
10 – March 2017 

Lecture – 23 

Conservation of Angular Momentum 

In the last class, we discussed about the conservation of angular momentum principle. 

Using RTT, the angular momentum principle was given as  
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Example: - (As adopted from FM White’s Fluid Mechanics) 

 A pipe bend is supported at point A and connected to a flow system by flexible couplings at 

sections 1 and 2. The fluid is incompressible, and ambient pressure pa is zero. (a) Find an 

expression for the torque T that must be resisted by the support at A, in terms of the flow 

properties at sections 1 and 2 and the distances h1 and h2. (b) Compute this torque if D1 = D2 = 8 

cm, p1 = 0.69×106 Pa gage, p2 = 0.55×106 Pa gage, V1 = 15 m/s, h1 = 5 cm, h2 = 25 cm, and ρ = 

1000 kg/m3.  

 

(Source: Fluid Mechanics by F.M. White) 

Solution :-  

a) The control volume chosen in Fig. above given cuts through sections 1 and 2 and through the 

support at A, where the torque TA is desired.  

The flexible couplings description specifies that there is no torque at either section 1 or 2, and 

so the cuts there expose no moments.  

For the angular momentum terms r v , r  should be taken from point A to sections 1 and 2. 

Note that the gage pressure forces p1A1 and p2A2 both have moments about A.  

 

(Source: Fluid Mechanics by Frank M. White) 
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2 =position vector to section 2. 
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Figure 2 shows that all the cross products are associated with either 1 1 1sinr h  or 2 2 2sinr h  , 

the perpendicular distances from point A to the pipe axes at 1 and 2.  

Therefore, 
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Remember that from the steady flow continuity relation. In terms of counterclockwise moments, 

Eq. (1) then becomes 
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The counterclockwise momentum or torque about A is expressed above.  

The quantities p1 and p2 are gage pressures. Note that this result is independent of the shape of 

the pipe bend and varies only with the properties at sections 1 and 2 and the distances h1 and h2.  

b) D1 = D2 = 8 cm,  

p1 = 0.69×106 Pa gage, 

p2 = 0.55×106 Pa gage,  

V1 = 15 m/s,  

h1 = 5 cm,  

h2 = 25 cm and  

ρ = 1000 kg/m3 

TA = 0.25 ×(.055×106 × (3.14/4) × (0.08)2 + m° V2) – (0.05) × (0.69×106×3.14/4× 

(0.08)2 + m  ×15) 

 

Work it out and complete yourself. 

 

 

 

 

 



Example: - (As adopted from FM White’s Fluid Mechanics) 

Figure below shows a schematic of a centrifugal pump. The fluid enters axially and passes 

through the pump blades, which rotate at angular velocity ω; the velocity of the fluid is changed 

from V1 to V2 and its pressure from p1 to p2. (a) Find an expression for the torque To that must 

be applied to these blades to maintain this flow. (b) The power supplied to the pump would be P 

= ω*To. To illustrate numerically, suppose r1 = 0.2 m, r2 = 0.5 m, and b = 0.15 m. Let the pump 

rotate at 600 r/min and deliver water at 2.5 m3/s with a density of 1000 kg/m3. Compute the 

torque and power supplied. 

 

(Source: Fluid Mechanics by Frank M. White) 

Solution:- 

a) The control volume is chosen to be the annular region between sections 1 and 2 where the 

flow passes through the pump blades . The flow is steady and assumed incompressible. 

The contribution of pressure to the torque about axis O is zero since the pressure forces at 

1 and 2 act radially through O. 
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where steady flow continuity tells us that 

m°in = ρvn12πr1b = m°out = ρvn22πr2b = ρQ 

The cross product r v  is found to be clockwise about O at both sections: 

r2 × v2 = r2v12sin90°k= r2Vt2k              clockwise 



r1 × v1 =  r1vt1k                                     clockwise 

Above Equation thus becomes the desired formula for torque: 

To = ρQ(r2vt2 - r1vt1)k                         clockwise 

This relation is called Eulers’ turbine formula . In an idealized pump, the inlet and outlet 

tangential velocities would match the blade rotational speeds Vt1 = ωr1 and Vt2 = ωr2. Then the 

formula for torque supplied becomes 

To = ρQω(r2
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b) Convert ω to 600(2π /60) = 62.8 rad/s. The normal velocities are not needed here but 

follow from the flow rate 
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For the idealized inlet and outlet, tangential velocity equals tip speed: 

Vt1 = ωr1 = (62.8 rad/s)(0.2 m) = 12.6 m/s 

Vt2 = ωr2 = 62.8(0.5) = 31.4 m/s 

 

Above Equation predicts the required torque to be 

To = (1000 kg/m3)(2.5 m3/s)[(0.5 m)(31.4 m/s) - (0.2 m)(12.6 m/s)] 

      = 33000(kg-m2)/s2 = 33000 Nm 

 

The power required is 

P = ωTo = (62.8 rad/s)(33,000 N m) = 2,070,000 (N m)/s 

                  = 2.07 MW (2780 hp) 

 

In actual practice the tangential velocities are considerably less than the impeller-tip 

speeds, and the design power requirements for this pump may be only 1 MW or less. 

 


