

3-D Kinematics of Rigid Bodies

Rotation about a Fixed Point

Instantaneous Axis of Rotation

:: Rotation of solid rotor with black particles embedded on its surface

:: ω_1 and ω_2 are steady angular velocities

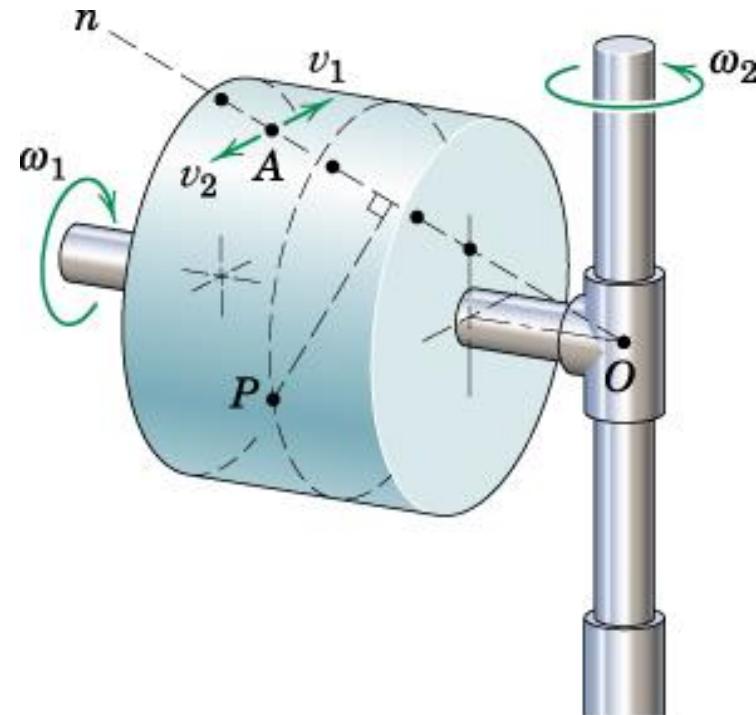
:: Along line $O-n$, velocity of particles will be momentarily zero (the line will be sharply defined)

:: The line of points with no velocity

→ Instantaneous position of the Axis of Rotation

:: Any point on this line, e.g., A , would have equal and opposite velocity components v_1 and v_2 due to ω_1 and ω_2 , respectively

All particles of the body, except those on line $O-n$, rotate momentarily in circular arcs @ the instantaneous axis of rotation



3-D Kinematics

Rotation about a Fixed Point

Instantaneous Axis of Rotation

:: Change of position of rotation axis both in space and relative to the body

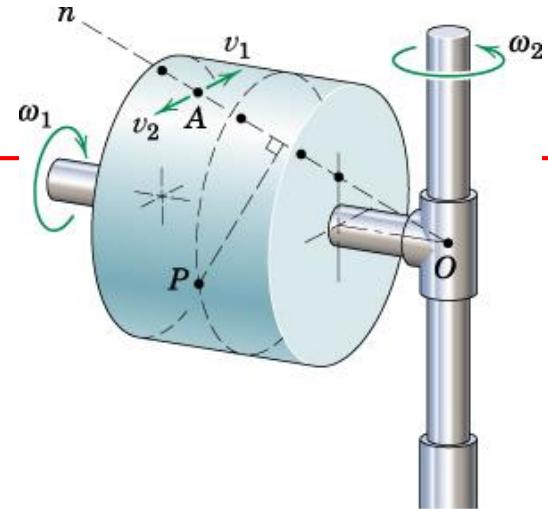
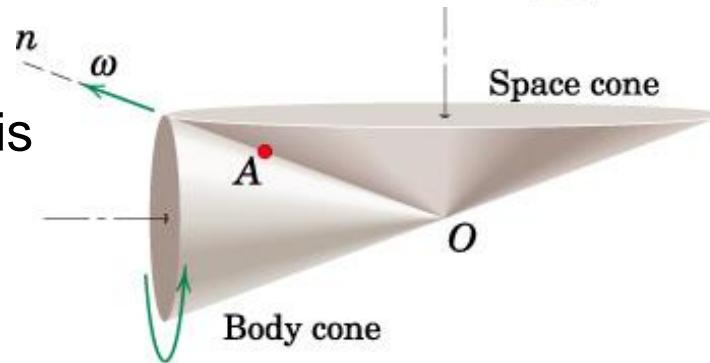
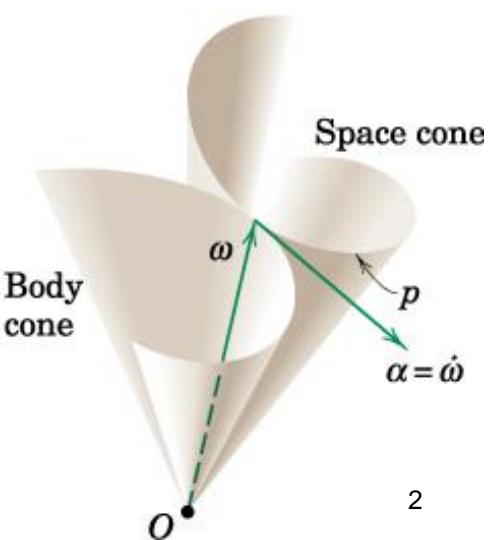
Body and Space Cones

:: Relative to the cylinder, the instantaneous axis of rotation $O-A-n$ generates a right circular cone @ the cylinder axis $O \rightarrow \mathbf{Body\ Cone}$

:: Instantaneous axis of rotn also generates a right circular cone @ the vertical axis $\rightarrow \mathbf{Space\ Cone}$

:: Rolling of body cone on space cone

:: Angular vel ω of the body located along the common element of the two cones



3-D Kinematics

Rotation about a Fixed Point

Angular Acceleration

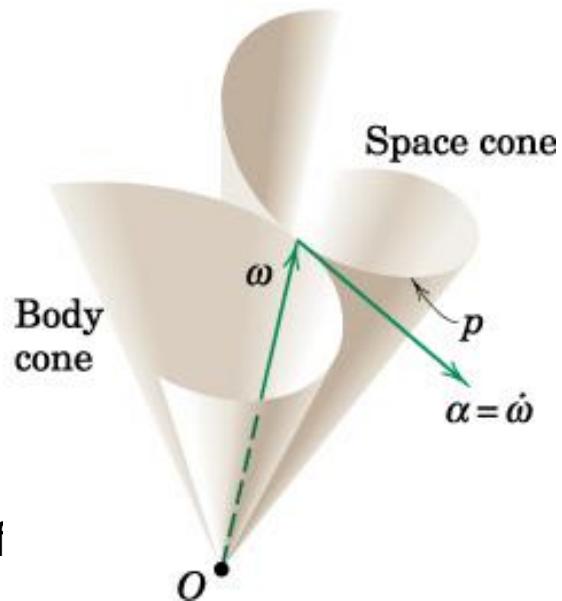
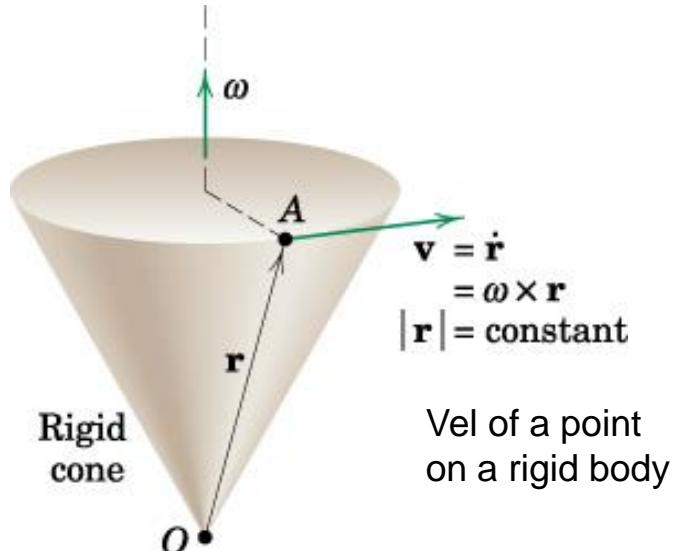
:: Planar motion

