

Tutorial -3

ME-101, Division I & IV (2016-2017 Semester-II)

Feb-6, 2017 Time: 8-00 to 8-55.am

Ans 1:

Solution: We shall start by drawing the FBD for the BEAM:

Finding Reaction Forces RA and RB:-

Equation for Half-Sine wave:
$$y = 2 * \sin\left[\frac{(x+1)\pi}{2}\right]$$
 \longrightarrow Total Load = $\int_{-1}^{1} 2 * \sin\left[\frac{(x+1)\pi}{2}\right] dx = \frac{8}{\pi} kN$

Taking moments about A,

$$R_B + R_A = 3 + (8/\pi) = 5.54 \text{ kN}$$
 \longrightarrow $R_A = 1.38 \text{ kN}$

In order to determine the SF and BM at a point, we can divide the beam into different regions:

- For the 1st region, i.e., -2<x<-1 FBD:
 Therefore, V = 0 & M = 0

Force summation:
$$-\int_{-1}^{x} 2 * \sin\left[\frac{(s+1)\pi}{2}\right] ds + V(x) = 0$$
 \longrightarrow $V(x) = -\frac{4*\cos\left[\frac{(x+1)\pi}{2}\right] - 4}{\pi}$

Moment calculation about a point on the section:

$$-\int_{-1}^{x} 2 * \sin \left[\frac{(s+1)\pi}{2} \right] ds * (s-x) + M(x) = 0 \longrightarrow M(x) = \frac{8 * \cos \left(\frac{\pi x}{2} \right) - 4\pi x - 4\pi}{\pi * \pi}$$

Therefore, V = 1.27 kN & M = - 0.462 kNm

For the 3^{rd} region, i.e., $0 < x < 1 \longrightarrow FBD$:

Moment calculation about a point on the section:

$$-\int_{-1}^{x} 2 * \sin \left[\frac{(s+1)\pi}{2} \right] ds * (s-x) + M(x) - x * R_{A} = 0 \longrightarrow M(x) = \frac{8 * \cos \left(\frac{\pi x}{2} \right) - 4\pi x - 4\pi}{\pi * \pi} + x * R_{A} = 0$$

For the 4^{th} region, i.e., $1 < x < 4 \longrightarrow FBD$:

Force summation: $-\int_{-1}^{1} 2 * \sin \left[\frac{(x+1)\pi}{2} \right] dx + V(x) + R_A = 0$ \longrightarrow $V(x) = 8/\pi - R_A$

Moment calculation about a point on the section:

$$-\int_{-1}^{1} 2 * \sin \left[\frac{(s+1)\pi}{2} \right] ds * (s-x) + M(x) - x * R_{A} = 0 \longrightarrow M(x) = (8 * x)/\pi - R_{A} * x$$

$$\longrightarrow$$
 M(x) = -1.167* x kNm

For the 4^{th} region, i.e., $4 < x < 6 \longrightarrow FBD$:

Force summation: $-\int_{-1}^{1} 2 * \sin \left[\frac{(x+1)\pi}{2} \right] dx + V(x) + R_A - 1.5 = 0 \longrightarrow V(x) = 2.667 \text{ kN}$

Moment calculation about a point on the section:

$$-\int_{-1}^{1} 2 * \sin \left[\frac{(s+1)\pi}{2} \right] ds * (s-x) + M(x) - x * R_A - 7 - (4-x)*1.5 = 0$$

$$\longrightarrow M(x) = (-2.667* x + 13) \text{ kNm}$$

Force summation: $-V - 1.5 = 0 \longrightarrow V = 1.5 \text{ kN}$

Moment calculation about a point on the section:

$$-M(x) + (8 - x)^* (-1.5) = 0 \longrightarrow M(x) = -1.5*(8 - x) kNm$$

Now we can simply accumulate all the expressions and plot the SFD and BMD for the given beam.

Ans 2.

