21.03.2017

Lecture 26

Differential Analysis of Flow (Contd..)

In the last class, we derived the partial differential equation for conservation of mass principle.
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Recall that equation:
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where the velocity vector is or
V=VE +V,6, +V,&

Looking into equation 1, it is obvious to you that it can be expressed as
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» By this time, you should be knowing, how to write equation 2 in index notation.
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> If the fluid is incompressible, then %’0 =0.

» Therefore, the conservation of mass equation becomes

V.(pV) =0
ie. p(V.V) =0
Vi=0 >3

That is, for incompressible flow, Vv =0

> If for any case, you need to use cylindrical polar coordinates, the principle will still be
valid.
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Fig.2: Definition sketch for cylindrical coordinate system
(Source: Fluid Mechanics by F.M. White)

The velocity components are:
Axial velocity : v,

Radial velocity : v,
Circumferential velocity : ve

Like in Cartesian coordinates (X1, X2, X3 Or X, Y, Z) in cylindrical polar coordinates any fluid
property will be function of (r, 0, z, t).



» How are you going to write the conservation of mass equation in cylindrical polar
coordinates ?

Note the relation between cylindrical polar coordinates and Cartesian coordinates :
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» The divergence of any vector B in cylindrical polar coordinates is:
B=B,f+B,0+B,32
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Therefore, the continuity equation will be :
op  La(rpv,)  10(pv,)  0(v,)
ot r or r 06 0z

Conservation of Linear Momentum

The principle of conservation of linear momentum can also be differentially analyzed for
fluids.

> Here again, we will take the same rectangular prismoidal element that was discussed for
conservation of mass principle.
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» This differential element has six rectangular faces.
> As per the shape we are assuming 1-D input and output faces.



Since the volume is fixed in space and stationary, the momentum principle using RTT for
this elementary volume will be:
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outlet inlet
Since there is 1-dimensional input and output, assumed.
The surface integral term is Net momentum outflux.

The volumetric integral:
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(for the rectangular elemental volume)

Let the momentum influx on the left side will be = pwWAxAz

And the momentum outflux will be = [pow + (’gy )Ay]AxAz

Therefore, the net momentum outflux in the y-direction will be outflux — influx

=[pwW + a('gy W) AYJAXAZ — pWAXAZ
= MAxAyAz
oy
Similarly, in x-direction = 8('2)[:\/) AXAYAZ

And, in z- direction = (’2 )AxAyAz
Z

Therefore, the RTT becomes:
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>F= [a(§t\7) + 8(,;)1:\7) + é(gyvV) + a(p\Z’W)]AxAyAz
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F =[V{—+V.(oV)}+ p{— +U—+V—+ W—}]AXAYAZ
XF=[ {at (pV)} p{at x oy az}] y

Note %’0+V.(p\7) =0

i.e. SF =pAXAYA z[%Jr (V.V)V]

Recall acceleration, a = % = %Jr (V.V)V (studied earlier in particle kinematics)
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» As discussed earlier there can be:
% Body forces
% Surface forces

» The body forces can be:
1. Gravitational
2. Magnetic
3. Electric potential, etc.

> For our usual fluid like water, etc. the magnetic and electric potential are neglected.

Quiz:

1. Write in index notation, the conservation of mass and conservation of momentum
equation.
2. Write the conservation of mass equation in cylindrical polar coordinates.



