
LECTURE 34 

05-APRIL-2017 

STREAM  FUNCTIONS (CONTD…) 

Yesterday, we were giving geometric interpretations to stream functions. 

 For incompressible, inviscid, irrotational flow in two-dimensions (i.e., horizontal plane), 

you saw that the fluid flow can be described in steady state conditions as: 

𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
= 0                                                                                       1  

 So, subsequently you were told that in any xy plane, where the above fluid flow is valid, 

you can solve equation 1  and get values of 𝜓(x,y). 

 You can do contour plotting and develop streamlines for the flow as shown below: 

 

 

 

 

 

  

 You were also informed that along a streamline, the value of 𝜓 is constant. 

 If we take any arbitrary control surface through which streamlines go 1 

 Consider two points 1 and 2 on an elemental control surface of length ‘ds’. The 

streamlines, (i.e., line in direction of velocity vector) is as shown below:  

 

 

 

 

 

 Let this elemental length on control surface be represented as vector (𝑑𝑠)⃗⃗ ⃗⃗ ⃗⃗   x 1  

(Unit direction perpendicular to paper, here). 

𝑑𝑠⃗⃗⃗⃗ =𝑑𝑥𝑖 ̂+𝑑𝑦𝑗̂ 

(Note: We are talking about two-dimensional horizontal flow) 

𝜓1 

𝜓2 

𝜓3 
𝜓4 
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ds 𝑣  



 The unit vector normal to the control surface is given by 𝑛̂ =
𝑑𝑦

𝑑𝑠
𝑖̂ −

𝑑𝑥

𝑑𝑠
𝑗̂ 

i.e., the relation 𝑑𝑠. 𝑛̂ = 0 

(𝑑𝑥𝑖̂ + 𝑑𝑦𝑗̂). (
𝑑𝑦

𝑑𝑠
𝑖̂ −

𝑑𝑥

𝑑𝑠
𝑗̂) = 0  (is true). 

 

 Thr volumetric flux across this elemental control surface is given as dQ 

𝑑𝑄 = (𝑣 . 𝑛̂)𝑑𝐴 

where 𝑑𝐴 = 𝑑𝑠𝑥1 

 𝑑𝑄 = (𝑢𝑖̂ + 𝑣𝑗̂) (
𝑑𝑦

𝑑𝑠
𝑖̂ −

𝑑𝑥

𝑑𝑠
𝑗̂) . 𝑑𝑠 = (

𝜕𝜓

𝜕𝑦
𝑖̂ −

𝜕𝜓

𝜕𝑥
𝑗̂) (

𝑑𝑦

𝑑𝑠
𝑖̂ −

𝑑𝑥

𝑑𝑠
𝑗̂) 𝑑𝑠 

=
𝜕𝜓

𝜕𝑥
𝑑𝑥 +

𝜕𝜓

𝜕𝑦
𝑑𝑦 

𝑖. 𝑒. , 𝑑𝑄 = 𝑑𝜓 

 

That is, change in 𝜓 across the elemental surface is equal to the volumetric flux 

through the surface. 

 

Therefore, volumetric flux(or discharge) between any two streamlines 𝜓1 and 𝜓2 is: 

∫ 𝑑𝑄 = ∫ 𝑑𝜓
2

1

2

1
= 𝜓2 − 𝜓1 

 

If 𝜓𝑈 > 𝜓𝐿, the flow is:                                                                     𝜓𝑈 

 

                                                                                                   Flow 

                                                                                                            𝜓𝐿 

 

If 𝜓𝑈 < 𝜓𝐿, then                                                                                      𝜓𝑈 

 

                                                                             

                                                                      Flow 

                                                                                                                    𝜓𝐿 

 

 

 

 

 

 

 



 

Example (As adopted from FM White’s Fluid Mechanics) 

In a flow field, the velocity components were evaluated as u=a(x2-y2), v=-2axy, w=0 

 Check whether you can form a stream function for this flow field. If so, what is the 

stream function? 

Solution:Given:        u = a(x2-y2) 

                             v = -2axy 

                             w = 0 

As w=0, the flow is 2-dimensional,we need to check whether the flow is incompressible. 

(Note: For incompressible fluid 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0). 

