Lecture 37 12-APRIL-2017

Chapter

Differential Analyses (Contd...)

Flow due to pressure gradient between two fixed plates

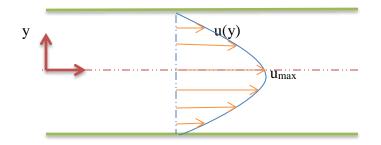
Last class we solved the case of Couette flow between two infinitely parallel plates. It was considered at that time that:

- ➢ Flow is steady
- Liquid is incompressible
- Effects of gravity neglected
- Effects of pressure neglected

As the upper plate was moved with a velocity, V, the flow was essentially only in onedimension.

Today, we will quickly go through another case where flow of liquid occurs <u>due to the pressure</u> <u>gradient</u> between two fixed plates.

Consider the two fixed plates and a liquid flows between the plates as shown below:



- \rightarrow Let us consider the liquid is flowing in the x-direction.
- \rightarrow The flow is steady and the liquid is incompressible.

 \rightarrow The pressure of fluid varies in the x-direction.

This is a two-dimensional problem with the flow occurring only in the x-direction.

 \Rightarrow The components of velocity are u = u,

$$v = 0,$$

 $w = 0$

From continuity equation, you can see that

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

As v = 0, $\frac{\partial u}{\partial x} = \frac{du}{dx} = 0$ $\Rightarrow u = u(y)$

The x-momentum equation:

$$\rho \left[u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right] = -\frac{\partial p}{\partial x} + \mu \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right]$$

$$\Rightarrow \rho[0] = -\frac{\partial p}{\partial x} + \mu \left[\frac{\partial^2 u}{\partial y^2} \right]$$

$$\Rightarrow \frac{\partial p}{\partial x} = \mu \frac{\partial^2 u}{\partial y^2} \qquad \dots \dots \boxed{1}$$

The y-momentum equation:

$$\rho \left[u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right] = -\frac{\partial p}{\partial y} + \mu \left[\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right]$$

$$\Rightarrow \rho [0+0] = -\frac{\partial p}{\partial y} + \mu [0+0]$$

$$\Rightarrow \frac{\partial p}{\partial y} = 0 \qquad \qquad \dots \boxed{2}$$

The z-momentum equation:

$$\rho \left[u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} \right] = -\frac{\partial p}{\partial z} + \mu \left[\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right]$$

(Note: We have neglected the effects of gravity)

$$\Rightarrow \rho[0+0+0] = -\frac{\partial p}{\partial z} + \mu[0+0]$$
$$\Rightarrow \frac{\partial p}{\partial z} = 0 \qquad \dots 3$$

From equations $\boxed{1}$, $\boxed{2}$ and $\boxed{3}$, it is clear that:

$$\frac{\partial p}{\partial x} = \mu \frac{\partial^2 u}{\partial y^2}$$
, $\frac{\partial p}{\partial y} = 0$ and $\frac{\partial p}{\partial z} = 0$

Means: p = p(x) only. Moreover, u = u(y)

$$\frac{\partial p}{\partial x} = \mu \frac{\partial^2 u}{\partial y^2} \qquad \dots$$

i.e., you can equate their differentials only if the relation is a constant.

(It is the principle from calculus).

$$\Rightarrow \ \mu \frac{\partial^2 u}{\partial y^2} = \frac{\partial p}{\partial x} = constant$$

This constant should be negative, because pressure must decrease in the flow direction to overcome the resisting wall shear stress.

The velocity profile will be u(y).

$$u = \frac{1}{\mu} \left(\frac{\partial p}{\partial x} \right) \frac{y^2}{2} + C_1 y + C_2$$

At $y = \pm h$; u = 0

$$\Rightarrow C_1 = 0 \text{ and } C_2 = -\left(\frac{\partial p}{\partial x}\right)\frac{h^2}{2\mu}$$
$$\Rightarrow u = -\left(\frac{\partial p}{\partial x}\right)\frac{h^2}{2\mu}\left[1 - \frac{y^2}{h^2}\right]$$

This is Poiseulle's flow between two parallel plates.

Example (As adopted from FM White's Fluid Mechanics)

For flow between two parallel fixed plates due to the pressure gradient, compute:

- (a) The wall shear stress,
- (b) The stream function,
- (c) The vorticity,
- (d) The velocity potential,
- (e) The average velocity.

Answer:

We have seen that flow between parallel plates (fixed) for incompressible, steady state flow is:

$$u = -\left(\frac{\partial p}{\partial x}\right)\frac{h^2}{2\mu}\left[1 - \frac{y^2}{h^2}\right]$$

For Newtonian fluid, the shear stress was given as say:

$$\tau_{xy} = 2\mu \frac{1}{2} \left[\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right]$$

(Recall in <u>index notation</u> we had earlier given expression for viscous stress as $\tau_{ij} = 2\mu \frac{1}{2} \left[\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right]$)

Therefore, the shear stress on the walls :

$$\tau_{xy_{wall}} = \mu \left[\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right]_{y=\pm h}$$
$$= \mu \left[\frac{\partial}{\partial y} \left\{ -\left(\frac{\partial p}{\partial x}\right) \frac{h^2}{2\mu} \left[1 - \frac{y^2}{h^2} \right] \right\} + 0 \right]_{y=\pm h}$$
$$= \mu \left(-\frac{\partial p}{\partial x} \right) \frac{h^2}{2\mu} \left[0 - \frac{1}{h^2} 2y \right]_{y=\pm h}$$
i.e., At $y = +h$, $\tau_{xy_{wall}} = \mu \left(-\frac{\partial p}{\partial x} \right) \frac{h^2}{2\mu} \left(0 - \frac{2}{h} \right)$

At y = -h, $\tau_{xy_{wall}} = \mu \left(-\frac{\partial p}{\partial x} \right) \frac{h^2}{2\mu} \left(0 + \frac{2}{h} \right)$

 \rightarrow As the flow is steady, incompressible and plane flow, stream function can be defined.

$$u = \frac{\partial \psi}{\partial y} = u_{max} \left(1 - \frac{y^2}{h^2} \right)$$

$$v = -\frac{\partial \psi}{\partial x} = 0$$

Solving by integrating,

$$\psi = u_{max} \left(y - \frac{y^3}{3h^2} \right)$$

You can check at y = +h and y = -h

 \rightarrow For plane flow:

$$\vec{\nabla} \times \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ u & 0 & 0 \end{vmatrix}$$
$$= \hat{k} \left(0 - \frac{\partial u}{\partial y} \right)$$
$$= \frac{2u_{max}}{h^2} y$$

Vorticity wil be highest at the walls.

- ➔ As the vorticity exists, the flow is not irrotational and we cannot develop a potential function.
- Average velocity, V_{av} = $\frac{Q}{A}$ $Q = \int u \, dA$ $⇒ V_{av} = \frac{1}{A} \int u \, dA = \frac{1}{2h \times b} \int_{-h}^{+h} u_{max} \left(1 \frac{y^2}{h^2}\right) b \, dy$ $= \frac{2}{3} u_{max}$