
Domain Specific Accelerators

2

Workshop Agenda

● Lecture 1: Domain Specific Architectures
● Lecture 2: Kernel computation
● Lecture 3: Data-flow techniques
● Lecture 4: DNN accelerators architectures

3

Lecture 1 -- Agenda

● A bit of history
● Inefficiency in GP architectures
● Domain Specific Architectures
● Source of acceleration
● Cost models
● Communication issues

Session 1

Session 2

4

“Those who cannot remember the past are condemned to repeat it.”

George Santayana, 1905

5

IBM Compatibility Problem

● By early 1960's, IBM had four incompatible
lines of computers

6

Unifying the ISA

● How computers as inexpensive as those with 8-
bit data paths and as fast as those with 64-bit
data paths could share a single ISA?
– Datapath: not a big issue!

– Control: the greatest challenge

● Microprogramming

7

Microprogramming

● ISA interpreter
– Instruction executed by several microinstructions

– Control store was implemented through memory
● Much less costly than logic gates

8

IBM System/360 Family

9

CISC

● Moore's Law → Larger memories → Much
more complicated ISAs

● VAX-11/780 (1977)
– 5,120 words x 96 bits (its predecessor only 256

words x 56 bits)

10

The Intel 8800 Fault

● Design an ISA that would last the lifetime of
Intel
– Too ambitious and too late in the development

● Plan B: 8086 ISA
– 10 person-weeks over three regular calendar weeks

– Essentially by extending the 8-bit registers and
instruction set of the 8080 to 16 bits

11

8086 ISA

● IBM used an 8-bit bus version of the 8086
● IBM announced the PC on August 12, 1981

– Hope: sell 250,000 PCs by 1986

– ...but...Sold 100 million worldwide!

12

From CISC to RISC

● Unix experience: high-level languages could be
used to write OSs

● Critical question became

“What instructions would compilers generate?”

instead of

“What assembly language would programmers
use?”

13

From CISC to RISC

● Observation 1
– It was found that 20% of the VAX instructions

needed 60% of the microcode and represented only
0.2% of the execution time

● Observation 2
– Large CISC ISA → Large microcode → high

probability of bugs in microcode

● Opportunity to switch from CISC to RISC

14

RISC

● RISC instructions simple as microinstructions
– Can be executed directly by the hardware

● Fast memory (formerly used for microcode)
– Repurposed to be a cache of RISC instructions

● Register allocators based graph-coloring
– Allows compilers to efficiently use registers

● Moore's Law
– Enough transistors in the 1980s to include a full 32-

bit datapath, along with I$ and D$ in a single chip

15

RISC

● IEEE International Solid-State Circuits
Conference, in 1984
– Berkeley, RISC-I and Stanford MIPS

– Superior in performance than commercial
processors

– (RISC-I and MIPS developed by few graduate
students!)

16

RISC Supremacy

● x86 shipments have fallen almost 10% per year
since the peak in 2011

● Chips with RISC processors have skyrocketed
to 20 billion!

● CISC based x86 ISA
– x86 instructions converted on-the-fly to RISC

instructions

17

Quantitative Approach

CPU Time = IC × CPI

● IC
CISC

 ≈ 75% IC
RISC

● CPI
CISC

 ≈ 6 × CPI
RISC

● CPU Time
CISC

 ≈ 4 × CPU Time
RISC

[Flynn, M. “Some computer organizations and their effectiveness”. IEEE Transactions on
Computers 21, 9 (Sept. 1972)]

18

End of Moore's Law

[Moore, G. No exponential is forever: But 'forever' can be delayed! [semiconductor industry]. In
Proceedings of the IEEE International Solid-State Circuits Conference Digest of Technical Papers (San
Francisco, CA, Feb. 13). IEEE, 2003, 2023.]

19

End of Dennard Scaling

[Dennard, R. et al. Design of ion-implanted MOSFETs with very small physical dimensions. IEEE
Journal of Solid State Circuits 9, 5 (Oct. 1974), 256268]

20

Amdahl's Law for Parallel
Computing

21

End of Growth of Single Program Speed

[J. L. Hennessy and D. A. Patterson. A New Golden Age for Computer Architecture. Communications of
the ACM, 62(2), Feb. 2019.]

