DNN Accelerators Architectures

Workshop Agenda

- Lecture 1: Domain Specific Architectures
- Lecture 2: Kernel computation
- Lecture 3: Data-flow techniques
- Lecture 4: DNN accelerators architectures

DNN Accelerators

Cerebras Wafer Scale Engine (WSE)

The Most Powerful Processor for AI

400,000 Al-optimized cores
46,225 mm² silicon
1.2 trillion transistors
18 Gigabytes of On-chip Memory
9 PByte/s memory bandwidth
100 Pbit/s fabric bandwidth
TSMC 16nm process

On-Chio	Spatial PE Array
B. C.	
Burren	
	2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3
	뭐야 해 봐야 봐 또 않게 해 해 봐 봐 봐 ㅠ ㅠ
	when the pill the part and the pill of the
	and the first state of the second

Eyeriss 168 PEs

Google TPU

Agenda

- Simba MCM DNN HW Inference Accelerator
- Improving Energy/Performance with Compression

Multi-Chip-Module Packaging

- Slowing transistors scaling
- Reducing cost
 - Yield losses cause fabrication cost to grow superlinearly with die size
- MCM Packaging
 - Assembling large-scale systems using small building blocks known as *chiplets*
 - Multiple chiplets connected via on-package links using a silicon interposer

MCM Package Implementations

Large-scale CPUs

- Beck, et al., Zeppelin: An SoC for Multichip Architectures. ISSCC'18
- Erett, *et al.*, A 126mW 56Gb/s NRZ Wireline Transceiver for Synchronous Short-reach Applications in 16nm FinFET. ISSCC'18
- Kannan, et al., Enabling Interposer-based Disintegration of Multi-core Processors. MICRO'15
- Wilson, *et al.*, A 1.17pJ/b 25Gb/s/pin Ground-referenced Single-ended Serial Link for Off- and On-package Communication in 16nm CMOS Using a Process- and Temperature-adaptive Voltage Regulator. ISSC'18

Large-scale GPUs

- Arunkumar, *et al.*, MCM-GPU: Multi-Chip-Module GPUs for Continued Performance Scalability. ISCA'17
- Yin, et al., Modular Routing Design for Chiplet-based Systems. ISCA'18

Die-stacking

- Combination of multiple distinct silicon chips within a single package
 - Vertical or 3D stacking
 - 2.5D stacking

Interposer

- A regular (but larger) silicon chip, with conventional metal layers facing upward
- Two types of interposer
 - Passive
 - Active

Passive Interposer

- Does not provide any transistors
- Only metal routing between chips and TSVs for signals entering/leaving the chip

Active Interposer

Integrate some devices (possibly in an older technology)

Agenda

- Simba MCM DNN HW Inference Accelerator
- Improving Energy/Performance with Compression

Simba

On-chip weight storage

- DNN inference accelerator
- From edge-scale to data-center-scale
- The first chiplet-based deep-learning system

[Y. S. Shao, *et al.*, Simba: Scaling Deep-Learning Inference with Multi-Chip-Module-Based Architecture. MICRO'19]

3-Level Hierarchy

Simba Package

Simba Chiplet

Simba PE

Simba Architecture – Package

- Package-level MCM integration
- Scalable to data center inference
 - 100 TOPS
 - Google TPU v1 ~ 92 TOPS

Simba Architecture – Chiplet

Second level storage for Input/Output activation data

- Supports unicast and multicast (even across chiplets)
- For layers with low data reuse (*e.g.*, depth-wise conv), can perform such computation locally

Simba Architecture – Chiplet

- Responsible for configuring and managing the chiplet's PEs and Global PE
- Triggers execution in the active PEs and Global PEs and waits for done notifications via interrupts

Simba Architecture – PE

performs ReLU, truncation and scaling, pooling, and bias addition

Hybrid NoC/NoP

Remote PE Remote Global PE Remote Controller

Simba Architecture – NoC/NoP Remote PE **Remote Global PE Remote Controller GPIO** GRS (N) GRS (E) PE PE PE PE R_PE Globa PE R PE PE PE NoP R M. R PE PE PE PE **RISC-V** PE PE PE PE GPIO GRS (W) GRS (S) **Multicast**

