
Scaling Blockchains: from Bitcoin
to the Lightning Network

Davide Patti
davide.patti@dieei.unict.it

● Physical VS Information Transfers
● Hash Functions, Proof-of-work, and Mining
● Asymmetric Cryptography
● Inside Blocks: Transactions
● Tools & Demo: Electrum
● Scaling Blockchains: The Trilemma
● Scaling to upper layers: The Lightning

Network
● Open Research Topics and Challenges

Outline

Transactions at Layer 1
Bob wants to send X bitcoins to Alice

1)How do we ensure that only Alice can receive the value?

2)How can Alice be sure that is Bob that wrote the transaction?

Notice: Human-like names are used only for
clarity. They could also be non-human, smart
objects, Artificial Intelligence entities etc...

Symmetric Encryption
Each pair of people wanting to exchange messages, must share a secret key
Alice and Bob encrypt messages using the same key
● PROBLEM 1: If Alice choose a key, must communicate it to Bob (possible leak)
● PROBLEM 2: If Alice wants to send messages to other people, must create a

key for each new person, in theory, everyone in the world!

Alice and Bob MUST
share a key !

Asymmetric Encryption
● THERE IS NOT a new key for

each couple of people
communicating

● Each user has two keys:
– A public key, given to

everybody. Everyone knows
the public key of all other
people.

– A private key, kept secret,
never shared, never
transmitted.

Asymmetric Cryptography
● Imagine a box with two locks:

– One for the private key
– One for the public key

● ...and a particular mechanism:

If you lock with one key, you will able to
open the box only using the other key

● Anyone can get the public key of a given
user, only the private key is NEVER shared

Q1: How do we ensure that only Alice will
read the transaction from Bob?

● Bob puts the transaction data inside the box, and
closes it with the Alice’s public key

● Now, it can only be opened with Alices’s private key
● Only Alice has the private key to open that box.

→ Question 1 solved: Bob created a message that
only Alice can read

Notice: This stil l not ensure that it was Bob to send it

Q2: How can Alice be sure that it was
really Bob that wrote that transaction?

● When Alice opens the box with her Alice private
key, she finds another box inside

● But Alice, like everyone, has the Bob’s public
key, so he try to open the box she just found.

● If it opens, it means that it was really Bob that
sent it, since only Bob could use the Bob
private key to close it.

Mission Accomplished: Bob sent a message that only Alice can
read, without sharing any secret

The external ALICE BOX could be opened only by Alice with her
private key, and the internal BOB BOX could have been closed
only by Bob with his private key

How are those Magic Boxes
implemented digitally?

● How can public key and private key be related
without being both revealed?

● In other words: how can I demonstrate to have the
private key that unlocks was has been sent to my
public key?

● But most important: what are those keys?

It’s Time for Fun Math
● Let’s consider a number: n
● Let’s consider a constant number G which is the same for

everyone and known by everyone
● In traditional math, if I have “n” and G, it’s easy to compute:

– P = n * G
● Also in the opposite direction:

– if I give you the result P, and ask you to guess which is “n”,
it’s very easy: n = P/G

● Thus, in traditional math, the equation P = n * G is reversible

Elliptic Curve Math (secp256k1)

x

y

Let’s define a new type of Addition

Define an addition operation like this:

● Given two points A and B, trace a line

passing by A and B

● The result is the symmetric of the

intersection C on the other side of the

plane

Fun fact: in a so defined addtion,
all the traditional known properties
still remain!
(commutative, associative, etc…)

Try by yourself:

 (A+B) + C = A + (B+C) ?

Start with (A+B) then add C

…now do A + (B+C)

it’s the same point as in
the previous slide!

Adding a Point to itself
A is the same as B, they
are both in the “P”
position, so it’s like:
● plotting the tangent to

the curve passing by P
● going to the symmetric

point of the intersection
C, as usual

C

Scalar Multiplication

What does it mean to start

from a point P and multiply it

by n?

For example, with n = 6:

6* P = P+P+P+P+P+P

Scalar Multiplication

What does it mean to start

from a point P and multiply it

by n?

For example, with n = 6:

6* P = P+P+P+P+P+P

Scalar Multiplication

What does it mean to start

from a point P and multiply it

by n?

For example, with n = 6:

6* P = P+P+P+P+P+P

Scalar Multiplication
What does it mean to start from a

point P and multiply it by n?

For example, with n = 6:

6* P = P+P+P+P+P+P
Notice: every step it’s easy, but it
seems to follow strange path, like a
bouncing ball...

