PIPE FLOWS:

Yesterday, for the example problem
Ap=1f(V,p,p L, D)

We came up with the non — dimensional relation
7, = T (m,, ;)
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VD L
Ap= (2=, 5)
u D

You can plot r; versus m, with w5 as a parameter.
Or,

You can plot r; versus 5 with r, as a parameter.
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As you need to find Ap versus V, let us first go with mr; versus m, with 5 as a parameter.

From the first row of the data

2
i.e. i, =0.001kg/ms, evaluate pD ZAp =3.73x10°
u
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From the second row, L 700, pD ZAp =1.78x10"
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Like this, you evaluate for each row of the data. You will get nine data points.

For same % ratio, you will see that Ap is increasing linearly with L.

As L is present only in the non-dimensional parameter 7, :% , (where m; & m, is devoid of it),

you can now state

L
m, = (7, 7,) :Bg(ﬂz)
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or,
where, g() is a function.

(Please note that this g is not acceleration due to gravity)

By plotting the available data you will see that
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Most of the Newtonian smooth pipe flows correlate in this same manner.

This is the principle in many pipe flow problems.



VISCOUS FLOWS or PIPE FLOWS:

One of the most important application of solving linear momentum & continuity equations are in
pipe flows.

Recall, you cannot have a fully general solution to the Navier -Stokes equation.
Based on the nature of the problem & type of fluid flow, we can get particular solutions.
As said earlier you may have to neglect or sometimes incorporate the effects of

e Viscosity

e Gravity

e Compressibility
e Pressure, etc.

As a civil engineer, you will be mostly dealing with incompressible fluid (or water) in many
practical problems.

We will see the application to pipe flows, where as a civil engineer, you may have to design pipe
flow network.

Pipe flows are generally viscous.

Reynold’s number plays a prominent part in understanding the pipe flow.

Based on the Reynold’s number, a pipe flow is classified as

v' Laminar
v" Turbulent

Example (As adopted from FM White’s Fluid Mechanics):

From Reynold’s experiments on pipe flows of various diameters, it was observed that there
is a critical Reynold’s number Re ,i;ica1 = 2300 . Below this value, pipe flow is laminar.
For a flow through a 5 cm diameter pipe, at what velocity will this critical Reynold’s
number appear at 20°C. a) For airflow, b) For water flow.

The input parameters are:

1

For air, u, =1.80x10°kg/ms , = ~1.6xRe* p,, =1.205kg/m?

ol



For water, .. =0.001kg/ms , p,... =998kg/m’

Solution:

For pipe flow, the Reynold’s number is defined as Re = %

o PYD _1.205xV x0.05

I:Qecritical| — 230 -5
U 1.80x10
0r Vo | ey =0-689M/s
Recritical| I = 2300 = pVD = 998XV XOOS
water ﬂ 0.001
OFVatr | o = 0-0461M /'S

Fully developed pipe flow:

Usually in pipe flow design, you take “fully developed pipe flow.”

“A fully developed pipe flow is the one in which the effects of viscosity are fully present & the
pipe entrance effects are not taken into account.”

Consider an incompressible pipe flow
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Let us assume that the pipe is connected to an inviscid flow stream.

Therefore, there will be no effect of viscosity at the entrance. The velocity profile will look like
the first portion.

The boundary layer starts growing with respect to pipe direction & merges at length L, , where
the full effects of viscosity is witnessed in velocity profile.

From the length L, onwards the pipe will be having fully developed viscous flow.
From dimensional analysis done by other scientists and experts, it is observed that the entrance

length L, is a function of the Reynold’s number.

In laminar flow: %z 0.06Re

1
For turbulent flow: % ~1.6xRe*

Let us the pipe is connected to an inviscid flow stream.

Therefore, there will be no effect of viscosity at the entrance. The velocity profile will look like
the first portion.

The boundary layer starts growing with respect to pipe direction & merges at length L, , where
the full effects of viscosity is witnessed in velocity profile.

From the length L, onwards the pipe will be having fully developed viscous flow.
From dimensional analysis, it is observed that the entrance length L, is a function of the

Reynold’s number.

In laminar flow: %z 0.06Re

1
For turbulent flow: % ~1.6xRe*

Example (Adopted from FM White’s Fluid Mechanics)

A 2 cm diameter pipe is 20 m long and delivers water at 8 x 104 m?/s at 20°C. What fraction of
this pipe is taken as entrance region?