Simba Communication Capability

Packet Source	Unicast Destination	Multicast Destination	
PE	Local PEs, Global PE, Controller	-	
	Remote PEs, Global PE, Controller	-	
Global PE	Local PEs, Controller	Local PEs	
	Remote PEs, Controller	Remote PEs	
Controller	Local PEs, Global PE		
	Remote PEs, Global PE, Controller		

Simba Silicon Prototype

Simba Package

Simba Chiplet (TSMC 16 nm FinFET)

Simba Silicon Prototype

Simba Package

Simba Chiplet (TSMC 16 nm FinFET)

Simba Silicon Prototype

Simba Package

Simba Chiplet (TSMC 16 nm FinFET)

Microarchitecture Parameters

- Chiplet
 - Comparable to efficient edge DNN accelerators (*e.g.*, such as DianNao, Eyeriss)
- Simba package (36 chiplets)
 - Comparable to a data-center-scale system such as TPU

Chiplet Area Breakdown

Partition	Component	Area (µm ²)	
	Vector MACs	12K	
PE	Weight Buffer	41K	
	Input Buffer	11K	
	Accumulation Buffer	24K	
	NoC Router		
Global PE	Distributed Buffer	125K	
	NoC Routers	27K	
RISC-V	Processor	109K	
NoP	NoP Router	42K	

Chiplet Area Breakdown

Simba Architecture - PE

Microarchitecture Parameters – Package

36	
$47.5 \mathrm{mm} \times 47.5 \mathrm{mm}$	
0.52–1.1 V	
0.48–1.8 GHz	
Ground-Referenced Signaling	
100 GB/s/Chiplet	
20 ns/Hop	
0.82–1.75 pJ/bit	
16	

Microarchitecture Parameters – Chiplet

Number of PEs	16		
Area	$2.5\mathrm{mm} imes 2.4\mathrm{mm}$		
Technology	16 nm FinFET		
Voltage	0.42–1.2 V		
PE Clock Frequency	0.16-2.0 GHz		
Global PE Buffer Size	64 KiB		
Routers Per Global PE	3		
NoC Interconnect Bandwidth	68 GB/s/PE		
NoC Interconnect Latency	10 ns/Hop		
Microcontroller	RISC-V		

Microarchitecture Parameters – PE

Weight Buffer Size	32 KiB		
Input Buffer Size	8 KiB		
Accumulation Buffer Size	3 KiB		
Vector MAC Width	8		
Number of Vector MACs	8		
Dataflow	Weight Stationary		
Input/Weight Precision	8 bits		
Partial-Sum Precision	24 bits		

GALS Methodology

- Independent clock rates for
 - PEs,
 - Global PEs
 - RISC-V processors
 - NoP routers

Performance

- Chiplet
 - Low power
 - + 0.42 V / 161 MHz PE frequency \rightarrow 0.11 pJ/Op
 - High performance
 - 1.2 V / 2 Ghz \rightarrow 4 TOPS
- 36-Chiplet System
 - Low power
 - 0.52 V / 484 MHz PE frequency \rightarrow 0.16 pJ/Op
 - High performance
 - 1.1 V / 1.8 GHz PE frequenccy \rightarrow 128 TOPS

System Frequency vs. Voltage

	1750	TOPS/W					1.2
(zł	1500				1.8	1.5	1.1
V (MF	1250			2.4	1.8	1.4	1.1
nenc	1000		3.1	2.4	1.7	1.4	1.0
Frequ	750	4.5	3.0	2.2	1.6	1.3	1.0
_	500	4.0	2.7	2.0	1.5	1.1	0.9
		0.6 Co	0.7 Dre V	0.8 /olta	0.9 ge ()	1.0 V)	1.1
Baseline Tiling