Resultants of distributed load:

$$F_{Rx} = \int_0^\theta w_0(r d\theta) \sin\theta = r w_0(-\cos\theta) \Big|_0^\theta = r w_0(1 - \cos\theta)$$
$$F_{Ry} = \int_0^\theta w_0(r d\theta) \cos\theta = r w_0(\sin\theta) \Big|_0^\theta = r w_0(\sin\theta)$$

$$M_{Ro} = \int_0^\theta w_0(r d\theta) r = r^2 w_0 \theta$$

At
$$\theta = 120^{\circ}$$
,

$$F_{Rx} = r w_0 (1 - \cos 120^\circ) = 1.5 r w_0$$

$$F_{Ry} = r \, w_0 \sin 120^\circ = 0.86603 \, r \, w_0$$

$$+ \angle \Sigma F_{x'} = 0;$$
 $N + 1.5 r w_0 \cos 30^\circ - 0.86603 r w_0 \sin 30^\circ = 0$
 $N = -0.866 r w_0$

$$+\sum F_{y'} = 0;$$
 $V + 1.5 r w_0 \sin 30^\circ + 0.86603 r w_0 \cos 30^\circ = 0$ $V = -1.5 r w_0$

$$\zeta + \Sigma M_o = 0;$$
 $-M + r^2 w_0 (\pi) \left(\frac{120^\circ}{180^\circ} \right) + (-0.866 \, r \, w_0) r = 0$

$$M = 1.23 r^2 w_0$$
 Ans.

Ans.

Ans.

Ans 3.

Support Reactions: From FBD (b),

$$\mathbf{C} + \sum M_E = 0;$$

$$+\Sigma M_E = 0;$$
 $F_y\left(\frac{L}{3}\right) - \frac{wL}{3}\left(\frac{L}{6}\right) = 0$ \longrightarrow $F_y = \frac{wL}{6}$

$$+\uparrow \sum F_{Y} = 0$$

$$+\uparrow \sum F_Y = 0;$$
 $E_y - \frac{wL}{6} - \frac{wL}{3} = 0$ \longrightarrow $E_y = \frac{wL}{6}$

From FBD (a),

$$+\sum M_C = 0$$
;

$$+\Sigma M_C = 0;$$
 $D_y(L) - \frac{wL}{6} \left(\frac{L}{3}\right) - \frac{4wL}{3} \left(\frac{L}{3}\right) = 0$ $D_y = \frac{7wL}{18}$

From FBD (c),

$$\mathbf{C} + \sum M_B = 0;$$

$$+\uparrow \sum F_{Y} = 0$$

$$+\uparrow \sum F_{Y} = 0;$$
 $B_{y} + \frac{7wL}{18} - \frac{4wL}{3} - \frac{wL}{6} = 0$ $B_{y} = \frac{10wL}{9}$

$$B_y = \frac{10wL}{\Omega}$$

Shear and Moment Functions:

FBD (e)

FBD (f)

For $0 \le x \le L$ [FBD (d)],

$$+\uparrow \sum F_{Y} = 0;$$

$$+\uparrow \sum F_{Y} = 0;$$
 $\frac{7wL}{18} - wx - V = 0$ $\longrightarrow V = \frac{w}{18}(7L - 18x)$

... Ans

$$\Gamma + \Sigma M = 0$$

$$+\Sigma M = 0;$$
 $M - wx(\frac{x}{3}) - \frac{7wL}{18}x = 0$ $M = \frac{w}{18}(7Lx - 9x^2)$

$$=\frac{w}{18}(7Lx-9x^2)$$

For $L \le x \le 2L$ [FBD (e)],

$$+\uparrow \sum F_{Y} = 0;$$
 $\frac{7wL}{18} + \frac{10wL}{9} - wx - V = 0$ $\longrightarrow V = \frac{w}{2}(3L - 2x)$... Ans

For $2L \le x \le 3L$ [FBD (e)],

$$+\uparrow \sum F_{Y} = 0;$$
 $V + \frac{7wL}{18} + w(3L - x) = 0 \longrightarrow V = \frac{w}{18}(47L - 18x)$... Ans

SFD & BMD:

Shear Force Diagram

Bending Moment Diagram

Ans 4.