- scalar α reflects the change in magnitude of ω

:: 3-D motion

- vector α reflects the change in the direction and magnitude of ω

:: α - tangent vector to the space curve p in the direction of the change in ω



3-D Kinematics

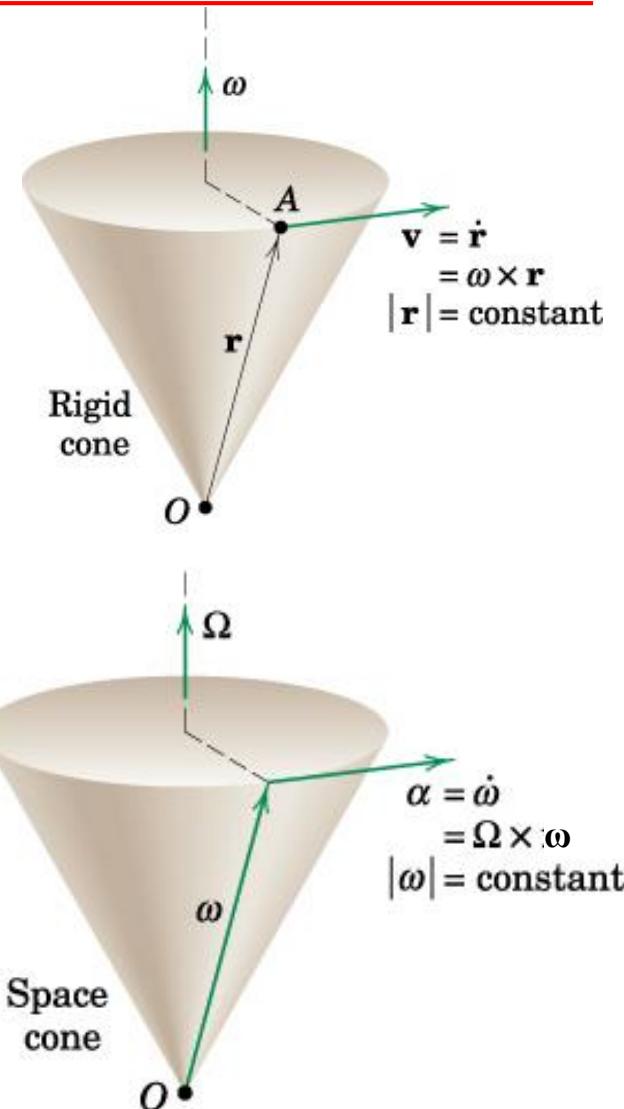
Rotation about a Fixed Point

If the magnitude of ω remains constant, α is normal to ω

Let Ω be the angular velocity with which the vector ω itself rotates (precesses) as it forms the space cone

$$\rightarrow \alpha = \Omega \times \omega$$

$\therefore \alpha, \Omega$, and ω have the same relationship as that of v, ω , and r defining the vel of a point A in a rigid body



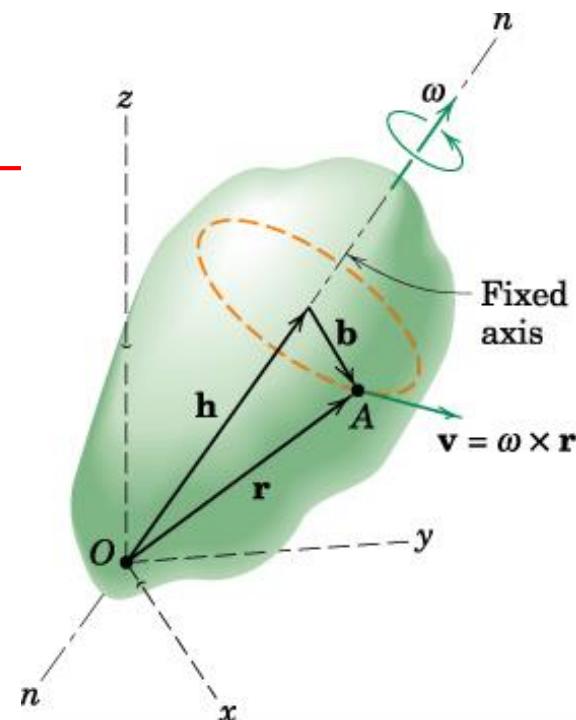
3-D Kinematics

Rotation about a Fixed Point

When a rigid body rotates @ a fixed point O with the instantaneous axis of rotation $n-n$, vel \mathbf{v} and accln $\mathbf{a} = \dot{\mathbf{v}}$ of any point A in the body are given by the same expressions derived when the axis was fixed:

$$\mathbf{v} = \boldsymbol{\omega} \times \mathbf{r}$$

$$\mathbf{a} = \dot{\boldsymbol{\omega}} \times \mathbf{r} + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})$$



Rotation about a Fixed Axis vs Rotation about a Fixed Point

For rotation @ a fixed point:

- angular accln will have a comp normal to $\boldsymbol{\omega}$ due to change in dirn of $\boldsymbol{\omega}$, as well as a comp in the dirn of $\boldsymbol{\omega}$ to reflect any change in the magnitude of $\boldsymbol{\omega}$
- Although any point on the rotation axis $n-n$ momentarily will have zero velocity, it will not have zero accln as long as $\boldsymbol{\omega}$ is changing its direction

For rotation @ a fixed axis:

- angular accln will have only one component along the fixed axis to reflect any change in the magnitude of $\boldsymbol{\omega}$.
- Points which lie on the fixed axis of rotation will have no velocity or accln

3-D Kinematics

General Motion in Three Dimension

:: Principles of relative motion (both translating & rotating reference axes)

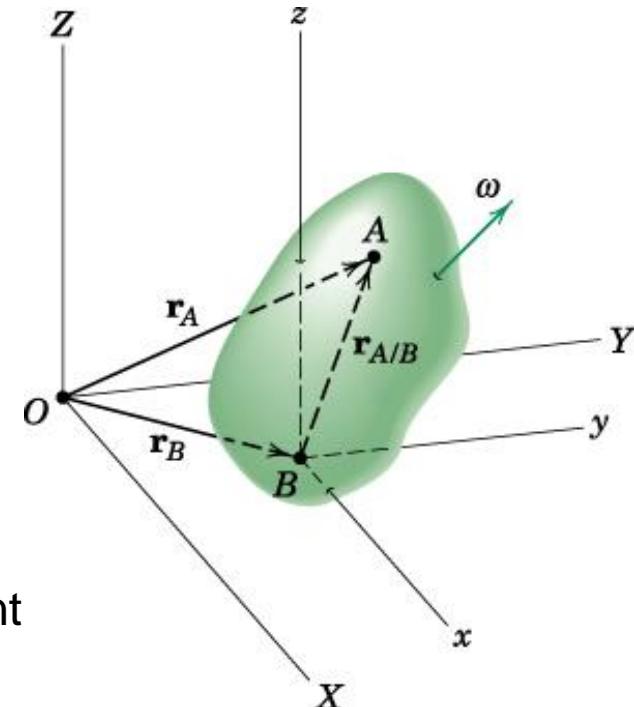
Translating Reference Axes

- $X-Y-Z$:: fixed reference frame
- $x-y-z$:: translating reference frame with any point B as the origin
- ω :: angular velocity of the rigid body