Baseline Tiling

Baseline Tiling

The loop bounds and orderings are configurable

Latency – ResNet-50

Normalized to ideal latency realized if each of the 576 PEs of the system operated with 100% utilization and no communication or synchronization overheads

Energy – ResNet-50

Normalized to ideal energy when the system operated with 100% utilization and no communication or synchronization overheads

Performance Scalability

NoP Bandwidth Sensitivity

NoP Latency Sensitivity

Wireless Enabled Inter-Chiplet Communication

[Guirado, *et al.*, Dataflow-Architecture Co-Design for 2.5D DNN Accelerators using Wireless Network-on-Package. ASPDAC '21]

[Ascia, *et al.*, Improving Inference Latency and Energy of DNNs through Wireless Enabled Multi-Chip-Module-based Architectures and Model Parameters Compression. NOCS'2020]

Agenda

- Simba MCM DNN HW Inference Accelerator
- Improving Energy/Performance with Compression

Computing for the IoT

AI Device Shipments by Device Category World Markets: 2017-2025

Model Compression Techniques

[L. Deng, *et al.*, "Model compression and hardware acceleration for neural networks: A comprehensive survey," Proceedings of the IEEE, 2020]

Memory Traffic Components

Traffic due to model parameters (filters/weighs) is dominant

Memory Traffic Components

Fraction of Model Parameters in the Memory Traffic

Fraction of traffic due to model paeameters increases with global buffer size

Layer N

parameters

Compression

(offline)

Decompression

(online)

Decompression

(online)

<u>Step 2</u>

Use the **unshuffle codeword** to recover the original order of the parameters

Compression Ratio

Compression Ratio

23456…W

Compression Ratio

$$CR = \frac{B \times W}{2 \tilde{B} - 1 + \sum_{i=2}^{W} \left[\log_2 i \right]}$$

Compression Ratio (CR)

Sub-sequence Length (W)

Area/Power Overhead

Compression Ratio (CR)

Configuration	Area	Power	Overhead	
(\widetilde{B}, W)	(μm^2)	(μW)	Area	Power
(4, 8)	60	320	0.15%	0.077%
(5, 8)	385	340	0.17%	0.081%
(6, 8)	415	360	0.18%	0.086%
(7, 8)	442	370	0.19%	0.091%
(8, 8)	470	390	0.20%	0.095%
(16, 16)	1795	720	0.78%	0.175%
(32, 16)	2858	1060	1.24%	0.257%

Accuracy vs. Compression Ratio

VGG-16

Accuracy vs. Compression Ratio

Pareto Fronts

VGG-16

MobileNet

- Top-5 Accuracy

4

5

Compression ratio (CR)

6

3

0.3

2

SC(7,8)[24]

8

7

9

ResNet50

Pareto Fronts

Performance/Energy Analysis

DRAM	
Technology	LPDDR4
Bandwidth	17.9 GB/s
Chiplet	
Technology	45nm
Number of PEs	16
Global Buffer Size	64 KiB
PE	
Clock Frequency	1 GHz
Weight Buffer Size	32 KiB
Input Buffer Size	8 KiB
Accumulation Buffer Size	3 KiB
MACs per PE	64
Clock Frequency Weight Buffer Size Input Buffer Size Accumulation Buffer Size MACs per PE	1 GHz 32 KiB 8 KiB 3 KiB 64

Energy Analysis

Latency Analysis

Demanded Bandwidth

Per-Layer Bottleneck

Per-Layer Bottleneck

Per-Layer Bottleneck

Scaling-Up Performance

VGG16 Scale-Up

Evaluation Platform

- LAMBDA: An Open Framework for Deep Neural Network Accelerators Simulation. PerCom'21
- https://github.com/Haimrich/timeloop

Summary

- DNN accelerators are communication and memory bounded
- Need for invastigating towards techniques to improve memory and communication efficiency
- Hardware-friendly compression techniques
- Emerging communication technologies (*e.g.*, WiNoC)