22

Agenda

● A bit of history
● Inefficiency in GP architectures
● Domain Specific Architectures
● Source of acceleration
● Cost models
● Communication issues

23

General-Purpose CPU

● Easy to program
● Large code bases exist

...

24

The “Turing Tariff”

● Refers to the cost of performing functions using
GP hardware

● The theoretical machine proposed by Alan
Turing could perform any function, but not
necessarily efficiently

Prof. Paul Kelly, Imperial College, London

25

The “Turing Tariff”

...

Fetch/Decode

10× to 4000×

Instruction
execution

E
ne

rg
y

26

What Opportunities Left?

● Hardware-Centric approach
● Software-Centric approach
● Combination

27

Hardware-Centric Approach

● Domain-Specific Architecture
– a.k.a. Domain Specific Accelerator (DSA)

– Tailored to a specific problem domain

28

ASIC vs. DSA

● ASIC: often used for a single function
– With code rarely changes

● DSA: specific for a class of applications

29

DSA Examples

● Graphic Processing Units (GPUs)
● Neural Network Processors
● Processors for Software-Defined Networks

(SDNs)
● ...

30

Inefficiencies of HL Languages

● SW makes extensive use of HL languages

– Typical interpreted → Inefficient

[Leiserson, C. et al. There's plenty of room at the top. Science, June 2020, Vol 368(6495)]

7x

20x

9x

31

Productivity vs. Efficiency

● Big gap between
– Modern languages: emphasizing productivity

– Traditional approaches: emphasizing performance

Modern languages
(productivity first objective)

Traditional approaches
(performance first objective)

32

Software-Centric Approach

● Domain-Specific Languages
● DSAs require targeting high-level operations to

the architecture
– Too difficult to extract structure information form

general-purpose languages (Python, C, Java, ...)

● Domain-Specific Languages
– Make vector, dense/sparse matrix operations

explicit

– Help compiler to map operations to the processor
efficiently

33

DSLs Examples

● Matlab: for operating on matrices
● TensorFlow: dataflow language for

programming DNNs
● P4: for programming SDNs
● Halide: for image processing specifying high-

level transformations

34

DSLs Challenges

● Architecture independence
– SW written in a DSL can be ported to different

architectures achieving high efficiency in mapping
the SW to the underlying DSA

● Example XLA system
– Translates TensorFlow to heterogeneous

processors that use Nvidia GPUs or Tensor
Processor Units (TPUs)

35

Combination

● Domain Specific Languages & Architectures

36

Agenda

● A bit of history
● Inefficiency in GP architectures
● Domain Specific Architectures
● Source of acceleration
● Cost models
● Communication issues

37

Reduced Overhead

[M. Horowitz, "1.1 Computing's energy problem (and what we can do about it)," 2014 IEEE International
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 10-14]

25pJ 6pJ Control

I-Cache Access Register File
Access

Add

CPU

70 pJ

Add

ASIC

< 1 pJ

38

Domain Specific Accelerators

● A hardware computing engine that is
specialized for a particular domain of
applications

Specialized
Operations Parallelism

Efficient
Memory
Systems

Reduction of
Overhead

DSA

39

Domain Specific Accelerators

40

Domain Specific Accelerators

● Several different domains
– Graphics

– Deep learning

– Simulation

– Bioinformatics

– Image processing

– Security

– ...

41

Machine Learning Domain

42

Landscape of Computing

Accelerators/Co-processors

43

Acceleration Options -- ASIC

 Highest efficiency

 High nonrecurring engineering (NRE) cost

 Poor programmability

 Hardwired logic for a single application domain

44

Acceleration Options -- FPGA

 Lowers the efficiency by 10–100×

 Dynamically configured for different applications

 Allows for an accelerator to be instantiated near the
data it operates on, reducing communication cost

45

Acceleration Options -- GPU

 Accelerate multiple domains by incorporating
specialized operations

 Offers order of magnitude better efficiency than CPUs
(near-ASIC efficiency for the application they accelerate)

 S IMT e xe cution mod e l ine f cie nt for single-
thread application

46

Example

● Deep Learning
● Genomics

47

Deep Neural Networks

48

Comparison

[W. J. Dally, et al., Domain-Specific Hardware Accelerators.
Communications of the ACM, 63(7), pp. 48-57, July 2020.]