Linear velocity and accln of any point A in the body

$$\mathbf{v}_A = \mathbf{v}_B + \mathbf{v}_{A/B} \quad \text{-3 coplanar vectors in each eqn}$$

$$\mathbf{a}_A = \mathbf{a}_B + \mathbf{a}_{A/B} \quad \text{- Distance } \overline{AB} \text{ should remain constant}$$



- To an observer on $x-y-z$, the body will appear to rotate @ B
- Point A will appear to lie on a spherical surface with B as the center

→ General Motion \equiv translation of body with motion of B
+ rotation of body @ B

3-D Kinematics :: General motion

Translating Reference Axes

$$\mathbf{v}_A = \mathbf{v}_B + \mathbf{v}_{A/B}$$

$$\mathbf{a}_A = \mathbf{a}_B + \mathbf{a}_{A/B}$$

Relative motion terms represent effect of rotation about point B

→ These are identical to the vel and accln relations obtained for a rigid body rotating @ a fixed point:

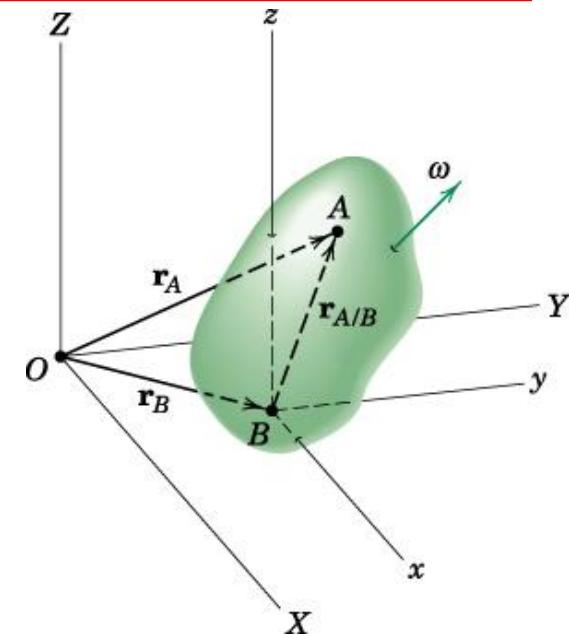
$$\mathbf{v} = \boldsymbol{\omega} \times \mathbf{r}$$

$$\mathbf{a} = \dot{\boldsymbol{\omega}} \times \mathbf{r} + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})$$

Relative terms

$$\rightarrow \mathbf{v}_A = \mathbf{v}_B + \boldsymbol{\omega} \times \mathbf{r}_{A/B}$$

$$\mathbf{a}_A = \mathbf{a}_B + \dot{\boldsymbol{\omega}} \times \mathbf{r}_{A/B} + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}_{A/B})$$



$\boldsymbol{\omega}$ and $\dot{\boldsymbol{\omega}}$:: instantaneous angular vel and angular accln of the body

If point A is chosen as a reference point then vel and accln relations for point B :

$\mathbf{r}_{B/A} = -\mathbf{r}_{A/B}$. $\boldsymbol{\omega}$ & $\dot{\boldsymbol{\omega}}$ will be same for both cases

$$\mathbf{v}_B = \mathbf{v}_A + \boldsymbol{\omega} \times \mathbf{r}_{B/A}$$

$$\mathbf{a}_B = \mathbf{a}_A + \dot{\boldsymbol{\omega}} \times \mathbf{r}_{B/A} + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}_{B/A})$$

Example (1) on general motion

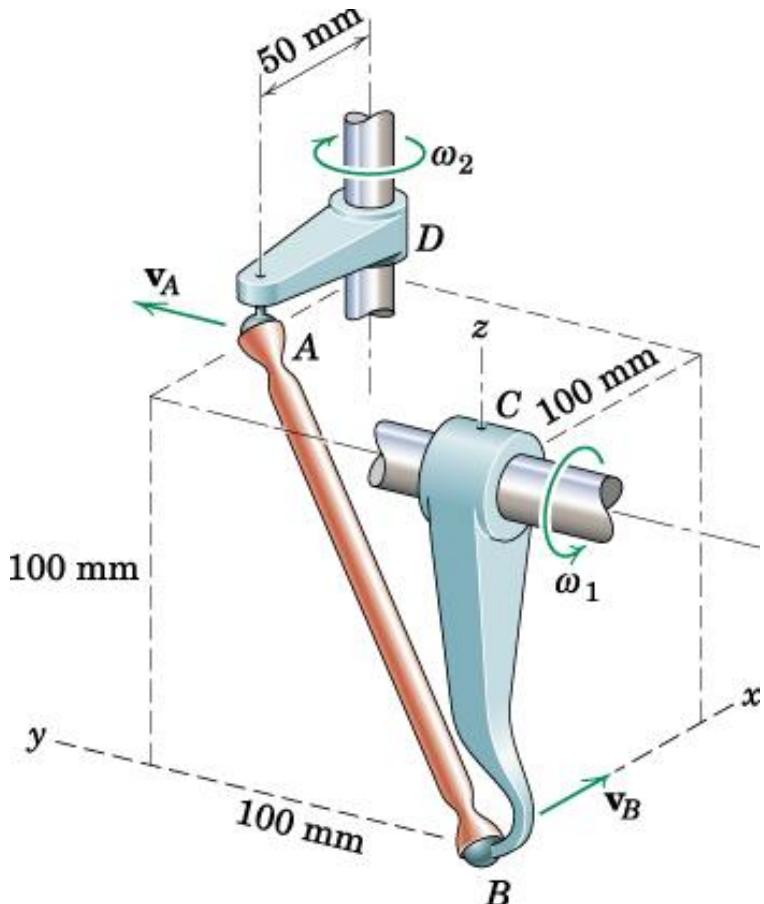
Example: Crank *CB* rotates @ the horz axis with an ang vel $\omega_1 = 6 \text{ rad/s}$, which is constant for a short interval of motion including the position shown. Link *AB* has a ball-and-socket fitting on each end and connects crank *DA* with *CB*. For the instant shown, det the ang vel ω_2 of crank *DA* and ang vel ω_n of link *AB*. Further determine, the ang accln $\dot{\omega}_2$ of crank *DA* and ang accln $\dot{\omega}_n$ of link *AB*.

Solution:

Choose point B as the origin of translating reference axes.

