15/02/2017

<u>LECTURE – 15</u>

Green Gauss Theorem

Yesterday, we continued discussions on index notations that can be used to represent tensors.

In index notations we saw the

- Gradient of a scalar
- Divergence of a vector
- Cross product of vector etc.

We also saw that a second rank tensor can be written as a sum of a symmetric & asymmetric tensor.

i.e,
$$B_{ij} = \frac{1}{2} [B_{ij} + B_{ji}] + \frac{1}{2} [B_{ij} - B_{ji}]$$

First part is symmetric & second part is asymmetric

Today we will briefly discuss about Green Gauss Theorem etc.

Green Gauss Theorem relates the volume & surface integrals.

• The most common form of Gauss's theorem is the Gauss divergence theorem which you have studied in previous courses.

If you have a volume U formed by surface S, the Gauss divergence theorem for a vector \vec{v} suggest that

$$\iint_{S} \vec{v}.\hat{n}dS = \iiint_{U} \nabla.\vec{v}dU$$

where, S = bounding surface on closed surface

U = volumetric domain

 \hat{n} = the unit outward normal vector of the elementary surface area ds

• This Gauss Divergence theorem can also be represented using index notations.

$$\iint_{S} v_{i} n_{i} dS = \iiint_{U} \frac{\partial v_{i}}{\partial x_{i}} dU$$

For any scalar multiple or factor for vector \vec{v} , say $\alpha \vec{v}$, the Green Gauss can be represented as

$$\iint_{S} (\alpha \vec{v} \cdot \hat{n}) dS = \iiint_{U} \nabla \cdot (\alpha \vec{v}) dU$$

i.e.
$$\iint_{S} (\alpha \vec{v} \cdot \hat{n}) dS = \iiint_{U} \alpha (\nabla \cdot \vec{v}) dU + \iiint_{U} (\vec{v} \cdot \nabla) \alpha dU$$

or
$$\iint_{S} \alpha v_{i} n_{i} dS = \iiint_{U} \alpha \frac{\partial v_{i}}{\partial x_{i}} dU + \iiint_{U} v_{i} \frac{\partial \alpha}{\partial x_{i}} dU$$

Gauss's theorem is applicable not only to a vector \vec{v} .

It can be applied to any tensor $\overline{\overline{B}}$ (say)

$$\iint_{S} \alpha B_{ij} n_{i} dS = \iiint_{U} \alpha \frac{\partial B_{ij}}{\partial x_{i}} dU + \iiint_{U} B_{ij} \frac{\partial \alpha}{\partial x_{i}} dU$$

Stoke's Theorem

Stoke's theorem relates the <u>integral over an open surface S</u>, to <u>line integral</u> around the surface's bounding curve (say C)

You need to appropriately choose the unit outward normal vector to the surface

Kinematics of Fluid Flow

- You know kinematics is the study of motion without reference to the forces or stresses that produce that motion.
- You have also seen the concept of fluid particles & that the collection of particles form the continuum of the fluid.
- You have also seen Lagrangian & Eularian description of the flow field.
- Lagrangian description is based on the motion of fluid particles.

• The path of the particle is given in the X_1 , X_2 , X_3 coordinate system (as drawn)

Initially the position vector of the particle was $\vec{r}_0(t_0)$

Therefore \vec{r}_0 is a known as referred value.

Based on the particle at \vec{r}_0 at time t_0 , that particle will be having positions at different times.

$$\vec{r} = \vec{r}(\vec{r}_0, t)$$

- The velocity of the field particle will be $\vec{v} = \frac{d\vec{r}(\vec{r_0}, t)}{dt}$
- The acceleration of the particle will be, $\vec{a} = \frac{d^2 \vec{r}(\vec{r_0}, t)}{dt^2}$
- This descriptions of velocity & accelerarion (i.e, the Lagrangian approach) is same as that you has studied in mechanics

Any property $F = F(\vec{r}(\vec{r}_0, t), t)$

- As was suggested earlier, it may be cumbersome to describe fluid motion through Lagrangian approach
- Moreover, the medium is getting completely deformed during the motion.
- In Eularian approach, we need to interpret velocity & acceleration vectors.
- In Eularian description, we will involve the Eularian vectors x & time t.
- Any fuild property (say F), depends directly on $\vec{x} \& t$.

$F = F(\vec{\mathbf{x}}, t)$

- As we are not following individual fluid particles, we have to relate Lagrangian & Eularian descriptions.
- At any snapshot time 't', if we merge the Lagrangian & Eularian coordinate, then $F(\vec{r}(t, \vec{r_0}, t_0), t) = F(\vec{x}, t)$

Where $x = \vec{r}(t, \vec{r}_0(t_0))$