data for
each failure, each of the sets representing a single engine cvele. A total of (16x26)
data vectors with 52 elements in each vector has been used for training .

The described neural network-based expert system needs 10 minutes of training
time on the NESTOR NDS-100 computer. It attains 100% fault recognition on
the test data set. Low learning rates, a number hidden units equal to twice the
number inputs, and a randomized presentation order within the training set have

been used in the initial development phase. To improve the speed. the number of
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hidden units are then deereased to less than the nnmber of mputs. As a result.

the learning time (1:‘1-1-(\?.5-&[‘1! five times while IIIFlillliIiliiIIg LO0' accuracy o the

1est sel.

3.3 Expert System for Skin Diagnosis

The expert system called DESKNET has been designed for instructions of medical
students in the diagnosis of papulosquamous skin diseases. These are disease that
exhibit bumpiness or scaliness of the skin (Yoon et al 1989). The developing
diagnosing skills rather than for replacing the doctor's diagnosis. The expert
svstem uses multilayer feed-forward network and employs the 96-20-10 architecture
with a single hidden layer and continuous unipolar neurons.

Input for the system consists of the following skin diseases symptoms and
their parameters: location, distribution, shape, arrangement. pattern, number of
lesions, presence of an active border, amount of scale, elevation of papuls, color.
altered pigmentation, itching, pustules, lymphadenopathy. palmar thickening, re-
sults of microscopic examination, the presence of herald patch. and the result of
the dermatology test called KOH. In addition to the current symptom-generated
data from the above list, the duration of skin lesions in days and weeks are also
represented at the input. Inputs of values 0 and 1 are fed to the network signifving
the absence or presence of the symptoms and their respective durations. The out-
put neurons used in the local representation mode are indicative of the following
10 diseases diagnosed: psoriasis, pityriasis rubra pilaris, lichen planus. pityriasis
rosea. tinea versicolor, dermatophytosis, cutaneous T-cell lvmphoma. secondarv
syphilis, chronic contact dermatitis, and seborrheic dermatitis.

The training data from the DESKNET system consisted of input specifications
of 10 model diseases collected from 250 patients. If specific symptoms or their
parameters are not known, the input was coded as 0.5 to remove it’s effects. The
network was trained using the standard error back-propagation algorithm.

in connectionist model, accurate justification of a hypothesis, involves all nodes
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of the network. 10 the justification of a conclusion is expected from a disenssed
wstem. analyzing the effect of a single input, or selected group of inputs. is very
Jithienlt.

However. some explanation capability exists within a trained connectionist
cxpert system. Despite it's limitations, this capability can offer certain interpre-
tations (o the user, and also reveals those input variables that are more important
and are likely to contribute to the decisions, For the local representation net-
work. one of the ontput nodes is activated stronger than any of the remaining
ones. Weights leading to this node with relatively large magnitudes are therefore
contributing more to the decisions than the remaining weights. each considered
separately.  The positive and negative signs of relatively large weights can be
looked at as indicative of positive and negative contributions. respectively. An
additional consideration is that the hidden layer re-represents the input data and
the outputs of the hidden nodes are neither symptoms nor diagnostic decisions. In
a network with a single layer, internal data representation provided by the hidden
laver rather than the original input data is used for generating the final decision.
Internal representation can, however, offer further heuristic interpretations of the
knowledge processing within the system.

In the case of the DESKNET expert system, which uses 20 hidden-layer nodes.
the total of 20 hidden-layer factors attributed to the level of hidden node responses
the discrimination capability for the set of 10 diseases. The factors are transmit-
ted bv the large weights connected to the strongest activated output neuron of
the output layer. With reference to the Figure 3, such weights can be labeled
Wk, jy+ Wy jy- - Whiji. Where kj is the output node number indicating the disease
diagnosed. and there are ] internal factors supporting it.

