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Lecture - 35

Frictionless Irrotational Flows:-

Recall, earlier we had described stream function for 2-D flows.

e.g. for a flow in x-y plane, you had defined

u=a—w and V=—a—l//
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where, y = (X, y)is a stream function in x-y plane.

Also, for incompressible, inviscid, irrotational flows the continuity equation will be
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Again recalling, the linear momentum equation,
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i.e. p|:g—\t/+ (V.V)VJ = pG—-Vp+uVi

For steady flow
p[(VVW]= pg—Vp+uVi (2)
If you take the curl of equation (2)
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For inviscid flow the above equation become

6><[(\7.V)\7] = ﬁx{g—lﬁp}
P

There is a vector identity that suggest



e = (1. L
(V.V)V = Vx(§|v|2)+ G xV
Where G = V xV = curl of a velocity vector or vorticity vector

Therefore, for frictionless flows, or inviscid flows:
The momentum equation:
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At this stage, we are not further proceeding with the expansion as well as explanation of

equation (3)
So coming back to Euler’s inviscid equation (frictionless)

p[% + (V.V)V} = pG-Vp (4)

Using the above vector identity in this equation (4)
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Or else, if we dot product this equation with position vector dr = (dx)i + (dy) j

{%Nxewf}qxv—g+%6p}dr=0

For such relation to exist
(Gxv)edr =0

This is possible, if
i. V=0, i.e.purely hydrostatic condition
i. (=0, theflow isirrotational
iii. dr
iv. dr

0, is perpendicular to (GxV)
, is parallel to V

Considering situation (iv), where dr is parallel to V. That means, we are following a streamline.
You are integrating along streamline. On integrating along a streamline for frictionless
compressible flow
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dr = (dxX)i + (dy) j + (dz)k
Note: —g=-gk

— = dp-" dp 2 o 2
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Vpedr = dp dx+d—pdy

dx dx
Vpedr =dp
Vedr =vds

Therefore, along a stream line integrating between two point (1) and (2)
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ds is the length along the streamline.

Equation (5) is the Bernoulli’s equation for frictionless unsteady flow along a streamline

Now: from equation (5) you can extract
For incompressible, steady flow:
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This is the world famous Bernoulli’s equation applicable to incompressible, inviscid, steady flows
along streamline. The value of the constant
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P +?+ gz = constant, varies streamline to streamline
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For irrotational flows:
You recall for irrotational flows,

G=VxV=0

Using a vector principle i.e. if curl of a vector is zero that means curl of divergence of a scalar is
also zero.

G=VxV=0=Vx(Vg)=0

We can now define a function ¢ (x,y) for 2-D flow, such that

o o

u=— and v=
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You can extend in 3D as well by suggesting w = %

Such type of flow are called irrotational flows and the function ¢ (x,y) is called Potential Function.



So in 2D, if the fluid flow is irrotational as well as incompressible and inviscid, the both ¢ and

exist.

You can draw streamline and potential lines as solution in the flow domain.
(Please note that at stagnant points V=0, we cannot draw them)
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For irrotational, incompressible, inviscid flows,
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Similarly, you can also say
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