LECTURE 41 21- APRIL -2017

MODELLING and SIMILARITY

- > The dimensional analysis what you are studying is used in modelling studies.
- > You saw the Buckingham Π theorem.
- ➤ How will you do it practically?
 - Selection of variables is important. It requires good experience to decide which variable is important, etc.
 - Based on the requirement, the engineer can judge and suggest
 - That viscous flows can be neglected or not.
 - Temperature effects can be neglected or not.
 - ✤ Whether surface tension is important or not.
 - ✤ Gravitational force is important or not, etc.
 - Once the variables are selected, you need to perform analysis. Identify Π 's.
 - The experimenters will try to seek similarity between the model and the prototype designed.
- > On any phenomena, the engineer may come up with a non-dimensional relation. $\Pi_1 = f(\Pi_1, \Pi_2, \Pi_3, \dots, \Pi_k)$
- > The flow conditions of a model test will be completely similar to the prototype, if all the dimensionless parameters of the model (say Π_2 , Π_3 , Π_4 ,...., Π_k) is same as the prototype.

i.e. You require

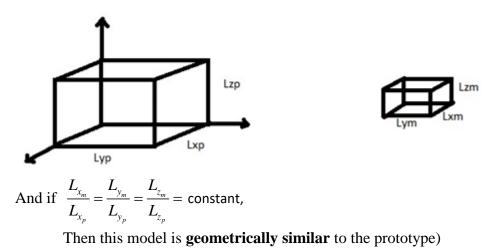
 $\Pi_{2m} = \Pi_{2p}; \qquad \Pi_{3m} = \Pi_{3p}; \dots$

- > It is very difficult to achieve complete similarity between a model and a prototype.
- > However, by compromising various features, you can have:
 - Geometric similarity between model and prototype
 - Kinematic similarity
 - Dynamic similarity
 - Thermal similarity

➢ Geometric similarity

If all the length dimensions [L] of the model and the prototype are having same linear scale ratio, the model and prototype is said to be geometrically similar.

For a body, if the dimensions in the x, y, z directions are L_{xp} , L_{yp} , L_{zp} Then, if you have a miniature model of dimensions L_{xm} , L_{ym} , L_{zm} .

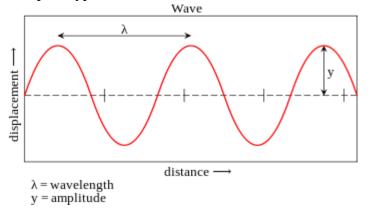


> You can visualise homologous points between the model and prototype.

➢ Kinematic Similarity

- If the model and prototype have same length scale ratio (i.e. geometric similarity) and in addition have same time scale ratio, then they are kinematically similar.
- For time scale equilibrium, you may require evidence of Reynolds Number and Mach Number, etc.
- For fluid flows you have seen that one can neglect or incorporate effects of viscosity (or friction).
- For a frictionless flow like free surface flow, the model and prototype can be made kinematically similar. (How???)
 - You have to provide the same Froude Number.
- > Recall earlier, we had described Froude's Number as $Fr = \frac{U}{\sqrt{gL}}$

For example in a Wave Motion Modelling Studies: The prototype wave:



 $(Source: https://en.wikibooks.org/wiki/Alevel_Physics_(Advancing_Physics)/What_is_a_wave\%3F)$

- In the wave modelling studies, the actual or prototype wave may be large and its wave length can be large.
- A model of the wave can be developed in laboratory by providing kinematically similar conditions.
- > In kinematic similarity, the Froude number have to be equal.

i.e.
$$Fr_m = \frac{V_m}{\sqrt{gL_m}} = \frac{V_p}{\sqrt{gL_p}} = Fr_p$$

or $\frac{V_m^2}{gL_m} = \frac{V_p^2}{gL_p}$
or $\frac{V_m}{V_p} = \sqrt{\frac{L_m}{L_p}}$
 $\frac{L_m}{L_p} = \alpha$, Then $\frac{V_m}{V_p} = \sqrt{\alpha}$
 $\frac{t_m}{L_p} = \frac{L_m/V_m}{L_p} = \sqrt{\alpha}$

If

 t_p

 $L_{p_{/}}$

If viscosity, and surface tension, etc. play important role in flow of the fluid, then kinematic similarity may not be sufficient. You may have to go for dynamic similarity.

