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Lecture 12  

 

Control Volume Approach & Reynolds Transport Theorem 

Recall, in the last class we were discussing about a control volume. 

 We took the duster, and in solid mechanics, we called this duster as a system. 

 You were able to directly apply the principles of conservation of mass, linear momentum, 

etc. directly on the system to interpret the mechanics. 

 For the duster, as its mass is constant and the particles inside are same, the above 

conservation principle were easy to apply. 

 

 However, in fluid mechanics, it is difficult to analyze a system (or volume) from fluid by 

considering or tracking the same particle.  

 Therefore, in fluids we assumed a definite volume in space that forms the required 

environment and we can apply mechanics principles on the volume. Such volumes are 

called control volumes.  

 

 To analyze control volume, we need to convert the mechanics principles that were 

applicable to a system to the form of control volume. 

 

 If you take a control volume of a liquid, where it is flowing, you can visualize that a fluid 

system that was initially occupying the control volume will be replaced by another fluid 

system at the next instant (i.e., the fluid particles are changing). 

 To convert the systems analysis conservation concept to a control volume conservation 

concept, we need to appropriately relate, conceptually as well as mathematically, both of 

them.  How?? 

 

 The conversion from system analysis to control volume analysis is represented by 

Reynolds Transport Theorem.  

System Control Volume 

 Some fluid property of fluid 

described in space.  

 Volume occupying a space and have a 

shape.  

 Separated from its surroundings 

by boundaries.  

 Volume consists of surfaces called 

control surfaces. 

 The particles inside the system 

will be same throughout.  

 The fluid particles inside will 

continuously change.  

 



How will you do Control Volume Analysis?  

 

Volume and Mass Flow Rate 

Considering an arbitrary volume of liquid in space:  It is separated from its surroundings by 

control surfaces.  

 
Fig. 1: Elemental area on control surface representation  

(Source: Fluid Mechanics by F.M. White) 

 

 Take a small elemental area ΔA on the control surface of the volume. The outward 

normal of the elemental area is n̂   as shown in Fig. 1 

 

 Let the velocity vector of fluid passing through the elemental area be v . 

 n̂  and v   may not be collinear.  

 The volume of fluid that will sweep through the elemental area ΔA in an 

elemental time Δt will be : 

 

ΔV = v  Δt ΔA cosθ 

 

 ΔV = ( v . n̂  ) ΔA Δt 

(The component of velocity vector in the direction of n̂  or the component of area 

vector in the direction of v ) 

 



 
𝛥𝑉

Δt
  = ( v . n̂ ) ΔA 

where, 
𝛥𝑉

Δt
  = volume flow rate through the elemental area ΔA. Also, you know, on 

integrating ΔA throughout, you will get the total surface area of the control 

volume. 

 

 Therefore, to get the total volume rate of flow Q through S, we will first limit the 

elemental area ΔA 

 lim
𝛥𝑡→0,𝛥𝐴→0

𝛥𝑉

Δt
 = 

𝑑𝑉

𝑑𝑡
 

 ˆ( . )
S S

dV
Q v n dA

dt
     

where , Q = total volume flow rate. 

 

 If the fuid concerned in the control volume has a density ρ, then Mass flow 

rate 

ˆ( . )
S

m v n dA   

 

Extensive and Intensive Property 

 For the control volume of the fluid, let B be any property of the fluid that is related to mass.  

(e.g., Mass, Momentum, Energy, etc.).  

This B is called the extensive property.  

 

Similarly, we can define another property  

β = 
dB

dm
 (i.e., amount of B per unit mass in any element of the fluid). 

where β is the intensive property. 

 

  

 

 

 

 

 

 

 



To develop Reynolds Transport Theorem 

 

 
Fig. 2: Nomenclature to derive the Reynolds Transport Theorem  

(Source: Dynamics of Fluids in Porous Media by Jacob Bear) 

 

 Let us assume a control volume of a fluid (shown in solid black colour) at an instant “t”. 

 As the control volume was chosen at the instant “t”, the fluid particles inside will be 

unique. 

 

 This is as good as a system (e.g. the duster). 

 

 However, as the fluid is moving, at another instant t+Δt, let the fluid particles that formed 

the system at time “t” be shifted to a new position and it occupies another location 

(shown in dotted lines).  

 

 Therefore, at t+Δt, the fluid particles in the control volume is different from that at time 

“t”. 

 At instant “t”, the extensive property: 

CV

CV

B dU    

           Where ρ is the density of the fluid.  

 

 



 The extensive property in the control volume changes due to the following reasons:  

1. Time rate of change of B within the control volume 

( )
[ ]CV

CV

d B d
dU

dt dt
    

2. The outflow of the property B through the surfaces of the control volume 

ˆ( . ) out

CS

v n dA   

where ˆ.v n  will be positive. 

3. The inflow of the property B through the surfaces of the control volume 

ˆ( . ) in

CS

v n dA  

where ˆ.v n  will be negative.  

 

 The inflow and outflow can be marked as net outflow.  

 

 Extensive property in the control volume changes can be summated as: 

 ˆ[ ] (v.n)dA
CV CS

d
dU

dt
      

Note that this representation is Eulerian.  

 

However, as said earlier, the conservation principles can only be directly applied to 

the system.  

For that, let us take Δt  0. 

 

Then the control volume and system volume will be the same. 

 
system control volume

dB dB

dt dt
   

system

ˆ[ ] (v.n)dA
CV CS

dB d
dU

dt dt
     

 

That is, we can relate the time rate of change of property B stored in the system with respect to 

that of the control volume. The above equation is Reynolds Transport Theorem. 

         

 


