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LECTURE – 42 

 

PIPE FLOWS: 

 

Yesterday, for the example problem 

Δp = f(V, ρ , μ, L, D) 

We came up with the non – dimensional relation 
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You can plot 𝜋1 versus 𝜋2 with 𝜋3 as a parameter. 

Or, 

You can plot 𝜋1 versus 𝜋3 with 𝜋2 as a parameter. 

 

As you need to find Δp versus V, let us first go with 𝜋1 versus 𝜋2 with 𝜋3 as a parameter. 

 

From the first row of the data 

 

i.e. 0.001 / mswater kg  , evaluate 
2

9

2
3.73 10

D p




   

                                                        24700
VD


  

From the second row, 700,
L

D
    

2
10

2
1.78 10

D p




   

                                                          49370
VD


  



Like this, you evaluate for each row of the data. You will get nine data points. 

For same 
𝐿

𝐷
 ratio, you will see that Δp is increasing linearly with L. 

 

As L is present only in the non-dimensional parameter
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L

D
   , (where 𝜋1 & 𝜋2 is devoid of it), 

you can now state 
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where, g( ) is a function. 

(Please note that this g is not acceleration due to gravity) 

 

By plotting the available data you will see that  

1.753

2
0.155

D p VD

L

 

 

 
  

 
 

Most of the Newtonian smooth pipe flows correlate in this same manner. 

This is the principle in many pipe flow problems. 

 

 

 

 

 

 

 

 

 



VISCOUS FLOWS   OR   PIPE FLOWS: 

One of the most important application of solving linear momentum & continuity equations are in 

pipe flows.   

Recall, you cannot have a fully general solution to the Navier -Stokes equation. 

Based on the nature of the problem & type of fluid flow, we can get particular solutions. 

As said earlier you may have to neglect or sometimes incorporate the effects of 

 Viscosity 

 Gravity 

 Compressibility 

 Pressure, etc. 

 

As a civil engineer, you will be mostly dealing with incompressible fluid (or water) in many 

practical problems. 

We will see the application to pipe flows, where as a civil engineer, you may have to design pipe 

flow network. 

 

Pipe flows are generally viscous. 

Reynold’s number plays a prominent part in understanding the pipe flow. 

 

Based on the Reynold’s number, a pipe flow is classified as  

 Laminar  

 Turbulent 

 

 

Example (As adopted from FM White’s Fluid Mechanics): 

From Reynold’s experiments on pipe flows of various diameters, it was observed that there 

is a critical Reynold’s number 𝑹𝒆𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍 ≈ 𝟐𝟑𝟎𝟎 . Below this value, pipe flow is laminar. 

For a flow through a 5 cm diameter pipe, at what velocity will this critical Reynold’s 

number appear at 20°C. a) For airflow, b) For water flow. 

The input parameters are: 

 For air, 51.80 10 / msair kg    , 

1

41.6 ReeL

D
   31.205 /air kg m   



For water, 0.001 / mswater kg   , 3998 /water kg m   

 

Solution: 

For pipe flow, the Reynold’s number is defined as 𝑅𝑒 =
𝜌𝑉𝐷

𝜇
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Fully developed pipe flow: 

Usually in pipe flow design, you take “fully developed pipe flow.” 

“A fully developed pipe flow is the one in which the effects of viscosity are fully present & the 

pipe entrance effects are not taken into account.” 

Consider an incompressible pipe flow 

 

 

 

 

 

 

 

                                Pressure x 

𝐿𝑒 

Entrance Pressure drop 



Let us assume that the pipe is connected to an inviscid flow stream. 

Therefore, there will be no effect of viscosity at the entrance. The velocity profile will look like 

the first portion. 

The boundary layer starts growing with respect to pipe direction & merges at length 𝐿𝑒 , where 

the full effects of viscosity is witnessed in velocity profile. 

From the length 𝐿𝑒 onwards the pipe will be having fully developed viscous flow. 

From dimensional analysis done by other scientists and experts, it is observed that the entrance 

length 𝐿𝑒 is a function of the Reynold’s number. 

In laminar flow: 0.06ReeL
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For turbulent flow:  
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Let us the pipe is connected to an inviscid flow stream. 

