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LECTURE – 33 

 

Geometric Interpretation of Stream Function: 

In the last class, you came to know about the different types of boundary conditions that needs to 

be applied to solve the governing equations for fluid flow: 

 

i.e. the conservation of mass, the conservation of linear momentum, the conservation of energy. 

 

You were told that, the most general way of solving a fluid flow problem is to simultaneously 

solve the above equations on conservation principles & get the values of the unknown or 

dependent variables (i.e.  , p, u, v, w, T). 

However, we as human beings, it may be difficult for us to solve all three simultaneously even 

for a simple fluid flow. 

Moreover, considering engineering applications, there may no need to solve all of them 

simultaneously. 

You can reduce the dependent variables & the equations as per the situation. 

 

In that light, we introduced you the concept of stream function for horizontal two dimensional 

flow. 

i.e. you know that flow varies only in x & y directions & assuming isothermal conditions as well 

as incompressible flow, the continuity equation is: 
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For solving benefit, you were introduced a function ( , )x y   such that 
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So, the governing equation for motion becomes unknown in only one quantity . How?? 

 

Rather than giving in most general form: 

Recall the velocity gradient term. 

 

It consisted of strain rate tensor & vorticity tensor. 

That is, a fluid flow consist of rate of deformation & rate of rotation. 

i.e, vorticity tensor = 
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Associated with vorticity tensor, we can define a vector called vorticity vector q v  
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That is, the vorticity vector is actually the curl of the velocity vector. 

 

So, in the given two dimensional flow, if the flow is irrotational, that means 
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That is, for irrotational flows of inviscid fluids we can have the governing equation in steady-

state conditions as: 
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You need to now solve only for  in the given x, y domain. 

(Please note that this is possible only for irrotational, inviscid flows.) 

 

Geometric Interpretation of  : 

Recall, we had earlier defined streamlines. 

A streamline is a line, which is tangent to velocity vector 𝑣⃗ everywhere at a given instant. 
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The position vector is dr for a particle or at a mathematical point.  

dr dxi dy j dzk    

 

Now the velocity vector is tangent to position vector or parallel. 

The components of velocity vector & position vector should match. 
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i.e.,       vdx – udy = 0 (equation for a streamline) 
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Or, along a streamline,   = constant 

 

So, for a given flow problem, if we solve for , then subsequently you can plot streamlines or 

lines of constant  ’s. 
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For a control surface (Not stream line) 

The net outflow through the control surface between two point (1) & (2) : 
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Taking unit width into the paper: 

dA = ds *1 = ds 
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That is change in   across the element surface is equal to the volume flow through the element. 

Volume flow between any two stream lines ψ1 & ψ2 = ψ2 – ψ1 = ∫ 𝑑𝜓
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