An example of the explanation potential of DESKNET is shown in Figure 12.
The figure shows only the weights that are of relative importance for diagnosing a
dermatophytosis disease. It can be seen that, although unnamed, mternal factors
numbered 13 and 14 are the two strongest in causing disease number 5. Thus for

this example case, we have k; = 5,71 = 13,72 = I, and 1=2. Relatively large



pil weights now need to be found for each of the hidden nodes Jis Jgwaveosnfls
Inpul nodes 1. 10, and 36 and 6, 10, 36. and 71 were identified as those that are
alfecting the internal factors of 13 and 14, respectively. Consequently, symptoms
and parameters numbered 1, 6, 10, 36, and 71 were found to be domain importance
for the diagnosis of dermatophytosis.

To determine internal decision factors. (he largest and smallest weights of
the ontput layer have been selected among all weights wy,, forj=1.2.....J. for a
given diagnosis A The maximum difference hetween the largest and smallest
weight constitutes the weight range. The range is then divided by 6 to esti-
mate the standard deviation of the weights. The doubled the standard is used
as the cutoff for discrimination of relatively large weights. For the data of Fig-
ure 4 with diagnosed disease 5, or k; = 5, weights with the largest magnitudes
are ws13 = 2.86, w504 = 271, w5, = —2.68, w56 = —3.46, ws 0 = —2.38, and
ws1r = —3.31. The range for this set of weights is w53 — w5 = 6.32 This
vields the standard deviation of approximately 1.05, and the cutoff points equal
to +2x%(1.05) = +2.1 for the selection of relatively large weights. Therefore. only
two weights. ws 13 and ws,14 are found to support the decision of node k; = 5. The
discussion indicates the presence of the following symptoms and their parameters
for this particular disease: lesions of weeks of duration, minimal itching, positive
KOH test, lesions on feet, minimal increase pigmentation, and microscopic evalu-
ation for pseudohyphae. The profile produced by this methodology rather closely
matches the probability profile provided by the domain expert.

It should be noted that the discussed method of explanation extraction from
the expert system is rather heuristic and somewhat inconclusive. Indeed. factors
influencing the decision are usually distributed within the network in a complex.
superimposed way. Thus, only fairly general and somewhat tentative conclusions
can be drawn from the search for the largest and smallest weights connected to

the neurons with the strongest responses within the layer.
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Chapter 4

Pattern Recognition of

Handwritten Digits

4.1 Handwritten digit recognition

4.1.1 Problem Statement

Let us look at objects that are drastically less structured than standard printed

characters. In this group of problems, character recognition of handwritten signals

represent an important example of a realistic, yet difficult, benchmark recognition

task. Let us look at the neural network learning algorithms and approaches that
first preprocess and then map handwritten digit character images to one of the
ten categories. As we will see, neural network classifiers often vield comparable
or better accuracy and, more importantly, require far less development time com-
pared to conventional classifiers. Typical digit examples used for this project are
shown in Figure 13. The digits are written by many different people using a great
variety of sizes, writing styles, instruments, and with a widely varying amount of
care. It may be noted that many of the digits are poorly formed and are hard to
classify, even for a human. The captured digits are first normalized to fill an area
consisting of 40x60 black and white pixels. The resulting normalized patterns are
presented to a neural network after being reduced to 16x16 pixel images.

The general strategy for handwritten character processing is to extract fea-

18
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(res from the images and then perform (he classification based on the resultant

II_;”“[‘[' "1“]) [(':I‘Elf. .]i"'kf‘]. H]“I ”"hhi’“‘(l 1988] \H a [il'."fll SI(‘I"' a [“}_r'i[;ll ;'[nnp]_”[lr

W with the frame-grab hardware caplure

cquipD! 5 a video iimage of a handwritten

The computer thresholds (he gy

character, av-level image into black and white

T Y ooy 1 A 1, 0o o r L . " fr— :
['his stage can he termed as mage “capturing™. The 16x 16 scaled char-

actor is scaled both horizontally and vertically (o fill

I\'I,\'"]H'
a 16x16 pixel block. The

16x 16 scaled character format appears to be of adequate resolution for the set of

10 digits.

4.2 Recognition Based on Handwritten Charac-

ter Skeletonization

The image capturing and scaling described above is followed "skeletonization”.