Therefore, there will be no effect of viscosity at the entrance. The velocity profile will look like 

the first portion. 

The boundary layer starts growing with respect to pipe direction & merges at length 𝐿𝑒 , where 

the full effects of viscosity is witnessed in velocity profile. 

From the length 𝐿𝑒 onwards the pipe will be having fully developed viscous flow. 

From dimensional analysis, it is observed that the entrance length 𝐿𝑒 is a function of the 

Reynold’s number. 
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Example (Adopted from FM White’s Fluid Mechanics) 

A 2 cm diameter pipe is 20 m long and delivers water at 8 × 10-4 m3/s at 200C. What fraction of 

this pipe is taken as entrance region? 

Solution: Given Q = 8 × 10-4 m3/s  



𝑉𝑎𝑣𝑔 =
𝑄

𝐴
=

8 × 10−4

𝜋
4 × (0.02)2

= 2.546 𝑚/𝑠 

 

For water at 200C ,  𝜌 =
998𝑘𝑔

𝑚3  𝑎𝑛𝑑  𝜇 = 0.001𝑘𝑔/𝑚𝑠 

 𝑅𝑒 =
𝜌𝑉𝐷

𝜇
=

998×2.546×0.02

0.001
= 50820 

 Hence the pipe is turbulent. 

Now 
𝐿𝑒

𝐷
≈ 1.6𝑅𝑒

1

4  

 𝐿𝑒 = 1.6 × (50820)
1

4 × 0.02 = 0.48 m  

 𝐿𝑒 = 0.48 ≪ 20 m 

 You can approximate fully developed pipe flow for this pipe throughout. 

 

 

 

Head loss Friction Factor 

 In various pipe flow problems, we need to analyse the head loss (i.e. the energy 

head loss). 

 For pipe flow analyses, let us again use the control volume. The flow is 

incompressible and steady (assumed). 
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The length of pipe = L = x1 - x2 

 The one-dimensional continuity equation suggests 

𝑄1 = 𝑄2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

As pipe diameter is same at 1-1 and at 2-2 (the control volume portion), 

 𝐴1 = 𝐴2 = 𝐴 (𝐴𝑟𝑒𝑎 𝑜𝑓 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛)𝑎𝑛𝑑 𝑣1 = 𝑣2 = 𝑣 

 The steady flow energy equation (please note that this is NOT INVISCID) is: 

𝑝1

𝜌𝑔
+ 𝛼

𝑣1
2

2𝑔
+ 𝑧1 =

𝑝2

𝜌𝑔
+ 𝛼

𝑣2
2

2𝑔
+ 𝑧2 + ℎ𝑓 

Where ℎ𝑓 is the energy loss. 

 As the flow is steady and also the velocity profile is same throughout, 𝛼1 = 𝛼2 

 

So, ℎ𝑓 = ∆𝑧 +
∆𝑝

𝜌𝑔
 

Change in height of hydraulic grade line. 

 

 If we apply momentum equation to the control volume: 

Consider pressure, gravity and shear forces: 

∑ 𝐹𝑥 = ∆𝑝 (
𝜋

4
𝐷2) + 𝜌𝑔 (

𝜋

4
𝐷2) 𝐿𝑠𝑖𝑛𝜙 − 𝜏𝑤(2𝜋𝑅)𝐿 

 ∑ 𝐹𝑥 = 𝑚̇(𝑣2 − 𝑣1) in steady state condition. 

 

As 𝑣1 = 𝑣2  so, ∑ 𝐹𝑥 = 0 

i.e. 𝜏𝑤(2𝜋𝑅)𝐿 = ∆𝑝𝜋𝑅2 + 𝜌𝑔𝜋𝑅2𝐿𝑠𝑖𝑛𝜙 

 

 Shear stress, 𝜏𝑤 = 𝑅𝜌𝑔 [
∆𝑝

𝜌𝑔
+ ∆𝑧] 

 𝜏𝑤 = 𝜌𝑔𝑅ℎ𝑓 

 Shear stress is related to the head loss, so, ℎ𝑓 =
𝜏𝑤

𝜌𝑔𝑅
 

 From literature, it is available about Darcy-Weisbach friction factor ‘f’, and how head 

loss is defined, based on friction factor, i.e. ℎ𝑓 =
𝑓𝐿𝑉2

𝐷2𝑔
  (Refer to your lab manual) 

