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Lecture 31 

 

Conservation of Energy (Contd…) 

           The last class, we started discussing about the conservation of energy principle. 

 

From the Reynolds Transport Theorem on Energy principle,  
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where E  energy in the system 

           e  intensive property (energy per unit mass), 

 

We had earlier derived for the elementary control volume ∆𝑥∆𝑦∆𝑧 : 

𝑑𝑄

𝑑𝑡
−

𝑑𝑊𝑣

𝑑𝑥
=  ∆𝑥∆𝑦∆𝑧 [𝜌

𝑑𝑒

𝑑𝑡
+ (𝑣⃗⃗⃗⃗ . ∇) 𝑝 + 𝑝∇. 𝑣 ]  

(Note there is no shaft work rate) 

Subsequently, we decided to describe 
𝑑𝑄

𝑑𝑡
 and 

𝑑𝑊𝑣

𝑑𝑥
. 

 

To describe  
𝒅𝑸

𝒅𝒕
 : 

Assuming that transmission of heat in the elementary volume is only through conduction,  

 Fourier’s heat law is applied to describe the heat flux per unit (i.e., the heat energy per 

unit area per unit time). 

The vectorial description is 

𝑞 = −𝑘∇𝑇 

𝑞   heat flux transmitted per unit area (or heat energy transmitter per unit area per unit 

time). 

𝑇  temperature 

 



 We also earlier described, the reason behind providing negative sign. 

 

 Subsequently, we described that  

 The net heat outflux through the control surfaces of the elementary volume  

=[
𝜕

𝜕𝑥
𝑞𝑥 +

𝜕

𝜕𝑦
𝑞𝑦 +

𝜕

𝜕𝑧
𝑞𝑧 ] ∆𝑥∆𝑦∆𝑧 

=(∇. 𝑞 )∆𝑥∆𝑦∆𝑧 

Hence, the term 
𝑑𝑄

𝑑𝑡
  Rate of heat energy provided to the system 

𝑑𝑄

𝑑𝑡
=  −(∇. 𝑞 )∆𝑥∆𝑦∆𝑧 = (∇. 𝑘∇𝑇)∆𝑥∆𝑦∆𝑧 

 

 

To describe viscous work rate (
𝒅𝑾𝒗

𝒅𝒕
): 

The viscous work rate has to be described now based on the elementary volume shape 

as shown below. 

 
 

 In the y-direction, there are two planes perpendicular. 

 On the left side and on the right side. 

 Consider the plane on the left side as shown below: 
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The viscous stresses are τyy , τyz , τyx, all in the negative directions of their coordinate axes. 

The velocity vector : 𝑣 = 𝑢𝑖̂ + 𝑣𝑗̂ + 𝑤�̂� 

 

The rate of work done by the viscous stress was earlier defined  

= Viscous stress component × Velocity component  × Area of element face 

 

Therefore, on this left side (LS) plane, the rate of viscous work will be: 

𝑑𝑊

𝑑𝑡 𝐿𝑆
= −𝜏𝑦𝑦𝑣∆𝑥∆𝑧 − 𝜏𝑦𝑥𝑢∆𝑥∆𝑧 − 𝜏𝑦𝑧𝑤∆𝑥∆𝑧  

(The negative sign shows, force and velocity in opposite direction). 

 

That is, this work rate  

= [−𝜏𝑦𝑦𝑣 − 𝜏𝑦𝑥𝑢 − 𝜏𝑦𝑧𝑤]∆𝑥∆𝑧 

 

Define this term as viscous work rate  

 

On that plane per unit area, 𝑤𝑣𝑦
 

i.e., 𝑤𝑣𝑦
= −(𝑢𝜏𝑦𝑥 + 𝑣𝜏𝑦𝑦 + 𝑤𝜏𝑦𝑧) 

(Rate of change of viscous work per unit area on a plane perpendicular to y-direction). 

So, viscous work rate on the left plane done by the system: 

𝑑𝑊

𝑑𝑡 𝐿𝑆
= 𝑤𝑣𝑦

∆𝑥∆𝑧 

 In a similar way, we can define viscous work rate on the right side plane : 

= [𝑤𝑣𝑦
+

𝜕𝑤𝑣𝑦

𝜕𝑦
∆𝑦]∆𝑥∆𝑧 

 

Therefore, the net viscous work rate in y-direction 



=
𝜕(𝑤𝑣𝑦

)

𝜕𝑦
∆𝑦∆𝑥∆𝑧 

 

 

Or, the net viscous work rate by the system 

𝑑𝑊𝑣

𝑑𝑡
= [

𝜕(𝑤𝑣𝑥
)

𝜕𝑥
+

𝜕 (𝑤𝑣𝑦
)

𝜕𝑦
+

𝜕(𝑤𝑣𝑧
)

𝜕𝑧
]∆𝑥∆𝑦∆𝑧 

= − [
𝜕

𝜕𝑥
(𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 + 𝑤𝜏𝑥𝑧) +

𝜕

𝜕𝑦
(𝑢𝜏𝑦𝑥 + 𝑣𝜏𝑦𝑦 + 𝑤𝜏𝑦𝑧)

+
𝜕

𝜕𝑧
(𝑢𝜏𝑧𝑥 + 𝑣𝜏𝑧𝑦 + 𝑤𝜏𝑧𝑧)] ∆𝑥∆𝑦∆𝑧 

𝑜𝑟,
𝑑𝑊𝑣

𝑑𝑡
= −∇. (𝑣 . 𝜏̿)∆𝑥∆𝑦∆𝑧 

 

Therefore, the energy equation  
𝑑𝑄

𝑑𝑡
−

𝑑𝑊𝑣

𝑑𝑥
=  ∆𝑥∆𝑦∆𝑧 [𝜌

𝑑𝑒

𝑑𝑡
+ (𝑣⃗⃗⃗⃗ . ∇) 𝑝 + 𝑝∇. 𝑣 ]  

Becomes 

[∇⃗⃗ . 𝑘∇⃗⃗ 𝑇]∆𝑥∆𝑦∆𝑧 + [∇.⃗⃗⃗  (𝑣 . 𝜏̿)]∆𝑥∆𝑦∆𝑧 = ∆𝑥∆𝑦∆𝑧 [𝜌
𝑑𝑒

𝑑𝑡
+ (𝑣⃗⃗⃗⃗ . ∇⃗⃗ ) 𝑝 + 𝑝(∇⃗⃗ . 𝑣)⃗⃗⃗⃗ ] 

 

As the volume  ∆𝑥∆𝑦∆𝑧 is arbitrary , the differential equation for energy is obtained: 

 

∇⃗⃗ . (𝑘∇⃗⃗ 𝑇) + ∇.⃗⃗⃗  (𝑣 . 𝜏̿) = 𝜌
𝑑𝑒

𝑑𝑡
+ (𝑣⃗⃗⃗⃗ . ∇⃗⃗ )𝑝 + 𝑝(∇⃗⃗ . 𝑣)⃗⃗⃗⃗  

 

 

In index notation: 

𝜕

𝜕𝑥𝑝
[𝑘

𝜕𝑇

𝜕𝑥𝑝
+ 𝑣𝑚𝜏𝑝𝑚] = 𝜌

𝑑𝑒

𝑑𝑡
+ 𝑣𝑝

𝜕𝑝

𝜕𝑥𝑝
+ 𝑝

𝜕𝑣𝑝

𝜕𝑥𝑝
 