Since the linewidth does not carries any any information about the character.

the skeletonization removes pixel such that only the backbone of the character is
remained. Skeletonization is shown in Figure 14(a) where the gray area represents
the original digit 3, and the black area is it's skeleton. It is implemented through
scanning of 5x3 pixel window template across the entire image. There are twentv
of the 25-bit window templates on the neural network chip. One of them is shown
in Figure 14(b). If the match of the image pixels to any of the templates exceeds
the preset threshold, then the center pixel of the character bit map is deleted.
In this way the entire 16x16 pixel image is scanned. The templates were crafted
by network designers and examples of skeletons resulting from single scanning
through the image using the selected windows are shown in Figure 13. The grav
pixels shown in the figure are removed after the scanning.

It is followed by feature extraction. In this skeleton is presented to 77 feature
extracting pixel window templates. Here also the chip stores twenty of the tem-
plates. It is shown in Figure 16. Feature extracting basically checks the presence

of oriented lines, oriented line ends, and arcs in the image skeleton. Examples

of the extracted features of the line end stops and horizontal lines are shown in
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Prenre 16001 (c). (). Whenever a featnre template mateh the preset threshold.

1 is set i a blank feature map for that corresponding feature. A feature map

s produced for every 20 templates and maps of such features for every skeleton

are ORed. The process terminates when (he 90 skeletons are mapped into 20

Jdifferent 16x16 feature images. Then the feature map is compressed into 3x3

array resulting in 180 feature entries. Then {hese entries are classified into one

of the 10 categories of digits. Several classification algorithms are used to test on

digits taken from U.S post office hase and the overall result gives 95% accuracy

for hastily written digits and 99% accuracy for carefully written digits (Jackel et

al. 1988). Note that in this approach neural network learning is replaced by using

intuitively produced weight matrices associated with each window template. can

be termed rather unconventional.
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Figure 15~ The skelelonization process, four window templates and four passes shown.
(Templates: black pixels are excilalory, gray are inhibitory, white are do-not-care connections;
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Chapter 5

Recovery of Temporal
Information from Static Images of

Handwriting

5.1 Introduction

The problem of off-line handwritten character recognition has eluded an adequate
solution for several decades. Although researchers working in the area of on-line
recognition have greater success, the possibility of extracting on-line information
from static images has not been fully explored. We [2] suggest that this task
requires that we break away from the traditional thresholding and thinning tech-
niques, we will provide a framework for such analysis. We show how the temporal
clues can reliably be extracted from this framework and how many of the seem-

ingly ambiguous situations can be resolved by the derived clues and our knowledge

of the writing process.

5.2 The Character Recognition Problem

The field of character recognition can be divided into two classes. off-line recog-

nition and on-line recognition. Off-line recognition typically involves the analvsis
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i intensity image obt ained by scanning a prewritten sample of text. The off-
of

i recognition of hand generated text typically exhibits a much less attractive
ine '

o /henefit ratio. It must deal with a very large set of perceptually equivalent.
vot st pueturally different symbols whose construction is influenced by factors such
;15 griter training, the condition of writing implement and surface. and writer's
srate of mind. In On-line recognition, it considers the motion of the stylus i.e. the
- coordinates of the stylus as a function of time, and possibly related parame-
cors such as the pressure, velocity and acceleration. The writer typically produces
e strokes on an electrostatic and electromagnetic tablet and a series of coor-
dinate pairs is recorded along with the meaningful events such as pen up or pen
down. Recognition is performed on this 1-D signal (often after some preprocessing)
through the use of traditional pattern matching techniques. On line recognition
has produced much better results than off-line recognition. Unfortunately. the
fact that the temporal information must be obtained during the writing process

makes on-line recognition impractical for many practical applications.

5.3 The Temporal Recovery Problem

The claim that the increase in recognition performance is directly associated with
availability of temporal information is supported by experiments in which on-line
data is converted into equivalent off-line data and a deterioration in recognition
performance is observed (E. Mandler, R. Oed. and W. Doster (1985)). By recover-
ing temporal information from static handwritten images. then on-line techniques
can be applied to problems such as recognition of handwritten text as well as
signature verification, recognition of line drawings, and recognition of gestures. If
traditional skeleton representation techniques are applied in isolation to the prob-
lem of temporal recovery, it is easily shown that many ambiguities will remain.
especially in samples which include retraced strokes, loops or multiple strokes (Fig-
ure 1'). The experience of professional forensic document examiners assures us.

however, that many of these ambiguities can be resolved by careful consideration
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of the writing process and of local and global clues within the sample. Therefore,

we [2] break away from typical document processing methodologies, and treat the

extraction of on line information from static images as a partial "recovery” of

isolated elues which provide evidence about the motion of the writing instrument

both in time and space.

