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Lecture - 35 

 

 

Frictionless Irrotational Flows:- 
 

Recall, earlier we had described stream function for 2-D flows. 

 

e.g. for a flow in x-y plane, you had defined  
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where,   =  ,x y is a stream function in x-y plane. 

 

Also, for incompressible, inviscid, irrotational flows the continuity equation will be  
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Again recalling, the linear momentum equation, 
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For steady flow 
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If you take the curl of equation (2)                                                                  
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For inviscid flow the above equation become 
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There is a vector identity that suggest 
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Where q v   = curl of a velocity vector or vorticity vector 

 

Therefore, for frictionless flows, or inviscid flows: 

The momentum equation: 
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At this stage, we are not further proceeding with the expansion as well as explanation of 

equation (3) 

So coming back to Euler’s inviscid equation (frictionless) 
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Using the above vector identity in this equation (4) 
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Or else, if we dot product this equation with position vector ˆ ˆ( ) ( )dr dx i dy j   
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For such relation to exist 

( ) 0q v dr    

 

This is possible, if 

i. 0v  , i.e. purely hydrostatic condition 

ii. 0q  , the flow is irrotational 

iii. 0dr  , is perpendicular to ( )q v  

iv. 0dr  , is parallel to v  

 

Considering situation (iv), where dr is parallel to v . That means, we are following a streamline. 

You are integrating along streamline. On integrating along a streamline for frictionless 

compressible flow 
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Therefore, along a stream line integrating between two point (1) and (2) 
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ds is the length along the streamline. 

 

 

Equation (5) is the Bernoulli’s equation for frictionless unsteady flow along a streamline 

 

Now: from equation (5) you can extract 

For incompressible, steady flow: 
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This is the world famous Bernoulli’s equation applicable to incompressible, inviscid, steady flows 

along streamline. The value of the constant 
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For irrotational flows: 

You recall for irrotational flows, 
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Using a vector principle i.e. if curl of a vector is zero that means curl of divergence of a scalar is 

also zero. 
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We can now define a function  (x,y) for 2-D flow, such that  
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You can extend in 3D as well by suggesting w
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Such type of flow are called irrotational flows and the function  (x,y) is called Potential Function. 



So in 2D, if the fluid flow is irrotational as well as incompressible and inviscid, the both    and   

exist. 

 

You can draw streamline and potential lines as solution in the flow domain. 

(Please note that at stagnant points 0v  , we cannot draw them) 
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For irrotational, incompressible, inviscid flows, 
2 2

2 2
0

x y

  
 

 
 

 

Similarly, you can also say 
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