ResNet-50
● Intel Xeon S(with DL Boost technology)
● NVIDIA Tesla deep learning product
● Goya Inference Platform

49

Genomic Data

50

Comparison

[W. J. Dally, et al., Domain-Specific Hardware Accelerators.
Communications of the ACM, 63(7), pp. 48-57, July 2020.]

● Intel Xeon E5-2670
● NVIDIA V100
● Darwin-WGA mapped on FPGA

Smith-Waterman
algorithm

51

Cost vs. Performance

● Banded Smith-Waterman algorithm
– In CUDA for the GPU in one day

● 25x improvement in efficiency over the CPU

– On an FPGA in two months of RTL design and
performance tuning

● 4x the efficiency of the GPU

– RTL into an ASIC gives
● 16x the efficiency of the FPGA but with significant

nonrecurring costs and lack of flexibility

[Turakhia, Y., et al. “Darwin-WGA: A co-processor provides increased sensitivity in
whole genome alignments with high speedup. HPCA (2019)]

52

Application Porting

● Applications require modifications to achieve
high speed up on DSA
– These applications are highly tuned to balance the

performance of CPU with their memory systems

● Specialization reduces the cost of processing to
near zero
– They become memory limited

53

Agenda

● A bit of history
● Inefficiency in GP architectures
● Domain Specific Architectures
● Source of acceleration
● Cost models
● Communication issues

54

Sources of Acceleration

● Techniques for performance/efficiency gain
– Data Specialization

– Parallelism

– Local and optimized memory

– Reduced overhead

55

Data Specialization

● Specialized operations on domain-specific data
types can do in one cycle what may take tens of
cycles on a conventional computer

56

Data Specialization

● Example 1 – Smith-Waterman algorithm
– Used in genome analysis to align two gene

sequences

– Computation performed in 16-bit integer arithmetic

57

Data Specialization

● Conventional x86 processor without SIMD
vectorization
– 37 cycles

● 35 arithmetic and logical operations
● 15 load/store operations

58

Data Specialization

● Intel Xeon E5-2620 4-issue, out-of-order, 14 nm
– 37 cycles and 81nJ (mostly for spent fetching,

decoding, and reordering instructions)

● Darwin accelerator, 40 nm
– 1 cycle, 3.1 pJ (0.3 pJ is consumed computing the

recurrence equations)

● 37× speedup, 26,000× energy reduction

59

Data Specialization

● Example 2 – EIE accelerator for sparse NNs
– Store dense networks in compressed sparse

– Run-length coding for feature maps

– Compress weights using a 16-entry codebook

– 30x reduction in size allowing the weights of most
networks to fit into efficient, local, on-chip memories

● Two orders of magnitude less energy to access than off-
chip memories

[Han, S., et al. EIE: Efficient inference engine on compressed deep neural network.
ISCA 2016]

60

Sources of Acceleration

● Techniques for performance/efficiency gain
– Data Specialization

– Parallelism

– Local and optimized memory

– Reduced overhead

61

Parallelism

● High degrees of parallelism provide gains in
performance

● Parallel units must exploit locality
– Make very few global memory references or their

performance will be memory bound

Memory

PE

PE

PE

PE

...

bottleneck

Memory

62

Parallelism

● Example 1 -- Smith-Waterman algorithm
● Parallelism exploited at two levels

– Outer-loop

– Inner-loop

63

Parallelism

● Example 1 -- Smith-Waterman algorithm
● Parallelism exploited at two levels

– Outer-loop
● 64 separate alignment problems in parallel
● No communication between subproblems
● Synchronization required only upon completion of each

subproblem
● Typical billions of alignments → Ample outer-loop

parallelism

– Inner-loop

64

Parallelism

● Example 1 -- Smith-Waterman algorithm
● Parallelism exploited at two levels

– Outer-loop

– Inner-loop
● 64 PEs compute 64 elements of H, I, and D in parallel
● Element (i, j) depends only on the elements above (i−1,j),

directly to the left (i,j−1), and above to the left (i−1,j−1)
● Only nearest neighbor communication between the

processing elements is required

65

Parallelism

● Example 1 -- Smith-Waterman algorithm
● Parallelism exploited at two levels

– Outer-loop

– Inner-loop

...

...

...

...

...

...

...

...
...

