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LECTURE — 25

Conservation of Energy (Contd...... )

Yesterday we saw the expression for conservation of energy using RTT.
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(Of course, the above expression is for stationary control volume)

Subsequently for one dimensional inlet & outlet having steady fluid flow, the energy equation
becomes
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Quick Example ( Adopted from FM White’s fluid Mechanics)

Air with gas contact R = 287 J/kg-K & specific heat C,, flows steadily as shown , through a
turbine that produces 521.85 kJ of energy. For the inlet & exit conditions shown in figure,
estimate a) the velocity at the outlet V2 b) the heat transfer Q

Solution:
Given, D1 =15 cm, T1 =423 K, p1 = 1.034x10° Pa, V1 = 30 m/sec;
D2=15cm, T2 = 275K, p1 = 2.758x10° Pa, Vo = ?

Also given, R =287 J/kg-K; Cp = 1.005 kJ/kg-K = 1005 J/kg-K

As the flow is steady & one dimensional,

From perfect gas law: p = pRT
where, p = gas pressure (Pa)

p= density of gas

R = universal gas constant

T = temperature in Kelvin

p1 = p1RT1

&

p2 = p2RT2
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Mass flow rate, h = 1 = my (as, flow is steady)
m = pAY, = 8.52*%*(0.15)2 *30 = 4.514 Kg/s
M =m, = p,AV, = 3.50*%*(0.15)2 *y,

4514 = 3.50*%*(0.15)2 *y,
v, =73 m/s
As, the flow is steady, the energy equation from RTT
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Given the turbine produces 700 horsepower = 514.5 kJ/sec

2 2
So, ‘2—?—514500 :4.514[1005*275+%+0]—4.514[1005*423+%] =-150kW

The potential quantity is cancelled as z1 & z are at same elevation.



DIFFERENTIAL RELATIONS FOR FLUID FLOW

e Till now we were discussing on the integral or control volume relations for fluid flow.

e  We used Reynold’s Transport Theorem for the control volume analysis.

e We have also seen through several examples, the control volumes were of different sizes
according to the problem concerned.

e In fluid mechanics, to analyze fluid flow, one can also adopt analysis that involve
infinitesimally small volume rather than the large control volume.

e This infinitesimally small volume may be associated with mathematical point in spaces.

e Today, we will start discussing about the Differential Approach or Infinitesimal
Approach.

e We will be using the Reynold’s Transport Theorem for an infinitesimally small control
volume.

Differential Equation of Mass Conservation

Let us consider a small rectangular prism shaped element of fluid that is flowing.
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As seen in the figure, the size of the element is given by AxAyAz & corresponding coordinate
axis is also suggested.

Let velocity vector be V =ui +vj +wk



In the y direction, let the mass influx on the left side be = DensityxArea xVelocity

= pVAXAz
And the outflux in y direction
=[pv+ MAy]AxAz
oy

Similarly, we assign mass fluxes in x & z direction also,
Direction Mass Influx Mass Outflux
X UAYAZ

pUSY =[pu +%Ax]AyAz
z WAXA

r Y =[pw+ a(gz W) AZ]AXAY

Applying the Reynold’s Transport Theorem (conservation of mass) on this rectangular prism for
fluid
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Since one dimensional inputs & outputs are present, & the rectangular volume is not shrinking or
expanding;
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As the volume is elemental;
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Therefore, the RTT becomes,
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As the volume is arbitrary & non-zero gquantity,
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This is the Differential Equation of Mass Conservation.