Relative velocity relation:

$$\mathbf{v}_A = \mathbf{v}_B + \boldsymbol{\omega}_n \times \mathbf{r}_{A/B}$$



Example (1) on general motion

Relative velocity relation:

$$\mathbf{v}_A = \mathbf{v}_B + \boldsymbol{\omega}_n \times \mathbf{r}_{A/B}$$

$\boldsymbol{\omega}_n$ is the angular vel of link AB taken normal to AB

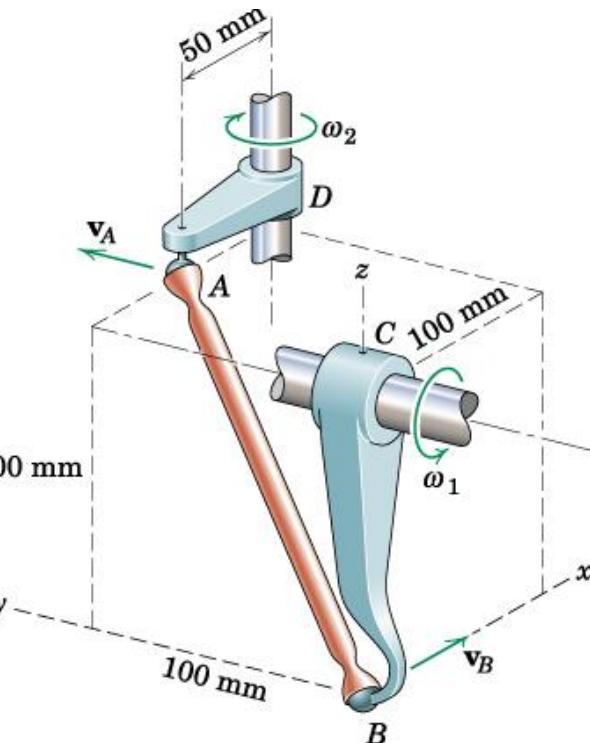
:: The angular vel of AB is taken as normal to AB since any rotation of the link @ its own axis AB has no influence on the behaviour of the link.

→ $\boldsymbol{\omega}_n$ and $\mathbf{r}_{A/B}$ must be at right angles

$$\rightarrow \boldsymbol{\omega}_n \cdot \mathbf{r}_{A/B} = 0$$

→ Additional eqn generated from kinematic requirement

$\mathbf{v}_{A/B}$ is also perpendicular to both $\boldsymbol{\omega}_n$ and $\mathbf{r}_{A/B}$
(since $\mathbf{v}_A - \mathbf{v}_B = \mathbf{v}_{A/B} = \boldsymbol{\omega}_n \times \mathbf{r}_{A/B}$)



Example (1) on general motion

Velocities of A and B : $v = r\omega$

$$\mathbf{v}_A = \mathbf{v}_B + \boldsymbol{\omega}_n \times \mathbf{r}_{A/B}$$

$$\mathbf{v}_A = 50\omega_2 \mathbf{j} \quad \mathbf{v}_B = 100(6)\mathbf{i} = 600\mathbf{i} \text{ mm/s}$$

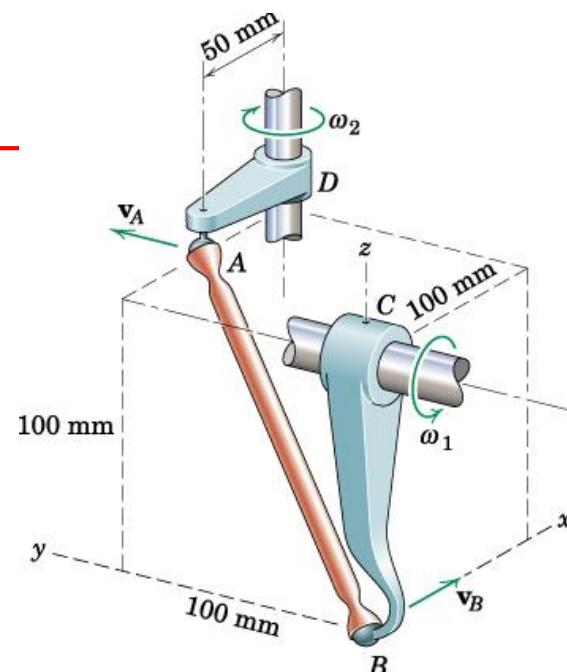
$$\mathbf{r}_{A/B} = 50\mathbf{i} + 100\mathbf{j} + 100\mathbf{k} \text{ mm} \quad (\text{from } B \text{ to } A)$$

$$\rightarrow 50\omega_2\mathbf{j} = 600\mathbf{i} + \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \omega_{n_x} & \omega_{n_y} & \omega_{n_z} \\ 50 & 100 & 100 \end{vmatrix}$$

Expanding and equating the coefficients:

$$\begin{aligned} -6 &= \omega_{n_y} - \omega_{n_z} \\ \omega_2 &= -2\omega_{n_x} + \omega_{n_z} \\ 0 &= 2\omega_{n_x} - \omega_{n_y} \end{aligned}$$

Solving: $\omega_7 = 6 \text{ rad/s}$



$$\omega_n \cdot \mathbf{r}_{A/B} = 0$$

$$50\omega_{px} + 100\omega_{py} + 100\omega_{pz} = 0$$

Substituting in previous two eqns:

$$\omega_{nx} = -4/3 \text{ rad/s}$$

$$\omega_{nv} = -8/3 \text{ rad/s}$$

$$\omega_{nz} = 10/3 \text{ rad/s}$$

$$\omega_n = \frac{2}{3}(-2\mathbf{i} - 4\mathbf{j} + 5\mathbf{k}) \text{ rad/s}$$

$$\omega_n = \frac{2}{3}\sqrt{2^2 + 4^2 + 5^2} = 2\sqrt{5} \text{ rad/s}$$

Example (1) on general motion

Angular Acceleration

Linear accln of the links can be found from:

$$\mathbf{a}_A = \mathbf{a}_B + \dot{\boldsymbol{\omega}}_n \times \mathbf{r}_{A/B} + \boldsymbol{\omega}_n \times (\boldsymbol{\omega}_n \times \mathbf{r}_{A/B})$$

$\boldsymbol{\omega}_n$:: angular velocity of AB taken normal to AB

$\dot{\boldsymbol{\omega}}_n$:: the angular accln of link AB

: Comp of ang vel along AB has no influence on the motion of the cranks C and D

.: Contribution of change in magnitude and dirn of this comp of ang vel on actual angular accln of link will not be considered here

→ Only the effect of $\dot{\boldsymbol{\omega}}_n$

Accln of A and B in terms of normal & tangential comp: $a_n = |\boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})| = b\omega^2$

