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Lecture 31 

 

Conservation of Energy (Contd…) 

           The last class, we started discussing about the conservation of energy principle. 

 

From the Reynolds Transport Theorem on Energy principle,  
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where E  energy in the system 

           e  intensive property (energy per unit mass), 

 

We had earlier derived for the elementary control volume ∆𝑥∆𝑦∆𝑧 : 

𝑑𝑄

𝑑𝑡
−

𝑑𝑊𝑣

𝑑𝑥
=  ∆𝑥∆𝑦∆𝑧 [𝜌

𝑑𝑒

𝑑𝑡
+ (𝑣⃗⃗⃗⃗ . ∇) 𝑝 + 𝑝∇. 𝑣 ]  

(Note there is no shaft work rate) 

Subsequently, we decided to describe 
𝑑𝑄

𝑑𝑡
 and 

𝑑𝑊𝑣

𝑑𝑥
. 

 

To describe  
𝒅𝑸

𝒅𝒕
 : 

Assuming that transmission of heat in the elementary volume is only through conduction,  

 Fourier’s heat law is applied to describe the heat flux per unit (i.e., the heat energy per 

unit area per unit time). 

The vectorial description is 

𝑞 = −𝑘∇𝑇 

𝑞   heat flux transmitted per unit area (or heat energy transmitter per unit area per unit 

time). 

𝑇  temperature 

 



 We also earlier described, the reason behind providing negative sign. 

 

 Subsequently, we described that  

 The net heat outflux through the control surfaces of the elementary volume  

=[
𝜕

𝜕𝑥
𝑞𝑥 +

𝜕

𝜕𝑦
𝑞𝑦 +

𝜕

𝜕𝑧
𝑞𝑧 ] ∆𝑥∆𝑦∆𝑧 

=(∇. 𝑞 )∆𝑥∆𝑦∆𝑧 

Hence, the term 
𝑑𝑄

𝑑𝑡
  Rate of heat energy provided to the system 

𝑑𝑄

𝑑𝑡
=  −(∇. 𝑞 )∆𝑥∆𝑦∆𝑧 = (∇. 𝑘∇𝑇)∆𝑥∆𝑦∆𝑧 

 

 

To describe viscous work rate (
𝒅𝑾𝒗

𝒅𝒕
): 

The viscous work rate has to be described now based on the elementary volume shape 

as shown below. 

 
 

 In the y-direction, there are two planes perpendicular. 

 On the left side and on the right side. 

 Consider the plane on the left side as shown below: 
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The viscous stresses are τyy , τyz , τyx, all in the negative directions of their coordinate axes. 

The velocity vector : 𝑣 = 𝑢𝑖̂ + 𝑣𝑗̂ + 𝑤𝑘̂ 

 

The rate of work done by the viscous stress was earlier defined  

= Viscous stress component × Velocity component  × Area of element face 

 

Therefore, on this left side (LS) plane, the rate of viscous work will be: 

𝑑𝑊

𝑑𝑡 𝐿𝑆
= −𝜏𝑦𝑦𝑣∆𝑥∆𝑧 − 𝜏𝑦𝑥𝑢∆𝑥∆𝑧 − 𝜏𝑦𝑧𝑤∆𝑥∆𝑧  

(The negative sign shows, force and velocity in opposite direction). 

 

That is, this work rate  

= [−𝜏𝑦𝑦𝑣 − 𝜏𝑦𝑥𝑢 − 𝜏𝑦𝑧𝑤]∆𝑥∆𝑧 

 

Define this term as viscous work rate  

 

On that plane per unit area, 𝑤𝑣𝑦
 

i.e., 𝑤𝑣𝑦
= −(𝑢𝜏𝑦𝑥 + 𝑣𝜏𝑦𝑦 + 𝑤𝜏𝑦𝑧) 

(Rate of change of viscous work per unit area on a plane perpendicular to y-direction). 

So, viscous work rate on the left plane done by the system: 

𝑑𝑊

𝑑𝑡 𝐿𝑆
= 𝑤𝑣𝑦

∆𝑥∆𝑧 

 In a similar way, we can define viscous work rate on the right side plane : 

= [𝑤𝑣𝑦
+

𝜕𝑤𝑣𝑦

𝜕𝑦
∆𝑦]∆𝑥∆𝑧 

 

Therefore, the net viscous work rate in y-direction 



=
𝜕(𝑤𝑣𝑦

)

𝜕𝑦
∆𝑦∆𝑥∆𝑧 

 

 

Or, the net viscous work rate by the system 

𝑑𝑊𝑣

𝑑𝑡
= [

𝜕(𝑤𝑣𝑥
)

𝜕𝑥
+

𝜕 (𝑤𝑣𝑦
)

𝜕𝑦
+

𝜕(𝑤𝑣𝑧
)

𝜕𝑧
]∆𝑥∆𝑦∆𝑧 

= − [
𝜕

𝜕𝑥
(𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 + 𝑤𝜏𝑥𝑧) +

𝜕

𝜕𝑦
(𝑢𝜏𝑦𝑥 + 𝑣𝜏𝑦𝑦 + 𝑤𝜏𝑦𝑧)

+
𝜕

𝜕𝑧
(𝑢𝜏𝑧𝑥 + 𝑣𝜏𝑧𝑦 + 𝑤𝜏𝑧𝑧)] ∆𝑥∆𝑦∆𝑧 

𝑜𝑟,
𝑑𝑊𝑣

𝑑𝑡
= −∇. (𝑣 . 𝜏̿)∆𝑥∆𝑦∆𝑧 

 

Therefore, the energy equation  
𝑑𝑄

𝑑𝑡
−

𝑑𝑊𝑣

𝑑𝑥
=  ∆𝑥∆𝑦∆𝑧 [𝜌

𝑑𝑒

𝑑𝑡
+ (𝑣⃗⃗⃗⃗ . ∇) 𝑝 + 𝑝∇. 𝑣 ]  

Becomes 

[∇⃗⃗ . 𝑘∇⃗⃗ 𝑇]∆𝑥∆𝑦∆𝑧 + [∇.⃗⃗⃗  (𝑣 . 𝜏̿)]∆𝑥∆𝑦∆𝑧 = ∆𝑥∆𝑦∆𝑧 [𝜌
𝑑𝑒

𝑑𝑡
+ (𝑣⃗⃗⃗⃗ . ∇⃗⃗ ) 𝑝 + 𝑝(∇⃗⃗ . 𝑣)⃗⃗⃗⃗ ] 

 

As the volume  ∆𝑥∆𝑦∆𝑧 is arbitrary , the differential equation for energy is obtained: 

 

∇⃗⃗ . (𝑘∇⃗⃗ 𝑇) + ∇.⃗⃗⃗  (𝑣 . 𝜏̿) = 𝜌
𝑑𝑒

𝑑𝑡
+ (𝑣⃗⃗⃗⃗ . ∇⃗⃗ )𝑝 + 𝑝(∇⃗⃗ . 𝑣)⃗⃗⃗⃗  

 

 

In index notation: 

𝜕

𝜕𝑥𝑝
[𝑘

𝜕𝑇

𝜕𝑥𝑝
+ 𝑣𝑚𝜏𝑝𝑚] = 𝜌

𝑑𝑒

𝑑𝑡
+ 𝑣𝑝

𝜕𝑝

𝜕𝑥𝑝
+ 𝑝

𝜕𝑣𝑝

𝜕𝑥𝑝
 