𝜕𝑢

𝜕𝑥
= 2𝑎𝑥,

𝜕𝑣

  𝜕𝑦
= −2𝑎𝑥 

𝑆𝑜,
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 

That is fluid is incompressible and the continuity equation 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 is satisfied. 

Therefore, we can define the scalar stream function 𝜓 for the given problem. 

As 𝑢 =
𝜕𝜓

𝜕𝑦
= 𝑎(𝑥2 − 𝑦2) 

 𝜓 = ∫𝑢𝑑𝑦 + 𝑓(𝑥) 

 𝜓 = 𝑎𝑥2𝑦 − 𝑎
𝑦3

3
+ 𝑓(𝑥)                                                              1  

 
𝜕𝜓

𝜕𝑥
= 2𝑎𝑥𝑦 + 𝑓′(𝑥)                                                                       2  

You know 𝑣 = −
𝜕𝜓

𝜕𝑥
= −2𝑎𝑥𝑦 

 
𝜕𝜓

𝜕𝑥
= 2𝑎𝑥𝑦 

Here in 2 , 𝑓′(𝑥) = 0 

Or, f(x) = constant C 

 𝜓 = 𝑎𝑥2𝑦 − 𝑎
𝑦3

3
+ 𝐶                        

 

 

 

 



 

Example      (As adopted from FM White’s Fluid Mechanics) 

Long back in control volume analysis, you had worked out on a sluice gate problem, if you 

recall. Now list all the boundary conditions needed to solve this flow using differential 

analysis.                                 

Solution:  

 

 

                  h1                                                                                        F 

                                                            v1  

 

                                                                                                                                                    

                                                                                                                                                             h2                 v2                                                                                                                 

     

   In differential analysis, we need to find the values of the dependent variables in each and every 

point inside the domain.  Here the domain can be assumed to be  two-dimensional in y-z plane. 

That is u=0 

 As open channel flow is considered, the fluid will be incompressible. 

 Moreover, isothermal conditions can be assumed to prevail. Therefore, temperature 

variations are not included in the analysis here.             

The governing equations are: 
𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0    (Conservation of mass) 

𝜌𝑔𝑥 −
𝜕𝑝

𝜕𝑥
+ 𝜇(0) = 0 

𝜌𝑔𝑦 −
𝜕𝑝

𝜕𝑦
+ 𝜇 [

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2
] = 𝜌 [

𝜕𝑣

𝜕𝑡
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
] 

𝜌𝑔𝑧 −
𝜕𝑝

𝜕𝑧
+ 𝜇 [

𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑧2
] = 𝜌 [

𝜕𝑤

𝜕𝑡
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
] 

Also recall, 𝑔 = 0𝑖̂ + 0𝑗̂ − 𝑔𝑘̂, velocity is uniform at left and right sections (i.e., it is also 

steady). 

Therefore, the equations are: 



𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0 

 

−
𝜕𝑝

𝜕𝑦
+ 𝜇 [

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2
] = 𝜌 [𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
] 

 

−𝜌𝑔 −
𝜕𝑝

𝜕𝑧
+ 𝜇 [

𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑧2
] = 𝜌 [𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
] 

Again, the open channel flow is predominantly only in y-direction. The variations of 

velocities in vertical direction may be neglected. 

i.e., 𝑣 = 𝑣𝑎𝑣𝑔(𝑧)   (i.e., the velocity in the y-direction is averaged over vertical direction 

at any cross section). 

i.e., The dependents you can see are:  v, w, p 

 The boundary conditions are: 

𝑣(𝑦 = 0, 𝑧) = 𝑣1 

 𝑣(𝑦 = 𝐿, 𝑧) = 𝑣2 

 𝑤(𝑦, 𝑧 = 0) = 0 

𝑝(𝑦 = 0, 𝑧) = 𝜌𝑔(ℎ1 − 𝑧) 

 𝑝(𝑦 = 𝐿, 𝑧) = 𝜌𝑔(ℎ2 − 𝑧) 

 𝑤[0 < 𝑦 < 𝐿1, 𝑧 = ℎ1] = 0 

𝑤[𝐿1 < 𝑦 < 𝐿, 𝑧 = ℎ2] = 0 