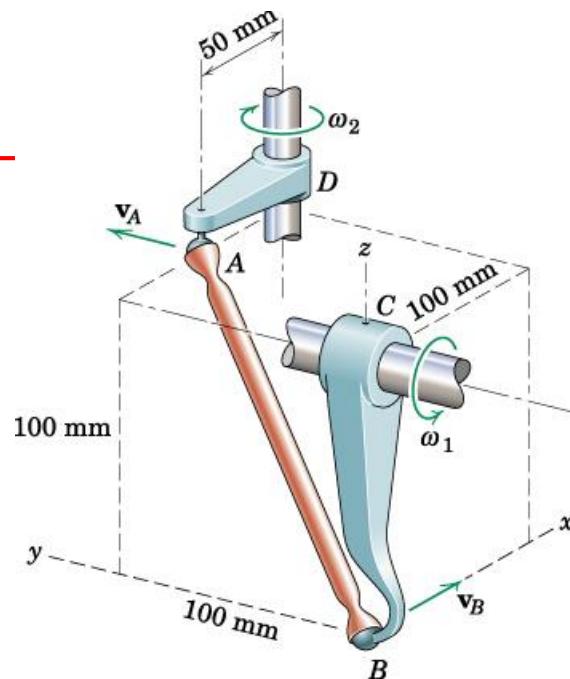
$$\mathbf{a}_A = 50\omega_2^2 \mathbf{i} + 50\dot{\omega}_2 \mathbf{j} = 1800\mathbf{i} + 50\dot{\omega}_2 \mathbf{j} \text{ mm/s}^2$$

$$a_t = |\dot{\boldsymbol{\omega}} \times \mathbf{r}| = b\alpha$$

$$\mathbf{a}_B = 100\omega_1^2 \mathbf{k} + (0)\mathbf{i} = 3600\mathbf{k} \text{ mm/s}^2 \quad \dot{\omega}_1 = 0, \text{ since } \boldsymbol{\omega}_1 \text{ is constant}$$

Further: $\boldsymbol{\omega}_n \times (\boldsymbol{\omega}_n \times \mathbf{r}_{A/B}) = -\omega_n^2 \mathbf{r}_{A/B} = -20(50\mathbf{i} + 100\mathbf{j} + 100\mathbf{k}) \text{ mm/s}^2$

$$\mathbf{P} \times (\mathbf{Q} \times \mathbf{R}) = (\mathbf{P} \cdot \mathbf{R})\mathbf{Q} - (\mathbf{P} \cdot \mathbf{Q})\mathbf{R} \quad (\text{first term will be zero because } \boldsymbol{\omega}_n \text{ is normal to } \mathbf{r}_{A/B})$$



Example (1) on general motion

$$\mathbf{a}_A = \mathbf{a}_B + \dot{\boldsymbol{\omega}}_n \times \mathbf{r}_{A/B} + \boldsymbol{\omega}_n \times (\dot{\boldsymbol{\omega}}_n \times \mathbf{r}_{A/B})$$

$$\begin{aligned}\dot{\boldsymbol{\omega}}_n \times \mathbf{r}_{A/B} &= (100\dot{\omega}_{n_y} - 100\dot{\omega}_{n_z})\mathbf{i} \\ &+ (50\dot{\omega}_{n_z} - 100\dot{\omega}_{n_x})\mathbf{j} + (100\dot{\omega}_{n_x} - 50\dot{\omega}_{n_y})\mathbf{k}\end{aligned}$$

Substituting into rel. accln. eqn and equating respective coefficients:

$$\begin{aligned}28 &= \dot{\omega}_{n_y} - \dot{\omega}_{n_z} \\ \dot{\omega}_2 + 40 &= -2\dot{\omega}_{n_x} + \dot{\omega}_{n_z} \rightarrow \dot{\omega}_2 = -36 \text{ rad/s}^2 \\ -32 &= 2\dot{\omega}_{n_x} - \dot{\omega}_{n_y}\end{aligned}$$

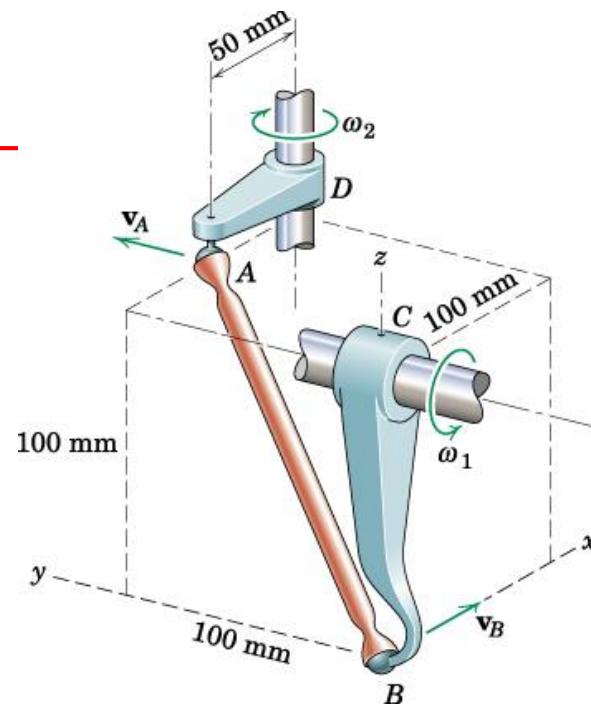
The vector $\dot{\boldsymbol{\omega}}_n$ is normal to $\mathbf{r}_{A/B}$ (but is not normal to $\mathbf{v}_{A/B}$). The component of $\dot{\boldsymbol{\omega}}_n$ which is not normal to $\mathbf{v}_{A/B}$ gives rise to the change in direction of $\mathbf{v}_{A/B}$.

$$[\dot{\boldsymbol{\omega}}_n \cdot \mathbf{r}_{A/B} = 0] \quad 2\dot{\omega}_{n_x} + 4\dot{\omega}_{n_y} + 4\dot{\omega}_{n_z} = 0$$

Substituting in previous two eqns: $\dot{\omega}_{n_x} = -8 \text{ rad/s}^2$ $\dot{\omega}_{n_y} = 16 \text{ rad/s}^2$ $\dot{\omega}_{n_z} = -12 \text{ rad/s}^2$

$$\dot{\boldsymbol{\omega}}_n = 4(-2\mathbf{i} + 4\mathbf{j} - 3\mathbf{k}) \text{ rad/s}^2$$

$$|\dot{\boldsymbol{\omega}}_n| = 4\sqrt{2^2 + 4^2 + 3^2} = 4\sqrt{29} \text{ rad/s}^2$$



3-D Kinematics

Rotating Reference Axes

: Reference axes translate as well as rotate

: Origin of the reference axes attached to B

The reference axes x-y-z rotate with an absolute angular velocity Ω , which may be different from absolute angular velocity ω of the body

For plane motion:

$$\dot{\mathbf{i}} = \boldsymbol{\omega} \times \mathbf{i} \quad \text{and} \quad \dot{\mathbf{j}} = \boldsymbol{\omega} \times \mathbf{j}$$

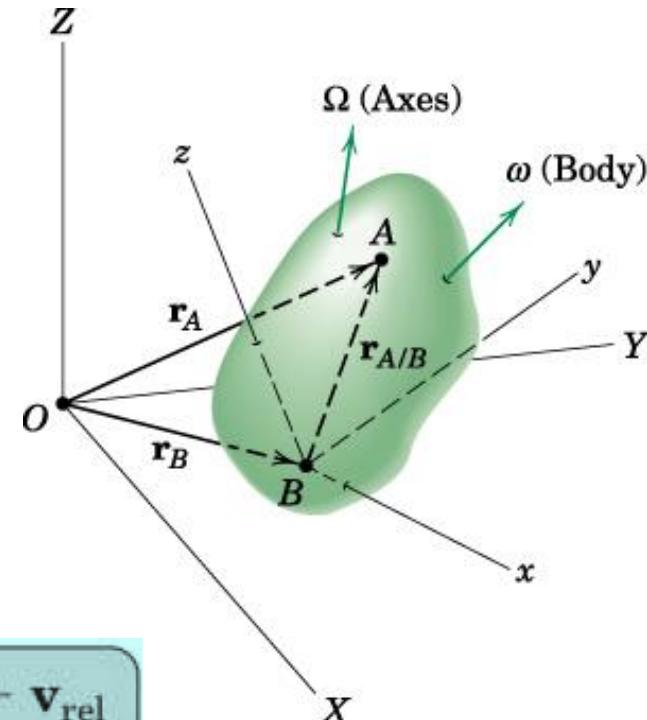
$$\mathbf{v}_A = \mathbf{v}_B + \boldsymbol{\omega} \times \mathbf{r} + \mathbf{v}_{\text{rel}}$$

$$\left(\frac{d\mathbf{V}}{dt} \right)_{XY} = \left(\frac{d\mathbf{V}}{dt} \right)_{xy} + \boldsymbol{\omega} \times \mathbf{V}$$

$$\mathbf{a}_A = \mathbf{a}_B + \dot{\boldsymbol{\omega}} \times \mathbf{r} + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}) + 2\boldsymbol{\omega} \times \mathbf{v}_{\text{rel}} + \mathbf{a}_{\text{rel}}$$

