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LECTURE – 25 

 

Conservation of Energy (Contd……) 

Yesterday we saw the expression for conservation of energy using RTT. 
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 (Of course, the above expression is for stationary control volume)  

 

Subsequently for one dimensional inlet & outlet having steady fluid flow, the energy equation 

becomes 
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Quick Example ( Adopted from FM White’s fluid Mechanics) 

Air with gas contact R = 287 J/kg-K & specific heat Cp, flows steadily as shown , through a 

turbine that produces 521.85 kJ of energy. For the inlet & exit conditions shown in figure, 

estimate a) the velocity at the outlet V2 b) the heat transfer Q 

 

   

 

Solution: 

Given, D1 = 15 cm, T1 = 423 K, p1 = 1.034×106 Pa, V1 = 30 m/sec; 

D2 = 15 cm, T2 = 275 K, p1 = 2.758×105 Pa, V2 = ? 

 

Also given, R = 287 J/kg-K; Cp = 1.005 kJ/kg-K = 1005 J/kg-K 

 

As the flow is steady & one dimensional, 

 

From perfect gas law: p = ρRT  

where, p = gas pressure (Pa) 

             ρ= density of gas  

             R = universal gas constant 

             T = temperature in Kelvin 

 

p1 = ρ1RT1                      

& 

p2 = ρ2RT2 
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Mass flow rate, ṁ = ṁ1 = ṁ2 (as, flow is steady) 
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As, the flow is steady, the energy equation from RTT  
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Given the turbine produces 700 horsepower = 514.5 kJ/sec 

So,  
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The potential quantity is cancelled as z1 & z2 are at same elevation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



DIFFERENTIAL RELATIONS FOR FLUID FLOW 

 Till now we were discussing on the integral or control volume relations for fluid flow. 

 We used Reynold’s Transport Theorem for the control volume analysis. 

 We have also seen through several examples, the control volumes were of different sizes 

according to the problem concerned. 

 In fluid mechanics, to analyze fluid flow, one can also adopt analysis that involve 

infinitesimally small volume rather than the large control volume. 

 This infinitesimally small volume may be associated with mathematical point in spaces. 

 Today, we will start discussing about the Differential Approach or Infinitesimal 

Approach. 

 We will be using the Reynold’s Transport Theorem for an infinitesimally small control 

volume. 

 

Differential Equation of Mass Conservation 

Let us consider a small rectangular prism shaped element of fluid that is flowing. 

                                          

 

 

 

  

 

 

                      

  

                                                        

                     

As seen in the figure, the size of the element is given by ΔxΔyΔz & corresponding coordinate 

axis is also suggested.  

Let velocity vector be ˆˆ ˆv ui vj wk     
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In the y direction, let the mass influx on the left side be = Density×Area ×Velocity 

                                                                                           = v x z     

And the outflux in y direction 
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Similarly, we assign mass fluxes in x & z direction also, 
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Applying the Reynold’s Transport Theorem (conservation of mass) on this rectangular prism for 

fluid 
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Since one dimensional inputs & outputs are present, & the rectangular volume is not shrinking or 

expanding; 
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As the volume is elemental; 
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Therefore, the RTT becomes, 
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As the volume is arbitrary & non-zero quantity, 
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This is the Differential Equation of Mass Conservation. 

 


