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Lecture 26  

 

Differential Analysis of Flow (Contd..) 

In the last class, we derived the partial differential equation for conservation of mass principle.  

 

 

 

 

 

 

Fig. 1: Reference Coordinate axes  

 

Recall that equation: 
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where the velocity vector is 
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Looking into equation 1, it is obvious to you that it can be expressed as  
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 By this time, you should be knowing, how to write equation 2 in index notation. 
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 If the fluid is incompressible, then 0
t
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 Therefore, the conservation of mass equation becomes  
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That is, for incompressible flow, . 0v   

 

 If for any case, you need to use cylindrical polar coordinates, the principle will still be 

valid. 

 

Fig.2: Definition sketch for cylindrical coordinate system  

(Source: Fluid Mechanics by F.M. White) 

 

The velocity components are: 

Axial velocity : vz 

Radial velocity : vr 

Circumferential velocity : vθ 

Like in Cartesian coordinates (x1, x2, x3 or x, y, z) in cylindrical polar coordinates any fluid 

property will be function of (r, θ, z, t). 



 How are you going to write the conservation of mass equation in cylindrical polar 

coordinates ? 

Note the relation between cylindrical polar coordinates and Cartesian coordinates : 
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 The divergence of any vector B  in cylindrical polar coordinates is: 
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Therefore, the continuity equation will be :  
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  Conservation of Linear Momentum 

The principle of conservation of linear momentum can also be differentially analyzed for 

fluids. 

 Here again, we will take the same rectangular prismoidal element that was discussed for 

conservation of mass principle. 

 

 

 

 

 

 

 

 This differential element has six rectangular faces. 

 As per the shape we are assuming 1-D input and output faces. 
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Since the volume is fixed in space and stationary, the momentum principle using RTT for 

this elementary volume will be: 
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Since there is 1-dimensional input and output, assumed. 

 

 The surface integral term is Net momentum outflux. 

 

 The volumetric integral: 
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(for the rectangular elemental volume) 

 

 Let the momentum influx on the left side will be = vv x z     

And the momentum outflux will be = 
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Therefore, the net momentum outflux in the y-direction will be outflux – influx 
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Similarly, in x-direction =  
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Therefore, the RTT becomes: 
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Recall acceleration, ( . )
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 As discussed earlier there can be: 

 Body forces 

 Surface forces 

 

 The body forces can be: 

1. Gravitational 

2. Magnetic 

3. Electric potential, etc. 

 

 For our usual fluid like water, etc. the magnetic and electric potential are neglected. 

 

Quiz: 

1. Write in index notation, the conservation of mass and conservation of momentum 

equation. 

2. Write the conservation of mass equation in cylindrical polar coordinates. 

 

 