For 3-D motion:

- include the z-component of the vectors



3-D Kinematics

Rotating Reference Axes

$$\dot{\mathbf{i}} = \boldsymbol{\omega} \times \mathbf{i} \quad \text{and} \quad \dot{\mathbf{j}} = \boldsymbol{\omega} \times \mathbf{j}$$

$$\dot{\mathbf{i}} = \boldsymbol{\Omega} \times \mathbf{i} \quad \dot{\mathbf{j}} = \boldsymbol{\Omega} \times \mathbf{j} \quad \dot{\mathbf{k}} = \boldsymbol{\Omega} \times \mathbf{k}$$

→ Time derivatives of the unit vectors attached to x - y - z

Vel and accln of point A:

$$\mathbf{v}_A = \mathbf{v}_B + \boldsymbol{\omega} \times \mathbf{r} + \mathbf{v}_{\text{rel}}$$

$$\mathbf{v}_A = \mathbf{v}_B + \boldsymbol{\Omega} \times \mathbf{r}_{A/B} + \mathbf{v}_{\text{rel}}$$

$$\mathbf{a}_A = \mathbf{a}_B + \dot{\boldsymbol{\Omega}} \times \mathbf{r}_{A/B} + \boldsymbol{\Omega} \times (\boldsymbol{\Omega} \times \mathbf{r}_{A/B}) + 2\boldsymbol{\Omega} \times \mathbf{v}_{\text{rel}} + \mathbf{a}_{\text{rel}}$$

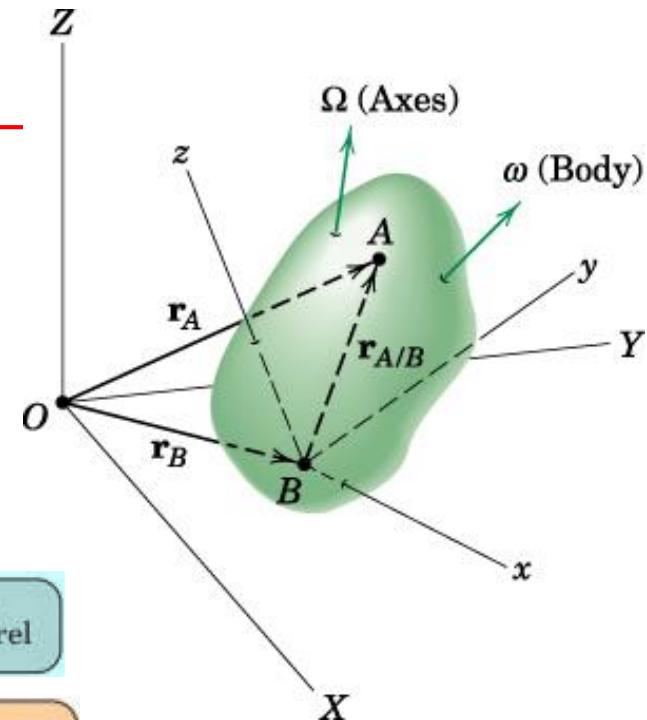
Vel and accln of point A measured rel. to x - y - z by an observer attached to x - y - z

$$\mathbf{v}_{\text{rel}} = \dot{x}\mathbf{i} + \dot{y}\mathbf{j} + \dot{z}\mathbf{k} \text{ and } \mathbf{a}_{\text{rel}} = \ddot{x}\mathbf{i} + \ddot{y}\mathbf{j} + \ddot{z}\mathbf{k}$$

$$\mathbf{a}_A = \mathbf{a}_B + \dot{\boldsymbol{\omega}} \times \mathbf{r} + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}) + 2\boldsymbol{\omega} \times \mathbf{v}_{\text{rel}} + \mathbf{a}_{\text{rel}}$$

: If x - y - z are rigidly attached to the body,

→ $\boldsymbol{\Omega} = \boldsymbol{\omega}$, and $\mathbf{v}_{\text{rel}} = \mathbf{a}_{\text{rel}} = 0$ → motion will be the same as for translating reference axes



For different $\boldsymbol{\Omega}$ and $\boldsymbol{\omega}$, the term $\mathbf{r}_{A/B}$ remains **constant in magnitude** but will **change its direction** wrt x - y - z

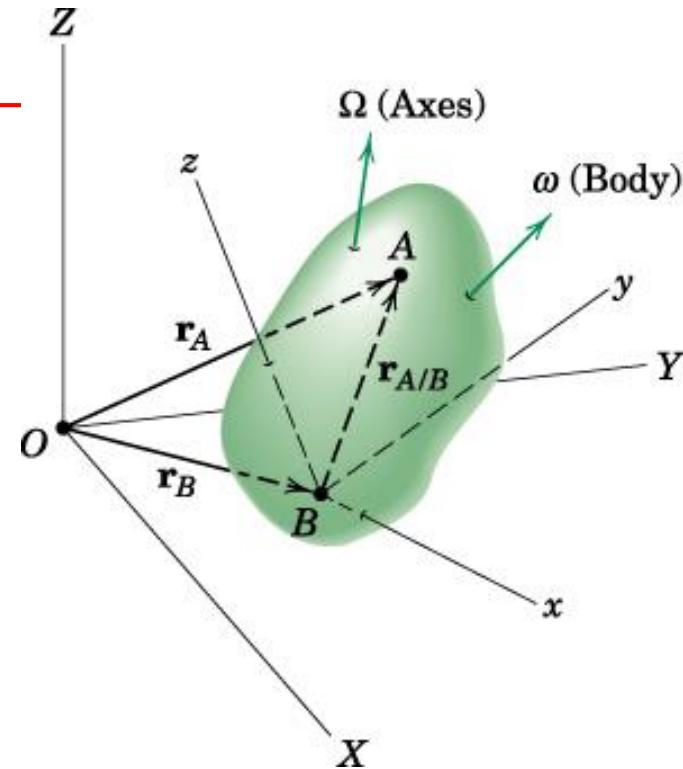
3-D Kinematics

Rotating Reference Axes

$$\left(\frac{d\mathbf{V}}{dt}\right)_{XY} = \left(\frac{d\mathbf{V}}{dt}\right)_{xy} + \boldsymbol{\omega} \times \mathbf{V} \quad \text{for any vector}$$

