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LECTURE – 36 

 

Frictionless Flow – BERNOULLI’S EQUATION 

Recall, in the last class, we described about potential function ( , , )x y t  for two dimensional 

irrotational, incompressible flow. 
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So, in two dimensions, if the fluid flow is incompressible, frictionless (inviscid) & irrotational, 

then both stream function ( ( , , )x y t ) & potential function ( ( , , )x y t ) exist. 

You can draw streamlines & potential lines as solutions for the flow. 
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Another interesting aspect is that: 

Streamlines and potential lines are orthogonal to each other. How?? 

 

For a line of constant potential (i.e. ϕ),  0d   
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Similarly, along a streamline ψ = constant 

 

The equation of a streamline  
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On a mathematical point, where a streamline & potential line intersect, 

tant

tant

1 1

/cons

cons

dy u

dydx v v u

dx








 
      

  
 
 

 

 

This property shows the streamlines & potential lines are orthogonal to each other. 

 

Again, recall in last lecture we suggested that for a frictionless flow, if the fluid is incompressible 

& steady you have: 
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Also, recall for a frictionless flow, the dot product of linear momentum & position vector was 

given by: 
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This was possible only if: 
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As mentioned at that time, equation (4) is possible only if 

i) 𝑣⃗ = 0 

ii) (𝑞⃗⃗ ⃗⃗ × 𝑣⃗) is perpendicular to 𝑑𝑟⃗⃗⃗⃗⃗ 

iii) 𝑣⃗ is parallel to  𝑑𝑟⃗⃗⃗⃗⃗ (i.e, along a streamline) 

iv) 𝑞⃗ = 0 (i.e, flow is irrotational) 

 

Now note for irrotational flow, which is incompressible as well as flow is steady, this frictionless 

flow will be given by: 
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For frictionless, incompressible, irrotational & steady flow, integrating equation (5) within any 

two points (1) & (2) in the domain, you get 

 

throughout the flow domain 

 

This is the world famous Bernoulli’s equation you have studied in schools. 

 

Please note that the above Bernoulli’s equation can be applied only if 

i) The flow is frictionless 

ii) Flow is incompressible 

iii) Flow is irrotational 

iv) Flow is steady 

 

In reality, most of flows you see in nature or in industrial applications etc may not be frictionless. 

That is effect of viscosity plays significant role in the fluid flow. 

The no slip conditions may prevails in the flow. 

The irrotational flow assumptions may not be applicable. 
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What will you do to solve flow problem in such situations?? 

You have to use Navier-Stoke’s equations to solve such fluid flow. 

For viscous flows, one can solve Navier-Stoke’s equations appropriately. 

Recall,  (for incompressible flow) 

You can visualize from equation (7) that 

i) If the flow is frictionless, neglect the corresponding terms. 

ii) Similarly, if the effect of gravity are negligible, neglect the gravitational term 

iii) If the effect of pressure force are negligible, neglect the corresponding term. 

iv) If the flow is steady, take  0
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Couette Flow between fixed & moving plate: 

Consider, fluid flows between two parallel plates. 
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Upper plate is moving with a velocity V & bottom plate is fixed. 

It is assumed that plates are very wide & the movement of plate causes fluid movement only in x 

direction. That is, flow is axial. 

Therefore, the fluid velocity contains only u. other velocity components v and w are zero. 

You can neglect gravity effects & also assume pressure gradient as zero. 

Liquid is incompressible. 
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, v = 0 & w = 0 

So, u = u(y) only 
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As, u=u(y), so, 
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At y=+h, u = V = C1h +C2 

At y=-h, u = 0 = -C1h +C2 
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Is the required solution for Couette flow. 

 

 


