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Lecture – 28 

Navier – Stoke Momentum equations Development 

In the last class, we were deriving the conservation of momentum equation. You can recall, we 

came up with the expression: 
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As is being repeatedly discussed, the conservation of linear momentum equation is a first ranked 

tensor or a vector.  

 

Therefore, equation 1 can be written in component wise (or in expanded form) in a three-

dimension orthogonal Cartesian coordinate system: 
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You can also write the above equation in index notation as: 
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                                                                                                          (2b) 

The gradient of viscous stress tensor cause the viscous force. 

 

Inviscid Fluid 

A simple situation of flow is, it is frictionless.  

That is the effect of viscosity will not resist the fluid flow. For such fluid flow the viscous stress 

tensor will be zero. 

i.e.  0  

 

Then equation (2b) become 
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This is Euler’s inviscid flow equation. In inviscid flow you need to solve only Euler’s equation to 

get the information of dependent variable ‘p’ and v


. For general fluid flow, the momentum 

equation is :-  
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Recall the stress tensor 
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       or                                                                                where ij  is Kronecker delta 

 

 You know for static fluid 0 .   

 That is, the stress is decomposed into static stress and fluid dynamic stress.  

 The fluid dynamic viscous stress is dependent on velocity gradient tensor.  

 The Newtonian fluids follow the simplest possible linear constitutive equation with 

velocity gradient. 

 Recall we had earlier studied, the velocity gradient tensor as:- 

1 1

2 2

j ji i i

j j i i j

Symmeteric Anti symmeteric

v vv v v

x x x x x



      
      

          

 

 

Theoretically, stress will develop only in fluid element that change shape.  

Rotation does not change shape. 

Therefore, the viscous stress depends on strain rates only.  

The most general linear constitutive form of viscous stress with strain rate is: 

mnpqmnpq SK  

where,  pqmnK   is a fourth order tensor that have 81 components.  

 

However, the stress tensor is symmetric and assuming the fluid to be isotropic, the fourth order 

tensor has to become isotropic. 

 



i.e. qmpnqnpmmnpqpqmnK        

where, ,  and   are scalar values. 

 

As pq  is symmetric, pqmnK  also have to be symmetric in  ‘p’ and ‘q’. 
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For incompressible fluids :- 
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Expanding the expression for system of equation in (2a) 
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The coefficient   is here the dynamic viscosity coefficient. 

 

 

Hence, the momentum equation for incompressible fluid in x, y and z directions are as follows:- 
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