Solution: Given Q = 8 x 10* m®/s



8x107*

Vo = ~=— "~ —2546m/s
A Tx(0.02)2
For water at 20°C , p = 93?59 and p = 0.001kg/ms
_ pVD _ 998X2.546X0.02 _
= R, = PRy Ta——— 50820

= Hence the pipe is turbulent.
L 1
NOW;Q ~ 1.6R,*

1
= L, =1.6 x(50820) X 0.02 = 0.48 m

2 L, =048 < 20m

= You can approximate fully developed pipe flow for this pipe throughout.

Head loss Friction Factor
> Invarious pipe flow problems, we need to analyse the head loss (i.e. the energy
head loss).
> For pipe flow analyses, let us again use the control volume. The flow is
incompressible and steady (assumed).




The length of pipe =L = x1- X2

=

=

The one-dimensional continuity equation suggests
Q1 = Q, = constant
As pipe diameter is same at 1-1 and at 2-2 (the control volume portion),
A, = A, = A (Area of cross section)and vy = v, = v
The steady flow energy equation (please note that this is NOT INVISCID) is:

P1 P2, v’
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Where h; is the energy loss.
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As the flow is steady and also the velocity profile is same throughout, @; = «a,

So, [hy = Az + 22
pg

Change in height of hydraulic grade line.

If we apply momentum equation to the control volume:
Consider pressure, gravity and shear forces:

_An (T2 T2 7 cind —
ZFx—Ap(4D )+pg(4D )Lsmqb T, (2nR)L
Y. E, = m(v, — v;) in steady state condition.

Asv, =v, so, L FE, =0
i.e. 7,,(2nR)L = ApnR? + pgnR?Lsin¢

Shear stress, t,, = Rpg [2—3 + Az]

Tw = pgRhg
Shear stress is related to the head loss, so, hy = ;TWR
From literature, it is available about Darcy-Weisbach friction factor ‘f’, and how head

2
loss is defined, based on friction factor, i.e. hy = ];LT‘; (Refer to your lab manual)

The friction factor in pipe flow analysis is some function of
:function(Re,%, duct shape)

Where , ¢ = wall roughness height



Laminar Fully Developed Pipe Flow
For a fully developed Poiseuille flow in a round pipe of diameter D, radius R:

r? dp\ R?
U=Upgxe | 1 — Rz where Upyg, = (— E)E

B [Ap + pgAz] R?
V= L 8

TR? [Ap + pgAz]

Q=judA=7tR2v=8H T

__4uv __ 8uV _ R [Ap+pgAz]

Since T —| du
w = .Udr

r=R R D 2 L
Ashy = Az +°0
SO 34V _ Reg [Az + A—p]
D 2L pg
8uv Rpgh
D 2L 7

_ 32uLV _ 8uLV
Or, hy = pgb? ~— pgR2

_ 8uvL 2L V?
f — pgR? - flaminar?@

Where, fiaminar = friction factor = function (Ri)
e

Example (Adopted from FM White’s Fluid Mechanics)

An oil with p=900kg/m?® and u=0.18kg/ms flows through an inclined pipe. Two sections,
section 1 and section 2 are 10 m apart. Assume steady laminar flow.

a) Check whether flow is up or down.

b) Compute hs between 1 and 2.

c) Compute the discharge Q.

d) Velocity, V.

e) The Reynolds number.
Given following inputs: p1=350000Pa, z:=0.0, p>=250000Pa, z,=10sin40%=6.43m,
D=6cm.



Solution:

The flow of oil will be in the direction of falling hydraulic gradient.

2 1722

As the flow is steady, v; = v, so 2 = 2=

29 29
HGL), =PL 4, = 350000 + 0.0 = 39.64
(HGL) = 70+ 21 = 555 g0 T 00 = 39.64m

Py 250000

HGL), = 242, = ——— 4 6.43 = 34.74
(HGL), =2+ 7 = g —g05 + 6:43 = 34.74m

So, (HGL), > (HGL),

a) The flow occurs from 1 to 2.

b) Head loss between 1 and 2, hy = 39.64 — 34.74 = 4.9m

c) Discharge, Q for circular pipe,
_ mR*[Ap + pgAz] mR*'pg ~ mx900x9.81x (0.03)*
_8;1[ L ]_ suL T~ 8% 0.18 X 10

d) Velocity, V = 2 = —22%7¢ =

A wx(0.03)2 s
pVD _ 900X2.7X0.06
- 0.18

X 4.9 = 0.0076 m3/s

e) Reynolds number, R, = = 810 (Laminar flow)



