
Plane Kinematics of Rigid Bodies
Rigid Body
• A system of particles for which the distances between the particles remain 

unchanged.

• This is an ideal case. There is always some deformation in materials under the 

action of loads. This deformation can be neglected if the changes in the shape 

are small compared to the movement of the body as a whole.

Particle Kinematics 
• Developed the relationships governing the disp, vel, and accln of points as they 

move along straight or curved paths.

Rigid Body Kinematics
• Same relationships will be used. In addition, rotational motion of rigid bodies will 

also be accounted for.

• Involves both linear and angular disp, vel, and accln.

• Discussion will be restricted to motion in a Single Plane (Plane Motion).

 When all parts of the body move in parallel planes

 Plane containing mass center is generally considered as plane of motion 

and the body is treated as a thin slab whose motion is confined to the 

plane of the slab.
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Plane Kinematics of Rigid Bodies

Plane Motion
Translation
No rotation of any line in body. 

Motion of the body specified by 

motion of any point in the body 

≈ Motion of a single particle.

Rotation @ a Fixed Axis
All particles move in circular 

paths @ axis of rotn. All lines 

perpendicular to the axis of rotn 

rotate through the same angle.

General Planar Motion

Combination of translation 

and rotation

The actual paths of all 

particles in the body are 

projected on to a single 

plane of motion.
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Plane Kinematics of Rigid Bodies

Rotation
• Described by angular motion

Consider plane motion of a rotating rigid body

since β is invariant

Therefore,

And, during a finite interval:

 All lines on a rigid body in its plane of motion have the same angular 

displacement, same angular velocity (ω), and same angular acceleration (α).  

For plane Rotation: For rotation with constant 

angular acceleration, 

integrals of these eqns give:

+ve dirn for ω and α is the same as that chosen for θ

Particle Kinematics  Rigid Body Kinematics

(s, v, a)         (θ, ω, α)

At t = 0, θ = θ0, ω = ω0
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Plane Kinematics of Rigid Bodies

Rotation @ a Fixed Axis
•All points (except those on the axis) move 

in concentric circles @ the fixed axis normal

to the plane of the figure

Vel of A using n-t for circular motion:

For particle circular motion For body rotational motion



 rrvvrv tn   ,0
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Plane Kinematics of Rigid Bodies

• Rotation @ a Fixed Axis
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Using the cross-product relationship of 

vector notation:

The vector equivalent eqns:



Plane Kinematics of Rigid Bodies

Absolute Motion Analysis

•First approach to rigid body kinematics

•Similar to the absolute motion analysis of the constrained motion of 

connected particles discussed in kinematics of particles (for pulley 

configurations considered, the relevant velocities and accelerations were 

obtained by successive differentiation of the lengths of the connecting 

cables).

•In case of absolute motion analysis of rigid bodies, both linear and 

angular velocities and linear and angular accelerations are required to be 

considered.
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Plane Kinematics of Rigid Bodies

Relative Motion Analysis: Velocity

•Second approach to rigid body kinematics

•In case of kinematics of particles, motion relative to translating axes:

Relative velocity due to Rotation: AB  A’B’ during Δt ΔrB/A = - ΔrA/B
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- First translation, 

then rotation of the 

body

x’-y’ :: non-rotating 

reference axes



Plane Kinematics of Rigid Bodies

• Relative Motion Analysis: Velocity
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To the non-rotating observer attached to B, 

:: the body appears to undergo fixed axis rotation @ B

:: Point A executes circular motion 

:: Equations developed for circular motions can be used



Plane Kinematics of Rigid Bodies

Relative Motion Analysis: Velocity
Relative velocity due to Rotation

ΔrA/B = has the magnitude rΔθ as Δθ approaches zero

•ΔrA/B is accompanied by Δθ as seen from 

translating axes x’-y’

Relative velocity Equation 

Magnitude of the relative vel:



Using r to represent vector rA/B, relative velocity may be written as the vector:

From already derived vector eqn for velocity

ω is the angular velocity vector normal to the plane of the motion 

Relative linear velocity is always perpendicular 

to the line joining two points in question (A-B or 

A’-B)
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Plane Kinematics of Rigid Bodies

Relative Motion Analysis: Velocity
Relative velocity due to Rotation

• Visualizing the separate translation and rotation components 

of the relative velocity equation

• Choosing B as the reference point

• Relative linear velocity is always perpendicular to the line joining two points in 

question (A-B)

• ω is the absolute angular velocity of AB.
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Plane Kinematics of Rigid Bodies

Relative Motion Analysis: Velocity
Example

Solution: Choosing center O as the reference

point for relative velocity eqn since its 

motion is given.