Eqn relating time derivative of a vector \mathbf{V} measured in fixed X - Y - Z system and the time derivative of \mathbf{V} measured relative to rotating x - y - z system:

$$\left(\frac{d\mathbf{V}}{dt}\right)_{XYZ} = \left(\frac{d\mathbf{V}}{dt}\right)_{xyz} + \boldsymbol{\Omega} \times \mathbf{V}$$



Applying this transformation to the relative posn vector:

$$\mathbf{r}_{A/B} = \mathbf{r}_A - \mathbf{r}_B \quad \rightarrow \quad \left(\frac{d\mathbf{r}_A}{dt}\right)_{XYZ} = \left(\frac{d\mathbf{r}_B}{dt}\right)_{XYZ} + \left(\frac{d\mathbf{r}_{A/B}}{dt}\right)_{xyz} + \boldsymbol{\Omega} \times \mathbf{r}_{A/B}$$

→ The same eqn is obtained

$$\mathbf{v}_A = \mathbf{v}_B + \mathbf{v}_{\text{rel}} + \boldsymbol{\Omega} \times \mathbf{r}_{A/B}$$

$$\mathbf{v}_A = \mathbf{v}_B + \boldsymbol{\Omega} \times \mathbf{r}_{A/B} + \mathbf{v}_{\text{rel}}$$

$$\mathbf{a}_A = \mathbf{a}_B + \dot{\boldsymbol{\Omega}} \times \mathbf{r}_{A/B} + \boldsymbol{\Omega} \times (\boldsymbol{\Omega} \times \mathbf{r}_{A/B}) + 2\boldsymbol{\Omega} \times \mathbf{v}_{\text{rel}} + \mathbf{a}_{\text{rel}}$$

3-D Kinematics

Rotating Reference Axes

$$\left(\frac{d\mathbf{V}}{dt}\right)_{XYZ} = \left(\frac{d\mathbf{V}}{dt}\right)_{xyz} + \boldsymbol{\Omega} \times \mathbf{V}$$

This eqn may be recast as the vector operator for general use:

$$\left(\frac{d[\]}{dt}\right)_{XYZ} = \left(\frac{d[\]}{dt}\right)_{xyz} + \boldsymbol{\Omega} \times []$$

[] stands for any vector \mathbf{V} expressible both in X - Y - Z

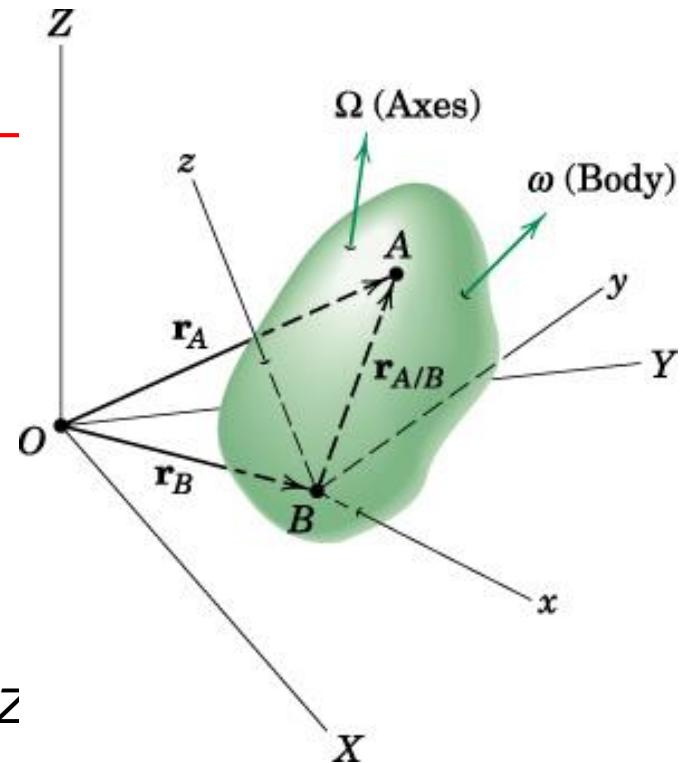
Applying the operator to itself \rightarrow second time derivative.

$$\left(\frac{d^2[\]}{dt^2}\right)_{XYZ} = \left(\frac{d^2[\]}{dt^2}\right)_{xyz} + \dot{\boldsymbol{\Omega}} \times [] + \boldsymbol{\Omega} \times (\boldsymbol{\Omega} \times []) + 2\boldsymbol{\Omega} \times \left(\frac{d[\]}{dt}\right)_{xyz}$$

\rightarrow The same eqn is for accln

$$\mathbf{v}_A = \mathbf{v}_B + \boldsymbol{\Omega} \times \mathbf{r}_{A/B} + \mathbf{v}_{\text{rel}}$$

$$\mathbf{a}_A = \mathbf{a}_B + \dot{\boldsymbol{\Omega}} \times \mathbf{r}_{A/B} + \boldsymbol{\Omega} \times (\boldsymbol{\Omega} \times \mathbf{r}_{A/B}) + 2\boldsymbol{\Omega} \times \mathbf{v}_{\text{rel}} + \mathbf{a}_{\text{rel}}$$



Example on Rotating Reference Axes

The motor housing and its bracket rotate about the Z-axis at the constant rate $\Omega = 3 \text{ rad/s}$. The motor shaft and disk have a constant angular velocity of spin $p = 8 \text{ rad/s}$ with respect to the motor housing in the direction shown. If γ is constant at 30° , determine the velocity and acceleration of point A at the top of the disk and the angular acceleration α of the disk.

Solution

The rotating reference axes x-y-z are attached to the motor housing.

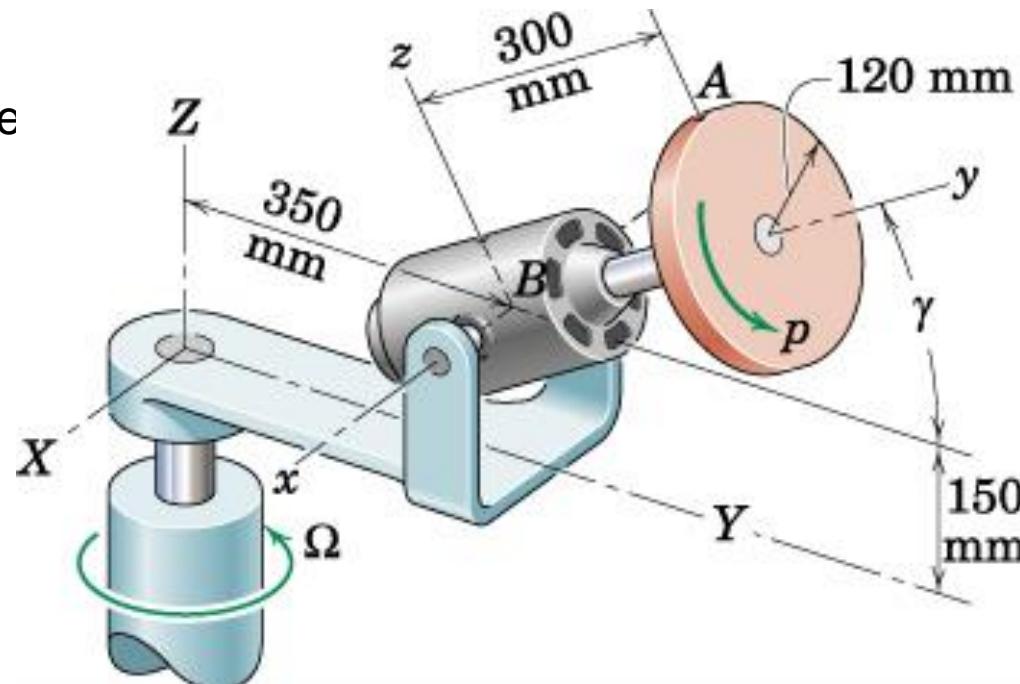
Unit vectors for X-Y-Z: $\mathbf{i}, \mathbf{j}, \mathbf{k}$
Unit vectors for x-y-z: $\mathbf{i}, \mathbf{j}, \mathbf{k}$

