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LECTURE 17

Material Derivative

Yesterday, we were discussing about the

» Lagrangian form of expressing position vector
Xi = Xi (X1, X2, Xa,t)
» Eulerian form of expressing equation
Xi = Xi (X1, X2, X3, t)
» Also recall O X1 X2 X3 —Material derivative
0 X1 X2 X3- Spatial derivative
» Subsequently we briefly mentioned (although not essential for this course)
> We were discussing about deformation tensor:
e We considered two neighbouring particles Po and Qo in material coordinates
(i.e. position at time t= to)
e The square of the length between Pg and Qo was:
(dX)? =dX.dX,
= %%dxidxj
= C;dx dx;

Where Cij is Cauchy’s deformation tensor.

> In the deformed configuration, where the same particles are at the position P and Q at

time t, the square of the distance between them is:

(dx)* = dx,dx;
dx, = 2% ax.
ox,

X)? = dx.dx =| —& —* |dX.dX .
(d)? = dx dx, =| P X |gx dx
oX, OX )

i j

(dx)? = G, dX,dX,

Where Gijj is the Green’s deformation tensor



> As mentioned yesterday, it is the difference between dx and dX that describes the

deformation in the continuum.

» Therefore the measure of deformation is:

[ j

(dx)° - (dX)* {%%}dxidxj —dX;dX,

OX, OX
= —k—"—cSij dX;dX,
oX; X,

= 2L, dX;dX
(Please remember &;; dX; dX; = dX;dX;)

Where Lj; is the Lagrangian finite strain tensor
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Li.: = —
Y 2 'oX; 0X;

ij]
You know, what is meant by strain, etc.

» In a similar way, Eulerian strain tensor can also be

£ =Lls P HKe
2l ok ax,

And (dx)? — (dX)? = 2 Gjj dx; dx;
> If (dx)? — (dX)? = 0, it represents rigid body motion.

Fluid Kinematics

Any fluid property can be described in Lagrangian or Eulerian form.

» For example, density of fluid in material description will be:
p=p (X1, X2, X3, t) = p (Xi, 1)

defined

» It will be the density of the fluid particle at the material position ( Xz, X2, X3, t).

» If someone wants to describe density of the fluid in Eulerian form:
p=p (Xi(X1, X2, X3, 1), t) = p (Xi(x;, 1), t) = p* (i, 1)
The star superscript is to show that the material is not same.

as.



The Material Derivative

You know that the fluid continuum encompasses several particles.

» The properties of the particles can change with respect to time.

» The time rate of change of any property of the fluid (continuum) with respect to the
particles is called the material derivative of the property. (Also called substantial
derivative)

> For example, if we consider the instantaneous position of a particle as a property

Xi = Xi (X1, X2, X3, t) = Xi (Xj, t)

The material derivative is given by D%

% = v; - The velocity vector.
Note; 2%t = 2LirX) _ Do _ )
Dt Dt Dt

2% = 0 Always (Why??)

» For any general property — scalar or vector, or tensor (say P;;....)

» We can represent it in Lagrangian form Pj;.... = Pjj.... ( X1, X2, X3, t)

DPy; . 0Py (Xyb)

Dt at

Because by this time you know DD—)? =0

> If the property Pj;..Is represented in Eulerian form, i.e. P;... = Pjj.... (Xi, t)

DPy; (xpt) 0Py (x3t) n OPyj.. Dxy
Dt ot dx; Dt

DPy; = 5Pij....+ v OPij..
Dt at k= ax;

oP

0. _

at

ap
Local rate of change and v, —==

i
Xk

= Convective rate of change

» For defining acceleration, if vi = vi( X, t) (Lagrangian)

Then:



Dv; _ av;

Dt Y
If velocity is expressed in Eulerian form

1.e.vi=Vi (Xt

Dv; ov; av;
—=q = — v —
Dt L at Ty 0x;

Then,

ov; . o0v; . .
a—t‘ =Local acceleration and v; a_xl =Convective acceleration
j

» We can also form partial derivatives of instantaneous velocity with respect to spatial

coordinates.

. . . . av;
This again gives a second rank tensor i.e. a—x‘
j

> Recall earlier, we told that any tensor can be described in symmetric and anti-

symmetric form:

o vi_ 1[% %]Jrl[%_ %]

" 0xj 2|0x;  0x; 2|ox;  ox;
=Dy +Vij
Where Djj — the symmetric tensor is called rate of deformation tensor or strain rate
tensor
=1 [6_ N %]
2 | 0x; 0x;

Vij — The skew- symmetric tensor is called vorticity tensor or spin tensor

_ 10w _ %y
- 2 ax]' 0x;
» You can derive on your own that rate of deformation tensor is material derivative of

Eulerian linear strain tensor.