The relative velocity of A wrt O is observed 

from the translating axes x-y attached to O.
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Plane Kinematics of Rigid Bodies

Relative Motion Analysis: Velocity
Example

Solution:

Direction of relative velocity is perpendicular to OA. 

The angular velocity of OA is the same as that of the 

wheel: 

The vector sum vA can be calculated from law of 

cosines:

Dirn of vA can be easily found out.

Point C momentarily has zero velocity and may also 

be chosen as a reference point:

The problem may also be solved using vector formulation.

AC = 200sin30 + [(200cos30)2+(300)2]

= 436 mm
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Plane Kinematics of Rigid Bodies

Instantaneous Center of Zero Velocity

•Relative Motion Analysis: velocity of a point on a rigid body in plane 

motion = relative velocity due to rotation @ a convenient reference point 

+ velocity of the reference point.

•The problem can also be solved by choosing a unique reference point 

that momentarily has zero velocity.

 This point lies on Instantaneous Axis of Zero Velocity (or 

instantaneous axis of rotation), and intersection of this axis with the 

plane of motion is known as Instantaneous Center of Zero 

Velocity.

 As far as velocities are concerned, the body may be considered to be 

in pure rotation in a circular path @ the Instantaneous Axis of Zero 

Velocity.

 Locating the instantaneous center of zero velocity is important to 

simplify the solution of many problems involving rigid body rotations
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Plane Kinematics of Rigid Bodies

Instantaneous Center of Zero Velocity
Locating the Instantaneous Center

• Assume that the dirns of absolute vel of any points A and B

on rigid body are known and are not parallel.

• If C is a point @ which A has absolute circular motion at the 

instant considered, C must lie on the normal to vA through A.

• Similarly, point B can also have absolute circular motion @ 

C at the instant considered.

 Intersection of two perpendiculars will give the absolute center of rotation at the  

instant considered.

 Point C is the instantaneous center of zero velocity and may lie on or off the body

 Instantaneous center of zero velocity need not be a fixed point in the body or a  

fixed point in the plane.

If vel of two points are parallel and the line joining the 

points is perpendicular to the dirn of vel, the 

instantaneous center is located by direct proportion.

As the parallel velocities become equal in magnitude, the IC 

moves farther away from the body and approaches infinity in the 

limit  body stops rotating and translates only.
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Plane Kinematics of Rigid Bodies

Instantaneous Center of Zero Velocity
Locating the Instantaneous Center

If magnitude of velocity at one of the points on the rigid body 

under general plane motion is known (vA)

 Angular velocity of the body ω and linear velocity of every

point in the body can be easily obtained using:

ω = vA / rA  this is also the angular velocity of every line in the body

 velocity of B is vB = rBω = (rB / rA) vA

• Once the IC is located, the dirn of the 

instantaneous velocity of every point in the 

body is readily found since it must be 

perpendicular to the radial line joining the

point in question with IC.

Velocity of all such points: v = rω

Note that the spokes are somewhat visible near IC, 

whereas at the top of the wheel they become blurred.

Also note how the direction of velocity varies at different 

point on the rim of the wheel.
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Plane Kinematics of Rigid Bodies

Relative Motion Analysis: Velocity

Instantaneous Center of Zero Velocity

Motion of the Instantaneous Center

• IC changes its position in space and on the body as body changes its position

• Locus of the ICs in space is known as space centrode

• Locus of the ICs on the body is known as body centrode

• At the instant considered, the two curves are tangent at C

• The body centrode rolls on the space centrode during 

the motion of the body.

• Although the IC of zero velocity is momentarily at rest,

its accln is generally not zero.

 IC cannot be used as an IC of zero acceleration.