Scalar multiplication can be exponentially reduced by using the
geometric properties of Elliptic Curve Math (eg, doubling using the
tangent)

To go from a point P to 24·P :
P → 2·P
2·P → 3·P
3·P → 6·P
6·P → 12·P
12·P → 24·P

Scalar Multiplications shortcuts

DEMO: try it!
https://www.bitcoinsimulator.tk/explanation?page=5

Inverting of Scalar Multiplication
Given a final point P and a starting point G:
Can you guess “n” such that P=n*G ?

the only way to find the number n is to
try P, 2·P, 3·P, etc.

There is no way to reverse the multiplication P =n*G,
except testing every number until you find the
correct n

G

P

Private/Public Key Generation

● Starting from a BIG random number “n”, I compute P = n*G
● The coordinates of the resulting point P will be my Public Key
● I’m the only one who knows the “n” number, this will be my Private

Key. Thus, I’m the only one able to decompose P as n*G
● All the numbers are 256 bits, so for the other people it is impossible

to test every potential “n” to check if n*G = P

How Big is 2^256?
To give you an idea, here are some relative
scales: 2^256 is about 10^77
● Number of atoms in the universe ~ 10^80
● A trillion (10^12) computers doing a trillion

computations every trillionth (10^(–12)) of a
second for a trillion years is still less than
10^56 computations.

● Think of finding a private key this way: there
are as many possible private keys in
Bitcoin as there are atoms in a billion
galaxies.

Secp256k1 Generation Point

Gx =
0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
Gy =
0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8

Since a destination public key P is always known,
and the G point is fixed to a constant...
=>
...owning bitcoin means being in possession of a
number n of 256 bits so that P=n*G, where P is
your public key

You NEVER trasmit n:you only prove that you know it

Owning is an Abstraction

How can Alice demostrate to have here
private key?

Schnorr Signatures
n : Alice private key
P=n*G : Alice public key
m: message to sign
R = r*G (r is a number, chosen randomly every time)

Alice wants to demostrate that some message
m has been written by her, the owner of the
private key n

Defining the “challenge”
Let’s consider the hash of these concatenated values:
e=Hash(R,P,m)

Bob already knows P and m. R will be communicated
by Alice before starting.

So the hash value “e” is a way to fix the “challenge”, so
that none of them can be changed later

Proof “s” Calculation

Alice secretly calculates s=r+e*n and gives “s”
to Bob

Notice:
Bob cannot understand how “s” has been
constructed, because is missing r and n!

Verification of the Proof “s”
● Bob computes s*G
● ...if it was true that Alice created s=r+e*n
then s*G = G*(r+e*n) = R+e*P

● Important: Bob has P R and e
● So, if s*G = R+e*P , then Bob can be sure
that the sender had the private key n

Why also include the random “r” ?

https://popeller.io/schnorr-basics

Playstation3 hack:
https://arstechnica.com/gaming/2010/12/ps3-hacked-through-

poor-implementation-of-cryptography/

Proof will be:
 s*G = G*e*n = e*P
...but from the proof you get n=s/e

https://popeller.io/schnorr-basics

In each TX, the owner of a public key sign with his/her private key specifying the future
Owner’s public key

● A TX can spend several inputs
● In this example, Bob, Eve and Ron in

some past txs, used the public key of
Alice as destination

● Alice can aggregate different previous
outputs, even from different Txs and
use them a inputs

Also, multiple outpus (public keys) can be used as destination: in Tx0, some entity
sign a 150k sat to create two outputs, that will be spent in future blocks Tx1 and
Tx2

What Does it Means “Owning”?
There is nothing as: “having bitcoins in some place”

There is no account, no storage point, no registration
● “owning” is an abstraction that means only 2 things:

1) Some other entities, in some previous transactions, used their
own private keys to using your public key P as destination
output

2) Since only you know the private key “n” corresponding to P,
only you will be able to demostrate that n*G = P, unlocking
them in some future transactions

Information vs Physical Transfers
Information: The Map, NOT the Territory

Direct Physical Transfers: no problem, apple atoms are both reality and
representation
Physical Transfers with Ledger(Maps): we need some trusted entityt the updates
information on Maps → some problems
Pure Information: no external physical reality, LOT of problems!!

In Bitcoin the Map IS the Territory

● A transaction NOT ONLY “describes” a transfer from
A to B it’s ALSO the “reality” of the transfer

● It is the immutable proof that the capability of
solving some the math problem has been moved
from entity A to B.

Impossible Mission?
1)We must guarantee the order of events
2)Ensure that sender and receiver are the correct ones

→ Entities not trusting each other agree on some “digital reality”

FUD Moment...

“...banning the blockchain!”

“banning the possession of... a number?

FUD Moment...

“You can follow the history of each public key
address…”
...Wait! wasn’t it the perfect tool for hidden Illegal

activity?!?

