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Lecture 22 

 

Linear Momentum Principle Through RTT 

Yesterday, we discussed about the conservation of linear momentum principle through RTT. 
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 For linear momentum,  
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 We worked on a couple of examples. 

Today, we will see one more example on the topic. 

 

Example:(Adopted from F.M. White’s Fluid Mechanics-Text Book) 

A sluice gate controls the flow in open channels. The flow is uniform at sections 1 and 2. 

Pressure of liquid is assumed as hydrostatic. Neglect bottom friction and atmospheric pressure. 

Derive a formula for the horizontal force F required to hold the gate.  

Soln: Given the figure of sluice gate problem: 

 

 
Fig.1: Problem Figure  

(Source: Fluid Mechanics by Frank White) 

 

 We need to appropriately choose the control volume.  

 Sections 1 and 2 have uniform flow. So we include those sections as part of control 

surfaces. 



 As the flow is uniform, it automatically implies the flow upstream and downstream are 

steady. 

 Assuming the coordinate system  and 
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Conservation of mass equation suggests :  
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i.e., ρu2bh2 – ρu1bh1 = 0 (b is width of section into the paper) 
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 Pressure is considered hydrostatic at section 1 and 2. 

 P1b=patm+ρgh1 

Neglecting atmospheric pressure, p1b= ρgh1 

Similarly, at section 2,  p2b= ρgh2  

 

 The force on the sluice gate wall should be horizontal, so as to balance the hydrostatic 

and the other forces: 
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Recall,    
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Substitute the relation 1
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  to get the final expression for Fgate . 



   Example: 

A liquid jet of velocity Vj and area Aj strikes a single 1800 bucket on a turbine wheel 

rotating at angular velocity ω . Derive an expression for the power P delivered to this 

wheel at this instant as a function of the system parameters. At what angular velocity is 

the maximum power obtained? 

Soln:  As like previous analyses, we need to choose appropriate control volume as shown 

below. 

 

 
Fig. 2: A 1800 jet bucket. The control volume is shown dotted.  

(Image Source: http://www.mne.psu.edu/cimbala/Learning/Fluid/CV_Momentum/home.htm) 

 

You know velocity v = Radius x Angular velocity 

= R x ω 

 

Also, inlet : 1 2
ˆ ˆ0j jv v e e   

Outlet:   1 2
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            Liquid jet enters control volume at speed vj 

The bucket moves right at a speed v =  R ω 

 The relative speed of jet entering the control volume  = vj – v = vj - R ω 

Apply mass conservation first, we get, 𝑚̇1 = 𝑚̇2 = 𝑚̇ = ρAj(vj-Rω) 

Applying momentum principle in steady state conditions:  

http://www.mne.psu.edu/cimbala/Learning/Fluid/CV_Momentum/home.htm
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Maximum power will be felt for the angular velocity ω,  as such 
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 = 0  which gives finally  
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Conservation of Angular Momentum 

 

If in the Reynolds Transport Theorem, the extensive property B is taken as angular momentum, 

then B = 𝐻⃗⃗ , the angular momentum. 

Recall, angular momentum at any point O can be written as : 
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Where r  is the position vector from O to elemental mass dm, v  is the velocity  of that element. 

 

 The angular momentum per unit mass that is β is given by: 
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 The RTT will be :  
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 The rate of change of angular momentum of a system should be equal to the sum of all 

moments about the point O in that system.  
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