Angular vel of x-y-z:

$$\boldsymbol{\Omega} = \Omega \mathbf{k} = 3 \mathbf{k} \text{ rad/s}$$

$$\mathbf{v}_A = \mathbf{v}_B + \boldsymbol{\Omega} \times \mathbf{r}_{A/B} + \mathbf{v}_{\text{rel}}$$

$$\mathbf{a}_A = \mathbf{a}_B + \dot{\boldsymbol{\Omega}} \times \mathbf{r}_{A/B} + \boldsymbol{\Omega} \times (\boldsymbol{\Omega} \times \mathbf{r}_{A/B}) + 2\boldsymbol{\Omega} \times \mathbf{v}_{\text{rel}} + \mathbf{a}_{\text{rel}}$$



Example on Rotating Reference Axes

Velocity of A:

$$\Omega = \Omega \mathbf{K} = 3 \mathbf{K} \text{ rad/s}$$

$$\mathbf{v}_A = \mathbf{v}_B + \Omega \times \mathbf{r}_{A/B} + \mathbf{v}_{\text{rel}}$$

$$\mathbf{v}_B = \Omega \times \mathbf{r}_B = 3 \mathbf{K} \times 0.350 \mathbf{J} = -1.05 \mathbf{I} = -1.05 \mathbf{i} \text{ m/s}$$

In \mathbf{r}_B , \mathbf{K} component is not considered
because $\mathbf{K} \times \mathbf{K} = 0$

$$\Omega \times \mathbf{r}_{A/B} = 3 \mathbf{K} \times (0.300 \mathbf{j} + 0.120 \mathbf{k})$$

$$\mathbf{K} \times \mathbf{i} = \mathbf{J} = \mathbf{j} \cos \gamma - \mathbf{k} \sin \gamma$$

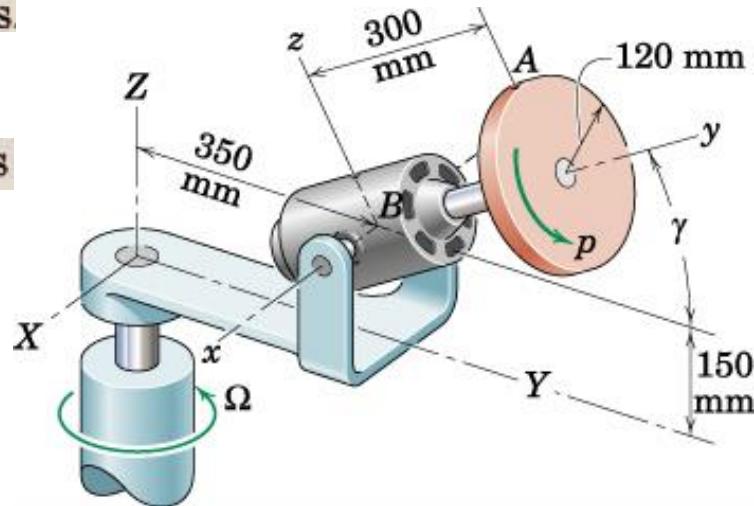
$$\mathbf{K} \times \mathbf{j} = -\mathbf{i} \cos \gamma$$

$$\mathbf{K} \times \mathbf{k} = \mathbf{i} \sin \gamma$$

$$\Omega \times \mathbf{r}_{A/B} = (-0.9 \cos 30^\circ) \mathbf{i} + (0.36 \sin 30^\circ) \mathbf{i} = -0.599 \mathbf{i} \text{ m/s}$$

$$\mathbf{v}_{\text{rel}} = \mathbf{p} \times \mathbf{r}_{A/B} = 8 \mathbf{j} \times (0.300 \mathbf{j} + 0.120 \mathbf{k}) = 0.960 \mathbf{i} \text{ m/s}$$

$$\rightarrow \mathbf{v}_A = -1.05 \mathbf{i} - 0.599 \mathbf{i} + 0.960 \mathbf{i} = -0.689 \mathbf{i} \text{ m/s}$$



Example on Rotating Reference Axes

Acceleration of A

$$\mathbf{a}_A = \mathbf{a}_B + \dot{\Omega} \times \mathbf{r}_{A/B} + \Omega \times (\Omega \times \mathbf{r}_{A/B}) + 2\Omega \times \mathbf{v}_{\text{rel}} + \mathbf{a}_{\text{rel}}$$

Here:

$$\begin{aligned}\mathbf{a}_B &= \Omega \times (\Omega \times \mathbf{r}_B) = 3\mathbf{K} \times (3\mathbf{K} \times 0.350\mathbf{J}) = -3.15\mathbf{J} \\ &= 3.15(-\mathbf{j} \cos 30^\circ + \mathbf{k} \sin 30^\circ) = -2.73\mathbf{j} + 1.575\mathbf{k} \text{ m/s}^2\end{aligned}$$

$$\dot{\Omega} = \mathbf{0}$$

$$\begin{aligned}\Omega \times (\Omega \times \mathbf{r}_{A/B}) &= 3\mathbf{K} \times [3\mathbf{K} \times (0.300\mathbf{j} + 0.120\mathbf{k})] \\ &= 3\mathbf{K} \times (-0.599\mathbf{i}) = -1.557\mathbf{j} + 0.899\mathbf{k} \text{ m/s}^2\end{aligned}$$

$$\begin{aligned}2\Omega \times \mathbf{v}_{\text{rel}} &= 2(3\mathbf{K}) \times 0.960\mathbf{i} = 5.76\mathbf{J} \\ &= 5.76(\mathbf{j} \cos 30^\circ - \mathbf{k} \sin 30^\circ) = 4.99\mathbf{j} - 2.88\mathbf{k} \text{ m/s}^2\end{aligned}$$

$$\mathbf{a}_{\text{rel}} = \mathbf{p} \times (\mathbf{p} \times \mathbf{r}_{A/B}) = 8\mathbf{j} \times [8\mathbf{j} \times (0.300\mathbf{j} + 0.120\mathbf{k})] = -7.68\mathbf{k} \text{ m/s}^2$$

$$\rightarrow \mathbf{a}_A = 0.703\mathbf{j} - 8.09\mathbf{k} \text{ m/s}^2 \quad a_A = \sqrt{(0.703)^2 + (8.09)^2} = 8.12 \text{ m/s}^2$$

Angular Accln:

$$\alpha = \dot{\omega} = \Omega \times \omega = 3\mathbf{K} \times (3\mathbf{K} + 8\mathbf{j}) = \mathbf{0} + (-24 \cos 30^\circ)\mathbf{i} = -20.8\mathbf{i} \text{ rad/s}^2$$