• Instantaneous center of zero acceleration exist for bodies in general plane 

motion  will not be discussed in ME101
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Plane Kinematics of Rigid Bodies

Relative Motion Analysis: Velocity
Instantaneous Center of Zero Velocity
Example
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Plane Kinematics of Rigid Bodies
Instantaneous Center of Zero Velocity
Example

Solution:

Directions of vel of A and B are tangent to their 

circular paths @ fixed centers O and O’

• Intersection of the two perpendiculars to the 

vel from A and B  IC C for the link AB

AC = ABtan45 = 350tan45 = 350 mm

CD2 = 3502 + 1502
 CD = 381 mm

CB2 = 3502 + 3502
 CB = 350√2 mm

Angular vel of OB: ωOB = 10 rad/s

vB = r ω = 150√2x10 = 2121.3 mm/s

Ang vel of BC: ωBC = 2121.3/350√2 = 4.29 rad/s

BC is a line considered on the extended rigid 

body  ωBC = ωAC = ωDC = ωAB (clockwise)

vA = r ω = 350x4.29 = 1.5 m/s

vD = r ω = 381x4.29 = 1.632 m/s

Directions of velocities are shown.
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Plane Kinematics of Rigid Bodies
Instantaneous Center of Zero Velocity

Example

Show the instantaneous center of 

zero velocity for member BC.

Solution:

Point B follow circular path of motion 

because link AB is subjected to 

rotation about a fixed axis.

 vB is perpendicular to AB

Motion of B causes the piston to move 

horizontally.

 vC is horizontal

Draw lines perpendicular to vB and vC

 These lines intersect at IC.
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Plane Kinematics of Rigid Bodies
Instantaneous Center of Zero Velocity

Example

Show the instantaneous center of 

zero velocity for the link CB.

Solution:

Points B and C follow circular path of motion 

because links AB and DC are subjected to rotation 

about a fixed axis. 

 vB and vC are perpendicular to AB and DC at the 

instant considered

Radial lines drawn perpendicular to vB and vC are 

parallel and Intersect at infinity

 ωCB = vC /∞ = o

 Link CB momentarily translates

 An instant later, CB will move to a tilted position, 

causing IC to move to some finite location.
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Plane Kinematics of Rigid Bodies
Instantaneous Center of Zero Velocity

Example

The cylinder rolls without slipping 

betn the two moving plates. 

Determine the location of IC and

calculate the  angular velocity of

the cylinder and velocity of its

center C.

Solution:

Since no slipping occurs, velocities of points A and 

B on cylinder will be same as vE and vD resp.

Since vA and vB are parallel, IC can be located by 

proportionality of right triangles on line joining AB.

Direction of velocity of C and hence that of angular 

velocity of cylinder can also be known from the 

similar triangles.

.
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Plane Kinematics of Rigid Bodies
Instantaneous Center of Zero Velocity

Example:  Solution:

Dividing one eqn by other to eliminate ω:
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Plane Kinematics of Rigid Bodies

Relative Motion Analysis: Acceleration
Eqn that describes the relative velocities of two points A and B in plane motion in 

terms of nonrotating reference axes:

Differentiating wrt time:

 Acceleration of point A is equal to vector sum of acceleration of point B and the 

acceleration which A appears to have to a nonrotating observer moving with B.

Relative Acceleration due to Rotation

Consider two points on a rigid body. Since distance between them remains the 

same, the observer moving with B perceives A to have circular motion about B.

• Since the relative motion is circular, relative acceleration term will have both 

normal as well as tangential components.

• Normal component of accln will be directed from A

towards B due to change in direction of vA/B.

• Tangential component of accln will be perpendicular

to AB due to the change in the magnitude of vA/B.

aA and aB are the absolute accelerations of A and B.

 Not tangent to the path of motion when the motion is curvilinear.
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Plane Kinematics of Rigid Bodies

Relative Motion Analysis: Acceleration
We can write:

The magnitudes of the relative accln components:

Acceleration components in vector notations:

ω is the angular velocity of the body

α is the angular acceleration of the body

r is the vector locating A from B

 The relative accln terms depend on the respective

absolute angular vel and absolute angular accln.

Alternatively: aB = aA + aB/A
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