STATISTICS IN HYDROLOGY

- As discursed yesterday, hydrological processes are in most cases not deterministic. The variables describing the hydrological processes may be random.
- -> like may need to incorporate stochasticity in modeling.
- * As defined yesterday A nondom variable X is a variable (have hydrological variable) that is described by probability distribution.
 - \Rightarrow & x decirles annual precipitation of a region Than any observation on annual rainfoll (ray x_i) should fell within the range specified by the probability distribution of x.
- * A set of observations $x_1, x_2, x_3, \dots, x_n$ of the RV X is called a sample.
 - Jule assume that samples are drawn from an infinite population that have statistical parameters like mean, variance, skewness, etc.

- The statistical parameters of the sample can vary that from the population.

* If we have a set of all samples that can be drawn from the population, then that is called Sample Space.

* The sample space can enclose many events.

(Actually an event is a subset in sample space).

Am event can be anything in the sample space that we want to desiribe using probability.

If you look into the sample space for annual pracycitation - it can range from 0 to + 00.

I there were let us take some restrict values say from 0 to 1500 cm.

-> Then you can draw sample space

for nam.

* Am event in this space can be

ray A = where rainfell \le 120 cm

* Another event can be B = where rainfell

* Another event can be B = where rainfell

* 200 cm

the that we can define many events.

- Some of the events may overlap.

Probability

Probability of event A in this sample space.

Probability of event A in this sample space.

This means that an annual rainfell observation made at a place fells within this event.

P(A).

A sample of n observations of annual ramped in mode. x_1, x_2, \dots, x_n I some those observations, y_A observations adherent to the event A.

Then relative frequency of event $A = \frac{y_A}{n}$ I we increase the eigens of the estimate of probability of event A. $P(A) = \frac{y_A}{n}$

Probability Principles

(i) If there are in events in a sample space.

That are not overlapping (i.e. $A_1, A_2, A_3, ..., A_m$)

Then $P(A_1) + P(A_2) + ... + P(A_m) = P(S_2) = 1$.

It is is total probability of the sample space.

(ii) Complementary probability: $\Rightarrow A = S_2 - A$ $P(A_1) = 1 - P(A_1)$ Are

(ii) Conditional probability

If there are two events A and B this

We can define event A as the namifold in year \$\frac{2013}{2013}\$

Also we can define event B as the rainfell in the following year \$\leq 130 cm.

Thospoo, in the sample space there may be occurrences
of rainfell observations where the rainfell avails A and B

There may be situations where A and B seem some overlap.

.: A DB is one avent

 $P(A \cap B) = P(B_A) P(A)$ $P(B_A)$ is called conditional probability.

If occurrence of B does not object on occurrence A A, then $P(A \cap B) = P(B) P(A)$.

Example

The annual rainfall of a place is observed from 1960-1979 and the data is as given in the table below:

	Annual Rainfall		Annual Rainfall
Year	(cm)	Year	(cm)
1960	115.00	1970	84.75
1961	110.75	1971	79.25
1962	94.50	1972	78.75
1963	74.00	1973	149.00
1964	87.50	1974	126.25
1965	124.25	1975	96.50
1966	91.50	1976	108.50
1967	81.25	1977	71.75
1968	154.25	1978	80.00
1969	118.50	1979	129.50

What is the probability that

- i) The annual precipitation R in any given year \leq 87.5 (Event A)
- ii) The annual precipitation R is between 87.5 and 112.5 (Event B)
- iii) The annual precipitation R is \geq 112.5 (Event C)

What is the probability that there will be two successive years of annual rainfall ≤ 100 cm (Event D)

Solution

Number of observations = 20

- i) The number of observations for Event A = 7. Therefore, P(A) = 7/20 = 0.35
- ii) The number of observations for Event B = 7 Therefore, P(A) = 0.35
- iii) P(C) = 1-P(A)-P(B) = 1-0.35-0.35 = 0.30

Let D be the event for first year having annual rainfall ≤ 100 cm Let F be the event for the second year having annual rainfall ≤ 100 cm Therefore, $P(D \cap F) = P(F).P(D) = 0.55*0.55=0.3025$

The frequency histogram

The requertey metegram			
Rainfall	No. of		
Range (cm)	Observations		
70-80	4		
80-90	4		
90-100	3		
100-110	1		
110-120	3		
120-130	3		
130-140	0		
140-150	1		
150-160	1		