Dynamic Similarity:

- The model and the prototype are dynamically similar, if they have same length scale ratio, same time scale ratio and same force ratio.
- From Newton's law, for any fluid particle-the sum of pressure force, gravity force, and friction force is equal to the net force or inertial force.

i.e.	$ec{F}_p$ +	\vec{F}_{g}	\vec{F}_{f}	$\vec{F_i}$	
	Pressure	Gravity	Friction	Inertia	
	force	force	force	force or	
				Net force	

> The dynamic similarity consider that

$$\frac{\vec{F}p_m}{\vec{F}p_p} = \frac{\vec{F}g_m}{\vec{F}g_p} = \frac{\vec{F}f_m}{\vec{F}f_p}$$

In this flow through the sluice gate experiment, the force polygon at homologous points will have exactly the same shape if they are dynamically similar. This is possible, only if Re_p = Re_m and Fr_m = Fr_p.

Example (Adopted from FM White's Fluid Mechanics)

The pressure drop due to friction in a long circular pipe is a function of average velocity, density, viscosity, and pipe length and diameter.

i.e.
$$\Delta P = f(V,\rho,\mu,L,D)$$

Try to interpret how ΔP varies with V and use Pi-Theorem to rewrite the above function in dimensionless form.

Solution:

You are provided the information $\Delta P = f(V,\rho,\mu,L,D)$

- > These are six basic variables $\Delta P, V, \rho, \mu, L, D$ (i.e. n=6)
- The basic dimensions are M,L,T
- ➤ We expect $j = n-k = 6-3 = 3 \prod$ groups.

D	L	Q	ΔΡ	ρ	μ	V
(cm)	(cm)	(m ³ /h)	(P _a)	(kg/m ³)	(kg/ms)	(m/s)
1.0	5.0	0.30	4680	680	2.92 * 10 ⁻⁴	1.06
1.0	7.0	0.60	22300	680	2.92 * 10 ⁻⁴	2.12
1.0	9.0	1.00	70800	680	2.92 * 10 ⁻⁴	3.54
2.0	4.0	1.00	2080	998	0.0010	0.88
2.0	6.0	2.00	10500	998	0.0010	1.77
2.0	8.0	3.10	30400	998	0.0010	2.74
3.0	3.0	0.50	540	13550	$1.56 * 10^{-3}$	0.20
3.0	6.0	1.70	9600	13550	$1.56 * 10^{-3}$	0.67
3.0	4.0	1.00	2480	13550	1.56 * 10 ⁻³	0.39

(i.e. k=3)

 \succ As we went to see how ΔP varies with V, we are not going to keep it as repeating variable.

 \therefore We will keep ρ,μ,D as repeating variable

$$\Pi_{1} = \rho^{a} \mu^{b} D^{c} \Delta p \qquad \rightarrow M^{0} L^{0} T^{0}$$
$$\Pi_{2} = \rho^{d} \mu^{e} D^{f} V \qquad \rightarrow M^{0} L^{0} T^{0}$$
$$\Pi_{3} = \rho^{s} \mu^{h} D^{i} L \qquad \rightarrow M^{0} L^{0} T^{0}$$

Solving for exponents, you get:

$$\Pi_1 = \frac{\rho D^2 \Delta P}{\mu^2} , \ \Pi_2 = \frac{\rho V D}{\mu}, \ \Pi_3 = \frac{L}{D}$$

... We will get a dimensionless expression

$$\frac{\rho D^2 \Delta P}{\mu^2} = f\left(\frac{\rho VD}{\mu}, \frac{L}{D}\right)$$
$$\Pi_1 = f(\Pi_2, \Pi_3)$$

As our objective is to find ΔP versus V,

We have to plot Π_1 versus Π_2 with Π_3 as a parameter.

i.e.
$$\frac{L}{D} = 500$$
 for the first row of the data
 $\frac{\rho D^2 \Delta P}{\mu^2} = 3.73 \times 10^9$
 $\frac{\rho VD}{\mu} = 24700$

From second row of the data,

$$\frac{L}{D} = 700 , \qquad \frac{\rho D^2 \Delta P}{\mu^2} = 1.78 \times 10^{10}$$
$$\frac{\rho VD}{\mu} = 49370$$

Like this you evaluate for each row. Nine data points you will get.

For same
$$\frac{L}{D}$$
 ratio , you will see ΔP is increasing linearly with L.