5.4 The Stroke Recovery Platform

Stroke cross sections are derived from image data and grouped into strokes based

on properties such as width and intensity variation. Junctions are interpreted

using knowledge of the handwriting process and a graph is built representing

stroke segments, intersections, and endpoints.

5.5 Recovery of Temporal Clues by Detailed Ex-

amination

Assume stroke segments are delineated, and have tentative estimates of the path

traced by the writing instrument between junctions, as described above.

5.5.1 Global Clues

The global information which is considered derived from general assumptions made
about the handwriting process. They can be used to set a framework for the
interpretation of the local clues.

Relative Position

If the strokes are to be interpreted as latin text, a progression from left to right
across the tvping surface is observed.

Effort

The general study of the handwriting process indicates that the ordering of strokes
is influenced by an attempt to minimize the amount of energy requuired to produce

them. For example, lifting the pen is conserved by retraces in script writing and
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point features such as feathering and hooking.
by 'l

5.3 Regional Clues
§:D.

peature consistency
canples which are produced by the same author exhibit consistencies which -
o w . dl'e

inlluvnrf‘d by training and personal differences such as handedness

gtroke properties

(Other clues may include uniformity through an intersection to reveal temporal
ordering (Figure 2') and local stroke properties, such as stroke width. to detect
etraced or merged segments. These type of clues allow hypothesis to propagate

petween neighboring stroke segments.

5.6 Local/substroke clues

The third and most constraining class of information involves a set local clues that

are available directly from the static image of the writing sample (Figure 3°).

5.6.1 Striations

Striations are small marks in the interior of a stroke segment caused by dirt in
or damage to the ball housing which prevents ink from reaching the paper. Fig-
ure 4° shows a stroke from figure 3'f, the derived cross sections and the recovered
striation. Along any curved stroke segment, a striation is characterized by a pro-
gression of skewed profiles, possibly including profiles with interior local minima.

These profiles are tracked and position of the striation estimated.

5.6.2 End points and junction clues

Intensity variations
Ink deposits, or lack thereof, often occur at endpoints due to the fact that most of
the modern writing instruments require the instrument to be in motion in ordel

o deposit the residue evenly on the surface. Ball point pens, for example, will be
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nature of fast drving inks. This fearyre can be used (o distinguish between the

start and end of a stroke. as shown in Figure 3 and ¢,

Feathering
During the writing process. he continuous motion of the writing instrument may

prevent it from leaving the writing surface cleanly. This produces a feathering

effect as shown in Figures 3'a, Iy ang ¢, in which the trajectory appears to fade

and taper. often in a direction which is consistent with minimum energy path to

the placement of the next stroke. It has been observed that that writers typically

take greater care to place the instrument at the beginning of a stroke, so that

feathering is typically most prominent at the point where the instrument leaves the

page. When the text is produced rapidly, however, feathering has been observed

at the beginnings and ends of the strokes (Figure 3°).

Hooking

It has also been observed that the writer anticipate the placement of the next

stroke before finishing the current stroke. By doing this. we find the instrument

may actually begin to move in the direction of the next stroke before leaving the
page. thus producing a hooking effect. Figure 5 as well as many earlier figures
provide the examples of hooking effect. F igure 6° also shows how the ordering of

strokes can be disambiguated by considering the light starting point, hook and

right-left heuristics. We also observe that as with feathering, hooking is tvpically

more pronounced at the end of a stroke than at the beginning.