66

Parallelism

● Example 1 -- Smith-Waterman algorithm
● Parallelism exploited at two levels

– Outer-loop

– Inner-loop

...

...

...

...

...

...

...

...
...

67

Parallelism

● Example 1 -- Smith-Waterman algorithm
● Parallelism exploited at two levels

– Outer-loop

– Inner-loop

...

...

...

...

...

...

...

...
...

68

Parallelism

● Example 1 -- Smith-Waterman algorithm
● Parallelism exploited at two levels

– Outer-loop

– Inner-loop

...

...

...

...

...

...

...

...
...

69

Parallelism

● Example 1 -- Smith-Waterman algorithm
● Parallelism exploited at two levels

– Outer-loop

– Inner-loop

...

...

...

...

...

...

...

...
...

70

Parallelism

● Example 1 -- Smith-Waterman algorithm
● Parallelism exploited at two levels

– Outer-loop

– Inner-loop

...

...

...

...

...

...

...

...
...

71

Parallelism

● Very high utilization
– Outer-loop

● Utilization close to 100%
● Until the very end of the computation, there is always

another subproblem to process as soon as one finishes
● With double buffering of the inputs and outputs, the

arrays are working continuously

– Inner-loop
● Utilization 98.5%
● Loss of utilization at the start and end of computation

(due to the systolic nature of the accelerator)

72

Parallelism

● Speedup
– Parallelization speed-up 4,034×

– Data specialization speed-up 37×

● Total speed-up 150,000×

73

Sources of Acceleration

● Techniques for performance/efficiency gain
– Data Specialization

– Parallelism

– Local and optimized memory

– Reduced overhead

74

Local and Optimized Memory

● Storing key data structures in many small, local
memories
– Very high memory bandwidth

– Low cost and energy

75

Local and Optimized Memory

● Data compression

– Increase the effective size of a local memory

– Increase the effective bandwidth of a memory interface
● Example, NVDLA

– Weights as sparse data structures → 3×-10× increase
in the effective capacity of on-chip memories

● Example, EIE

– Weights are compressed using a 16-entry codebook →
8× savings compared to a 32-bit float

76

Weights as Sparse Data Structures

● Pruning techniques
– Remove not useful neurons and/or connections

[S. Han, et al., Learning both weights and connections for efficient neural
networks. NIPS 2015]

77

Weights as Sparse Data Structures

● Pruning techniques

[S. Han, et al., Learning both weights and connections for efficient neural
networks. NIPS 2015]

78

Weights as Sparse Data Structures

● Pruning techniques
– Irregular memory access

● Adversely impacts acceleration in hardware platforms

– Achieved speedups are either very limited or
negative even the actual sparsity is high, >95%

79

Local and Optimized Memory

● Data compression

– Increase the effective size of a local memory

– Increase the effective bandwidth of a memory interface
● Example, NVDLA

– Weights as sparse data structures → 3×-10× increase
in the effective capacity of on-chip memories

● Example, EIE

– Weights are compressed using a 16-entry codebook →
8× savings compared to a 32-bit float

80

Weights Compressed with
Codebook

Network
Parameters

(e.g., N parameters
with B bit per param)

NxB bits

K-Means
(e.g., C clusters)

Centroids
CxB bits

Compressed
Network

Parameters
Indexes

N log
2
(C) bits

compression ratio
B/(CxB + Nxlog

2
(C))

81

Sources of Acceleration

● Four main techniques for performance and
efficiency gains
– Data Specialization

– Parallelism

– Local and optimized memory

– Reduced overhead

82

Reduced Overhead

● Specializing hardware reduces the overhead of
program interpretation

[M. Horowitz, "1.1 Computing's energy problem (and what we can do about it)," 2014 IEEE International
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 10-14]

25pJ 6pJ Control

I-Cache Access Register File
Access

Add

CPU

70 pJ

Add

ASIC

< 1 pJ

Overhead

83

Reduced Overhead

● A simple in-order processor spends over 90%
of its energy on overhead
– Instruction fetch, instruction decode, data supply,

and control

● A modern out-of-order processor spends over
99.9% of its energy on overhead
– Adding costs for branch prediction, speculation,

register renaming, and instruction scheduling

[Dally, et al. “Efficient embedded computing”, Computer 2008]

[Vasilakis, E. “An instruction level energy characterization of ARM processors”, Tech.
Rep. FORTHICS/TR-450, 2015]

84

Reduced Overhead

● Example
– 32 bit integer add @ 28 nm CMOS → 68 fJ

– Integer add on 28 nm ARM A-15 → 250 pJ
● 4000× the energy of the add itself!

