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Lecture 24 

 

Conservation of Energy 

In the last class, we were discussing about conservation of angular momentum applicable 

to fluid mechanics. i.e., for a non-deformable stationary control volume. 
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 Thereafter, we worked on couple of example problems. 

 

 Today, we will see how the next conservation principle i.e., the conservation of energy 

principle is applicable in fluid mechanics. 

 

 So again, you have to use Reynolds Transport Theorem to relate the conservation of 

energy that is applicable in Lagrangian form with a fluid control volume, which is in 

Eulerian form. 
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 The extensive property B in this case will be the total energy E in the system.  

 The intensive property β = 
𝑑𝐸

𝑑𝑚
 = e (the energy per unit mass) 
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If the control volume is stationary, then  
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 Now, recall some of the basic thermodynamics laws:  

 

 If the heat δQ is added to a system or work δW is done by the system,  the change in 

system energy δE is given by: 
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 By applying differential principle in limiting conditions 
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This is the first law of thermodynamics. 

 

 As obvious, the conservation of energy principle provides the time rate or material 

derivative of total energy as a scalar quantity. 

 Note: In the notations here,  

Q = +ve  heat added to the system. 

W = +ve  work done by the system. 

 

 So, the RTT becomes: 
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 The system energy per unit mass may constitute of  

internal kinetic potential otherse e e e e      

eothers  include chemical, nuclear, electrostatic, magnetic, etc. 

 

 As you are the beginners in Fluid Mechanics course here, we are not considering 

chemical, nuclear, electro-magnetic, etc. energies per unit mass. 

 

So, 21
ˆ

2
e u v gz     

where û  →  is the internal energy per unit mass  

(Note that the symbol ‘^’ on û  does not mean unit vector.) 
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2
v  → is the kinetic energy per unit mass. 

gz  → is the potential energy per  unit mass. 

 



 In higher thermodynamics courses, you may see that 
𝑑𝑄

𝑑𝑡
 for a system can be associated 

with respect to convection, conduction, radiation, etc. 

 The rate of change of work on/by a system (i.e., 
system

dW

dt
 ) can be due to shaft work, 

pressure force work, and viscous force work. 

 

i.e., 
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where the overdot denotes the time derivative. 

(The work of gravitational forces is included as potential energy). 

 

 

Q. What is shaft work? 

Ans. It is the portion of work deliberately done by a machine (e.g. pump impellar, fan 

blade,  piston, etc.) that protrudes through the control surface into the control volume  

( SW  ) 

 

Pressure work:  It is the rate of work done by pressure forces (note pressure force occurs 

only on the surfaces). 

 

 For an elementary surface area dA, the rate of work is:  
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where v  is the normal velocity component into the control volume. 

 

 On a control volume having control surfaces, the total pressure force work rate is : 
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Note: If part of control surface is the surface of machine part, the work will be assigned 

only to shaft i.e., it is not considered as pressure work force. 

 

 

 

 

 



Therefore, the RTT becomes (for a non-deformable stationary control volume): 
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 For steady flow conditions, having one-dimensional inlet and one-dimensional outlet: 
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