5.7 Local segment analysis

To examine the ends of a stroke segment, we replace the computed scan lines
¢manating from each contour pixel with pseudo scan lines which minimize the local
curvature (Figure 7'a). Noting that the original scan lines are precise only along
the isolated segments and a smooth path can be generated across the junction

and cross sections approximated (figure 7). For more complex junctions. such as
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merpes o hiphenrvatiee points, we ey, Litke the advantage of 11,0 stability of the

puter connters enterving the junction.

I ) L L
5.8 Pressures, velocitjes and acceleration

o consider the typical prasn of o weitin . - : .
I wi ypreal grasp of a writing mstrument, we note that the instru-

ment is inclined towards the writer, ang orthogonal o the writing direction. With

this configuration, we find that a Breater normal force is exerted on the writing

surface when the instrument is being pulled downward during a downstroke than

it is being pushed upward during an upstroke. [t 15 observed that the average

stroke width and intensity vary with the normal force generated by the pen. but

appear to vary little with moderate changes in velocity or acceleration, as long as

the pressure remains constant. By Comparing segment pairs in long strokes such

as I's, the upstroke and downstroke ape distinguished as in Figure 8.

5.9 System control

The system allow varying amounts of the emphasis to be placed on the clues

depending on the nature of the domain. A table of properties and clues. and

associated reliability and emphasis weights will be provided a priori. It also allows

the emphasis weights to be set or modified during the analysis.

5.10 Result

Figure 9° shows a hand-printed zip code. For the "9". a striation at the top
indicates the direction of the loop, and the direction of the stem is in continuation.
For the "6”. the light start point is located and indicates the correct direction.
The "2" is correctly identified by propagating the ending hook back through the
stroke and the "3" is disambiguated by the visible striation along the last stroke
segment. No interpretation is make for the "0" although a hook is visible to the

human observer,
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Chapter 6

Conclusion

In spite of great progress, some of the fundamental principles of human speech
recognition are still an enigma. The prodigious feats of a human who can pick
out and understand in noisy environment a speaker of his native tongue cannot
be mimicked by any machine at present. In visual perception the abilities of
some humans are even more enigmatic. Take for instance the art of cartoonist.
who with a few strokes can portray a faithful image of a face that all of us can
immediately recognize. While the reader can follow my thoughts. his attention
can easily wonder to many other thoughts in rapid succession, and return to this
article. It is this rapid change of thoughts and mental processes that is so alien
to algorithms and machines. However, one expects, that the pattern recognition
ability coupled with, and feeding back and forth to rule-based systems will finally
result in machines that share our ability to learn and duplicate our processes of
reasoning machines that might be said to think. And, just as the 20" century
is the century of automobiles, airplanes, telephones and computers, the 21° will
be the century of intelligent machines. We will not only learn to live with these

machines, but. indeed, will wonder, one day, how we ever lived without them.

(AW
-]



REFERENCES

[1]. Antognettit P. and Milutinovic V., Neural Networks Concepts, Applica-

tions. and Implementations, Parentice Hall. New Jersey, 1991.

2]. Doermann, D. S. and Rosenfield, A., "Recovery of Temporal Information

from Static Images of Handwriting”. In Proc. of IEEE Intl. Conf on Comp. Vis.
and Pat. Rec., pages 162-168, 1992.

3]. Hanson. S. J. and Bure, D. J., "Learning and Representation in Con-
nectionist Networks”, Neural Networks Theory and Apllications, Vol. 1. pages

169-208, 1989.

[4]Hassoun, M. H., Fundamentals of Artificial Neural Networks. Parentice Hall
of India, New Delhi, pages 1-30, 1995.

(5]. Julesz, B., "Early Vision, Focal Attentions, and Neural Nets’. Neural

Networks-Theory and Applications, Vol 1, pages 209-216, 1990.

(6]. Pan. J. C. and Lee S., "Off-line tracing and representation of signatures”.

In Proceedings of Computer Vision and Pattern Recognition. pages 679-680. 1991.

7). Swain, A. K and Subudhi B., ” Neural Network and Intelligent Control”.
EFY. Vol. 28, pages 72-80, Oct. 1969.



29

1.. Introduction to Artificial Newral Systems. Jaico Publis
7urada, M. J.. Int .
[3]_ 7

House. Bombay, 1997.