85

Reduced Overhead

● Overhead reduction in DSAs
– Most adds do not need full 32-bit precision

– No instructions to be fetched → no instructions
fetch and decode energy

– No speculation → no work lost due to mis-
speculation

– Most data is supplied directly from dedicated
registers → no energy is required to read from a
cache or from a large, multi-ported register file

86

Reduced Overhead

● Complex instructions
– Matrix-multiply-accumulate instruction (HMMA) of

the NVIDIA Volta V100
● 128 floating-point operations in a single instruction
● Operation energy many times the instruction overhead

128 FP ops: 64 half-precision multiplies and 64 single-precision adds

87

Codesign is Needed

● Achieving high speedups and gains in efficiency
from specialized hardware usually requires
modifying the underlying algorithm

88

Codesign is Needed

● Existing algorithms are highly tuned for
conventional general-purpose processors
– Tuned to balance the performance of conventional

processors with their memory systems

● Specialization makes cost of processing nearly
zero
– Algorithm becomes memory dominated

89

Memory Dominates Accelerators

● GACT

– Dynamic programming module in Darwin platform

– Kernel: 16-bit additions and comparisons

● D-SOFT

– D-SOFT filtering hardware module in Darwin platform

– Kernel: simple arithmetic and comparisons

● EIE Sparse NN Accelerator

– Kernel: Matrix Vector Multiplication

D
a

rw
in

 A
cc

el
er

at
o

r

90

Memory Dominates Accelerators

TSMC 40 nm technology

[Turakhia, Y. et al. , “Darwin: A genomics co-processor provides up to 15,000×
acceleration on long read assembly”. ASPLOS 2018]

[Han, S. et al., “EIE: Efficient inference engine on compressed deep neural network”.
ISCA 2016]

When logic is “free,” memory dominates!

91

Specialization vs. Generality

 Engine specialized for just one application →
highest possible efficiency

 Range of use may be too limited to generate
enough volume to recover design costs

 New algorithm may be developed rendering
the accelerator obsolete

92

Specialization vs. Generality

● Smoothing the transition... Accelerates a
domain of applications not a single application

93

Special Instructions
vs. Special Engines

● Building accelerators for broad domains by
adding specialized instructions to a general-
purpose processor

94

Special Instructions
vs. Special Engines

● Example, NVIDIA Volta V100 GPU

– HMMA (half-precision matrix multiply-accumulate)
● Multiplies two 4x4 half-precision (16-bit) FP matrices accumulating

the results in a 4x4 single-precision (32-bit) FP matrix
● 128 FP operations: 64 half-precision multiplies and 64 single-

precision adds

– Turing IMMA (integer matrix multiply accumulate)
● Multiplies 8×8 8-bit integer matrices accumulating an 8x8 32-bit

integer result matrix
● 1024 integer operations

– Accelerating training and inference for convolutional, fully-
connected, and recurrent layers of DNNs

95

Special Instructions
vs. Special Engines

● NVIDIA Volta V100 GPU vs. Google TPU

96

Special Instructions
vs. Special Engines

● NVIDIA Volta V100 GPU
– HMMA 77% of the energy consumed by arithmetic

– IMMA 87% of the energy is consumed by
arithmetic

● Energy consumed by instruction overhead and
fetching the data operands from the large GPU
register files and shared memory

97

Special Instructions
vs. Special Engines

● Google TPU
– 23% and 13% more efficient on matrix multiply

compared to HMMA and IMMA

– Use of on-chip memories and optimized data
movement

[Jouppi, N.P., et al., Domain-specific architecture for deep neural networks. Commun.
ACM 2018]

98

Special Instructions
vs. Special Engines

● NVIDIA Volta V100 GPU vs. Google TPU
– GPU die will be larger and hence more expensive

– It includes area for the general-purpose functions, and
for other accelerators, which are unused when doing
matrix multiply