First consider the free body diagram,

We can see there are 4 unknown force components in body 2. Let us consider a situation, where the co efficient of friction is large enough to keep the road and the cylinder in equilibrium. In such a situation 3 equilibrium equations with 4 unknowns become available. In general, this leads to a situation where 3 unknowns can be written in terms of fourth unknown. This might give some information on F_B/N_B and F_C/N_C . Let us work it out.

The force equilibrium equation for body 2 is given by,

$$N_B - N_C \cos \theta - F_C \sin \theta = 0$$
 ------ 1

$$-F_{B+}N_{C}\sin\theta - F_{C}\cos\theta = 0 \qquad ------2$$

Moment equilibrium equation about point O is given by,

$$r F_B - r F_C = 0$$
 ----- 3

[Line of action of normal forces passes through O. hence they do not contribute in the equation. 'r' is the radius of the cylinder.]

From equation 3 we get

$$F_B = F_C$$
 ----- 3a

Replacing F_c by F_B in equation 1 and 2, we get,

$$- N_{c} \cos \theta - F_{B} \sin \theta = -N_{B} \qquad -----4$$

$$+N_{\rm C}\sin\theta - F_{\rm B} - F_{\rm B}\cos\theta = 0$$
 ----- 5

'4* Sin
$$\theta$$
 + 5* Cos θ ' yields,

$$-F_B \sin^2 \theta - F_B \cos^2 \theta - F_B \cos \theta = -N_B \sin \theta$$

$$F_B(1+\cos\theta) = N_B\sin\theta$$

$$\frac{F_B}{N_B} = \frac{Sin\,\theta}{1 + Cos\,\theta} \qquad ----- 6$$

We will later show that for the rod to be in equilibrium for P>0, N_B is greater than zero.

 $(-4* (1+\cos\theta) + 5* \sin\theta')$ yields,

$$N_{C}(\cos\theta + \cos^{2}\theta) + F_{B}\sin\theta (1+\cos\theta) + N_{C}\sin^{2}\theta - F_{B}\sin\theta (1+\cos\theta) = N_{B} (1+\cos\theta)$$

 $N_{C}(1+\cos\theta) = N_{B} (1+\cos\theta)$

Assuming $0 \le \theta < 180$,

$$N_C = N_B \qquad \qquad ----- 7$$

From equation 3a, 6, and 7 we get,

$$\frac{F_B}{N_B} = \frac{F_C}{N_C} = \frac{\sin \theta}{1 + \cos \theta} \qquad -----8$$

Let us now move on to the free body diagram of rod (Body-1)

Since the body is in static equilibrium, we can impose the force equilibrium equation:

$$N_A - N_B = 0 \qquad -----9$$

That is,
$$N_A = N_B$$

$$P=F_A+F_B \qquad \qquad ----- 10$$

If P>0, either FA or FB should be more than zero. FB>0 is possible only if NB >0, and FA>0 only if $N_A>0$, that is $N_B>0$ (from eq.9). Hence, if P>0 at equilibrium, $N_B>0$.

Applying 8 in 10, we get,

$$P = \frac{Sin\theta}{1 + Cos\theta} N_B + F_A \qquad ----- 11$$

If $\mu_{A,}$ $\mu_{B,}$ $\mu_{C, are}$ coefficient of static friction, at A,B and C. Then by law of dry friction,

$$\frac{F_{B}}{N_{B}} \leq \mu_{B} \; , \qquad \frac{F_{C}}{N_{C}} \leq \mu_{C} \; , \; \& \quad \frac{F_{A}}{N_{A}} \leq \mu_{A} \label{eq:energy_energy}$$

So the minimum values of If μ_{A} , μ_{B} , and μ_{C} , that does not violate the equilibrium equations, in particular, eq.8 and eq.11 are

$$\mu_{B,} = \mu_{C} = \frac{Sin \theta}{1 + Cos \theta}$$
 $\mu_{A} = 0$

$$\mu_A = 0$$

Note:

Moment equilibrium equations for the rod give a relation for the offset between the line of action of FA & FB. We are not interested in it.