 The friction factor in pipe flow analysis is some function of 

=𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑅𝑒 ,
𝜀

𝐷
, 𝑑𝑢𝑐𝑡 𝑠ℎ𝑎𝑝𝑒) 

 Where , 𝜀 = 𝑤𝑎𝑙𝑙 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 ℎ𝑒𝑖𝑔ℎ𝑡 

 

 

 

 



Laminar Fully Developed Pipe Flow 

For a fully developed Poiseuille flow in a round pipe of diameter D, radius R: 

𝑢 = 𝑢𝑚𝑎𝑥 (1 −
𝑟2

𝑅2
)  𝑤ℎ𝑒𝑟𝑒 𝑢𝑚𝑎𝑥 = (−

𝑑𝑝

𝑑𝑥
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As, 𝑣 =
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 𝑢𝑚𝑎𝑥
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∆𝑝 + 𝜌𝑔∆𝑧

𝐿
]

𝑅2
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𝑄 = ∫ 𝑢𝑑𝐴 = 𝜋 𝑅2𝑣 =
𝜋𝑅2
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Or, ℎ𝑓 =
32𝜇𝐿𝑉

𝜌𝑔𝐷2 =
8𝜇𝐿𝑉

𝜌𝑔𝑅2 

 ℎ𝑓 =
8𝜇𝑉𝐿

𝜌𝑔𝑅2 = 𝑓𝑙𝑎𝑚𝑖𝑛𝑎𝑟
2𝐿

𝑅
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Where, 𝑓𝑙𝑎𝑚𝑖𝑛𝑎𝑟 → 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (
1

𝑅𝑒
) 

 

Example (Adopted from FM White’s Fluid Mechanics) 

An oil with ρ=900kg/m3 and μ=0.18kg/ms flows through an inclined pipe. Two sections, 

section 1 and section 2 are 10 m apart. Assume steady laminar flow. 

a) Check whether flow is up or down. 

b) Compute hf between 1 and 2. 

c) Compute the discharge Q. 

d) Velocity, V. 

e) The Reynolds number. 

Given following inputs: p1=350000Pa, z1=0.0, p2=250000Pa, z2=10sin400=6.43m, 

D=6cm. 



 

Solution:                   
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The flow of oil will be in the direction of falling hydraulic gradient. 

As the flow is steady, 𝑣1 = 𝑣2   𝑠𝑜 
𝑣1

2

2𝑔
=

𝑣2
2

2𝑔
   

(𝐻𝐺𝐿)1 =
𝑝1

𝜌𝑔
+ 𝑧1 =

350000

9.8 × 900
+ 0.0 = 39.64𝑚 

(𝐻𝐺𝐿)2 =
𝑝2

𝜌𝑔
+ 𝑧2 =

250000

9.8 × 900
+ 6.43 = 34.74𝑚 

So, (𝐻𝐺𝐿)1 > (𝐻𝐺𝐿)2 

a) The flow occurs from 1 to 2. 

b) Head loss between 1 and 2, ℎ𝑓 = 39.64 − 34.74 = 4.9𝑚 

c) Discharge, Q for circular pipe,  

𝑄 =
𝜋𝑅2

8𝜇
[
∆𝑝 + 𝜌𝑔∆𝑧

𝐿
] =

𝜋𝑅4𝜌𝑔

8𝜇𝐿
ℎ𝑓 =

𝜋 × 900 × 9.81 × (0.03)4

8 × 0.18 × 10
× 4.9 = 0.0076 𝑚3/𝑠 

d) Velocity, 𝑉 =
𝑄

𝐴
=

0.0076

𝜋×(0.03)2
= 2.7

𝑚

𝑠
 

e) Reynolds number, 𝑅𝑒 =
𝜌𝑉𝐷

𝜇
=

900×2.7×0.06

0.18
= 810 (𝐿𝑎𝑚𝑖𝑛𝑎𝑟 𝑓𝑙𝑜𝑤) 