99

Agenda

● A bit of history
● Inefficiency in GP architectures
● Domain Specific Architectures
● Source of acceleration
● Cost models
● Communication issues

100

Cost Model

● Arithmetic @ 14 nm technology
– 10 fJ and 4 μm2 for an 8-bit add operation

– 5 pJ and 3600 μm2 for a DPFP multiply

[Horowitz, M. Computing’s energy problem (and what we can do about it). In ISSCC
(2014), IEEE, 10–14]

101

Cost Model

● Local Memory @ 14 nm technology
– SRAM 8 KB, 50 fJ/bit

– 0.013 μm2 per bit

– Larger on-chip memories
● Communication cost of getting to and from a small 8

KByte subarray → 100 fJ/bit-mm
● Several hundred megabytes with today’s technology

– 100 MB memory 0.7 pJ/bit

102

Cost Model

● Off-chip Global Memory
– LPDDR4, 4 pJ/bit

– Higher-speed SDDR4, 20 pJ/bit

– Bandwidth limited
● Memory bandwidth off of an accelerator chip is limited to

about 400 GB/s
● Placing memories on interposers can give bandwidths up

to 1 TB/s, but at the expense of limited capacity

[MICRON. System power calculators, 2019. https://tinyurl.com/y5cvl857]

103

Cost Model

● Local Communication
– Increases linearly with distance at a rate of 100 fJ/

bit-mm

104

Cost Model

● Global Communication
– High-speed off-chip channels use SerDes that have

an energy of about 10 pJ/bit

105

Cost Model

● Tools
– DSENT

https://github.com/mit-carbon/Graphite/tree/master/contrib/dsent/dsent-core

– CACTI
https://github.com/HewlettPackard/cacti

– Ramulator
https://github.com/CMU-SAFARI/ramulator

https://github.com/mit-carbon/Graphite/tree/master/contrib/dsent/dsent-core
https://github.com/HewlettPackard/cacti
https://github.com/CMU-SAFARI/ramulator

106

Agenda

● A bit of history
● Inefficiency in GP architectures
● Domain Specific Architectures
● Source of acceleration
● Cost models
● Communication issues

107

Communication Issues

● Logic and local memory energies scale linearly
with technology

● Communication energy remains roughly
constant!

● This nonuniform scaling makes communication
even more critical in future systems

108

Link Performance

109

Interconnect Delay Bottleneck

110

Interconnect Delay Bottleneck

111

Interconnect Delay Bottleneck

[S. W. Keckler et al., "A wire-delay scalable microprocessor architecture for high
performance systems," ISSCC 2003]

Fraction of chip
reachable in one cycle

with an 8FO4 clock
period

112

Uniprocessor Architecture
Inefficiency

● Pollack's rule
– New architectures take a lot more area for just a

little more performance

– ...global interconnect is part of this problem!

Die area

P
er

fo
rm

an
ce

113

Communication Impact

114

Inference Latency/Energy

[M. Palesi, et al., “Improving Inference Latency and Energy of Network-on-Chip based
Convolutional Neural Networks through Weights Compression”, IPDPS 2020]

115

[W. J. Dally and B. Towles, "Route packets, not wires: on-chip interconnection networks,"
DAC 2001]

116

Network-on-Chip Paradigm

117

Conclusions

● Technology related issues
– End of Moore's law, Dennard Scaling, ...

● Turing Tariff
● Need for architectural innovations!
● A new golden age for computing architectures

– Domain Specific Architectures

– Domain Specific Languages

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84
	Diapositiva 85
	Diapositiva 86
	Diapositiva 87
	Diapositiva 88
	Diapositiva 89
	Diapositiva 90
	Diapositiva 91
	Diapositiva 92
	Diapositiva 93
	Diapositiva 94
	Diapositiva 95
	Diapositiva 96
	Diapositiva 97
	Diapositiva 98
	Diapositiva 99
	Diapositiva 100
	Diapositiva 101
	Diapositiva 102
	Diapositiva 103
	Diapositiva 104
	Diapositiva 105
	Diapositiva 106
	Diapositiva 107
	Diapositiva 108
	Diapositiva 109
	Diapositiva 110
	Diapositiva 111
	Diapositiva 112
	Diapositiva 113
	Diapositiva 114
	Diapositiva 115
	Diapositiva 116
	Diapositiva 117