Fancy Visualization Tools
 https://blocks.wizb.it/#

http://www.bitlisten.com/

https://privacypros.io/tools/bitbonkers/

https://bitnodes.io/nodes/live-map/

https://mempool.space/

https://blocks.wizb.it/
http://www.bitlisten.com/
https://privacypros.io/tools/bitbonkers/
https://bitnodes.io/nodes/live-map/

Self-custody: Brain Wallets
● “I hate writing 256 bits!” why don’t choose

some secret password that I will always
remember, calculate the SHA256 hash, and
then use the resulting 256 bits number as
private key n !

● The corresponding public key will be: P=n*G
● Everybody will use P to send me transactions,

but nobody will be able to know “n” to unlock
them!

Brain Wallets
● Human brain is not good a good

source of entropy :)
– An attacker specifically focused on

you could try even millions of words
combinations related to you, e.g.:

“I love <wife/husband/cat>”
● Also, quotes like beginning of books,

songs, etc are very easily checked in any
moment

● Experiment: private key
chosen from hashing parts
of famous books/songs

● Four of the sweeps
occurred after 22 blocks

● The first one took a few
seconds

● All the funds were swept
away within a day

https://blog.bitmex.com/call-me-ishmael/

● The speed of the redemption of the funds clearly
indicates that people have servers up online 24/7
scanning the blockchain

● These servers are likely to have pre-generated
many hundreds of thousands of Bitcoin
addresses, using text from thousands of published
works, music, books, academic papers, magazines,
blogs, tweets and other media and then stored
these in a database.

● Opposite approach of Brainwallet:
generate a random private key n, an
convert the bits into a set of words

● Segments of 11 bits can be used as
index of a 2048 words vocabulary

● BIP39 Standard: These words have
been specifically chosen so that
cannot be confused, even if
handwritten

Solution: BIP39 Standard

https://learnmeabitcoin.com/technical/mnemonic

DEMO: Try BIP39

“Well...Really Good tip, I will use BIP39… Thank You!”

“...But I had another great idea:

I will split my 12 secret words into two sets of 6
words each, putting them in two different
locations…

 Then, if one location is discovered there are stil l 6
words missing!”

….ehm…. Actually NOT!

● 12 word mnemonic offers 128 bits of entropy
● Each bit has an exponential effect on entropy
● Cutting 12 words in half is cutting your entropy down to

64 bits each, which is not as secure anymore.

● This is the difference:

2^64 = 18446744073709551616
2^128 =340282366920938463463374607431768211456

E.g., assuming 1ns per test, it’s like 584 years vs 10^20 centuries

Key Security is not Linear

Common Sense Suggestions
● BIP39 seed words are not a password to be entered

any moment, but just a backup of the private key n,
don’t need to access to them every time!

● Just create 2 or 3 copies of the seed word list on
paper and put in different locations

● NEVER type the words in web sites
● Whenever you are asked to enter the seed words:

probably a fishing attack

Cold Storage: Hardware Wallets
● BIP39 Seed words only entered into device to initialize the private key n
● The private key stays in a physically separate offline hardware,

encrypted in a Secure Element chip

Small cheap hardware devices with
simple and verified hardware

Opensource+Openhardware:

● https://github.com/coldcard/firmware

● Who owns the private key?
● Custodial: the private key is managed by a third party

Custodial vs Self-Custodial

User Security Trade-offs

What are Wallets?
● An user could have multiple private/public keys

in possession
● Thus, from the perspective of the user, the

“balance” is the sum of all his/her unspent
outputs

● A Wallet is a software that collects all
private/public keys for a given user

● A Wallet is only meant to improve the user-
experience: blockchain knows nothing about
“wallets”, there only transactions

Electrum wallet (or another): https://electrum.org/#download

Run normally at least once, then try the testnet:

● On MacOS terminal:
● open -n /Applications/Electrum.app --args –testnet

● On Windows terminal:
● electrum-VERSION_HERE –testnet
− or equivalent, depending on your executable name

● On Ubuntu/Linux (from Applications directory in home)
● ./electrum-VERSION_HERE --testnet

DEMO: Using a Wallet on Testnet

DEMO: Testnet Faucets
● You can get some tBTC to play with from a testnet bitcoin faucet, which

gives out free tBTC on demand.

Here are a few testnet faucets:

● https://coinfaucet.eu/en/btc-testnet
● https://testnet-faucet.mempool.co
● https://bitcoinfaucet.uo1.net
● https://testnet.help/en/btcfaucet/testnet

https://coinfaucet.eu/en/btc-testnet
https://testnet-faucet.mempool.co/
https://bitcoinfaucet.uo1.net/
https://testnet.help/en/btcfaucet/testnet

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

