
1

Amit Kumar Singh
School of Computer Science and Electronic Engineering

University of Essex

United Kingdom

International Workshop on
Design Principles

for Next Generation Embedded
Computing Systems

W: http://aksingh.co.uk/ E: a.k.singh@essex.ac.uk

http://aksingh.co.uk/
mailto:a.ksingh@Essex.ac.uk

2

Programming Demonstration

3

Mapping

• Mapping or CPU affinity – defines the number of cores and

their types to be used by an application

• It has huge impact on execution time and thus energy

consumption (Power * time)

• In Linux, defined using taskset

• taskset -c 4,5 ./ApplicationName

• taskset -c 3-6 ./ApplicationName

4

5

DVFS and Linux Power Governors

• Cpufrequtils - is a Linux power management tool;

• “sudo apt-get install cpufrequtils” to install

• user@host:~$ cpufreq-info

Shows various information

- hardware limits: 798 MHz - 2.00 GH

- havailable frequency steps: 798 MHz, 1.06 GHz, 1.33 GHz, 1.60 GHz,

2.00 GHz

- available cpufreq governors: userspace, ondemand, conservative,

powersave, performance

- current policy: frequency should be within 798 MHz and 2.00 GHz.

The governor "conservative" may decide which speed to use

within this range.

- current CPU frequency is 798 MHz.

6

Cpufrequtils

$cpufreq-info -o

$cat

/sys/devices/system/cpu/cpu0/cpufreq/scaling_ava

ilable_governors

$echo "performance" >

/sys/devices/system/cpu/cpu0/cpufreq/scaling_gov

ernor

7

8

Multi-threaded Programming on
Exynos 5422 MPSoC

(Execution Time and Thermal Behaviour)

9

Exynos 5422 MPSoC

ARM

Mali-T628

GPU

128KB L2-

Cache

128-Bit AMBA ACE BUS interface

2GB DRAM

Cortex-A15 cluster

2MB L2-Cache

Core0 Core1

Core2 Core3

Cortex-A7 cluster

512KB L2-Cache

Core0 Core1

Core2 Core3

Samsung Exynos 5422 SoC

Exynos 5422

under fan

10

Multithreaded Applications/Benchmarks

• MultiThreadBench Work-package
• We will explore the effect of mapping and DVFS (operating

frequency) of CPU cores on the execution time.

• RSABench Work-package
• We will explore the thermal behavior of 4 ARM big CPU

cores

11

MultiThreadBench Work-package

• Open up a terminal and go in Benchmarks directory

$cd Benchmarks

• Check the contents of the Benchmarks folder

$ls

• Change directory to MultiThreadBench

$cd MultiThreadBench

12

MultiThreadBench Work-package

• Check the folder contents

$ls

• threadbench.c

• Multi-threaded program

• run_bench.sh

• A script including commands for

• Compiling benchmark

• Changing core frequencies

• Changing mapping and Executing

13

MultiThreadBench Work-package

• Compiling benchmark

$gcc -pthread threadbench.c -lm -o benchmark

• Changing core frequencies

$echo "900000" >

/sys/devices/system/cpu/cpu0/cpufreq/scaling_m

ax_freq

• big CPUs have 19 frequency scaling levels

• 200 MHz to 2.0 GHz with each step of 100 MHz

• LITTLE CPUs have 13 frequency scaling levels

• 200 MHz to 1.4 GHz with each step of 100 MHz

14

MultiThreadBench Work-package

• Changing mapping and Executing

$taskset -c 0-7 ./benchmark

• The command ‘taskset -c’ set the CPU affinity for a

particular application

• Ask the Linux task scheduler to pin the application to

specific CPU cores

15

Sample Exercises

• Changing operating frequency and looking execution time

• Use all cores at lowest frequency

• Use all cores at highest frequency

• Use all cores at some intermediate frequency

• Changing mapping and looking execution time

16

Thermal Behaviour Exploration

17

RSABench Work-package

• Move into the RSABench sub-folder

$cd RSABench/

• It contains:
• Freq_Temp_reading.sh – To read core frequency and temperature

• read_temperature.py – to read/analyse temperature values of cores

• run_rsa.sh – A set of commands to facilitate settings and execution

• show_temperature.sh – to plot and show temperature but need more

tooling

18

RSABench Work-package - Steps

• Set frequency of cores
$echo "900000" >

/sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq

$echo "900000" >

/sys/devices/system/cpu/cpu4/cpufreq/scaling_max_freq

• Start reading core frequency and temperature (type command in

another terminal)
$./Freq_Temp_reading.sh

• Define mapping and execute RSA benchmark
$taskset -c 6 openssl speed rsa

19

RSABench Work-package – Steps in a Script

echo "[1] Set frequency of cores ….“

echo "900000" >

/sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq

echo "900000" >

/sys/devices/system/cpu/cpu4/cpufreq/scaling_max_freq

sleep 10

echo "[2] Reading core frequency and temeprature....through

other terminal as ./Freq_Temp_reading.sh“

#mate-terminal -e ./Freq_Temp_reading.sh

echo "[3] Define mapping and execute RSA benchmark....“

taskset -c 6 openssl speed rsa

echo "[4] RSA benchmark evaluation complete....“

sleep 3

echo "[5] Stopping core frequency and temeprature reading

collection....“

echo "Stop">Signal.txt

20

Sample Exercises

• Change mapping and look cores’ temperature used by the

application while keeping frequencies fixed.

• Change frequency and look cores’ temperature used by the

application while keeping mapping fixed.

Before executing, make sure that you delete the
output_temp.csv file as it is used for the final analysis.

You can in fact delete all the output files.

21

Questions?

