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Workshop Agenda

● Lecture 1: Domain Specific Architectures
● Lecture 2: Kernel computation
● Lecture 3: Data-flow techniques
● Lecture 4: DNN accelerators architectures
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Lecture 1 -- Agenda

● A bit of history
● Inefficiency in GP architectures
● Domain Specific Architectures
● Source of acceleration
● Cost models
● Communication issues

Session 1

Session 2
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“Those who cannot remember the past are condemned to repeat it.”

George Santayana, 1905
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IBM Compatibility Problem

● By early 1960's, IBM had four incompatible
lines of computers
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Unifying the ISA

● How computers as inexpensive as those with 8-
bit data paths and as fast as those with 64-bit
data paths could share a single ISA?
– Datapath: not a big issue!

– Control: the greatest challenge

● Microprogramming
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Microprogramming

● ISA interpreter
– Instruction executed by several microinstructions

– Control store was implemented through memory
● Much less costly than logic gates
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IBM System/360 Family
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CISC

● Moore's Law → Larger memories → Much
more complicated ISAs

● VAX-11/780 (1977) 
– 5,120 words x 96 bits (its predecessor only 256

words x 56 bits)
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The Intel 8800 Fault

● Design an ISA that would last the lifetime of
Intel
– Too ambitious and too late in the development 

● Plan B: 8086 ISA
– 10 person-weeks over three regular calendar weeks

– Essentially by extending the 8-bit registers and
instruction set of the 8080 to 16 bits 
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8086 ISA

● IBM used an 8-bit bus version of the 8086
● IBM announced the PC on August 12, 1981

– Hope: sell 250,000 PCs by 1986

– ...but...Sold 100 million worldwide!
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From CISC to RISC

● Unix experience: high-level languages could be
used to write OSs

● Critical question became
 
“What instructions would compilers generate?” 

instead of 

“What assembly language would programmers
use?”
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From CISC to RISC

● Observation 1
– It was found that 20% of the VAX instructions

needed 60% of the microcode and represented only
0.2% of the execution time

● Observation 2
– Large CISC ISA → Large microcode → high

probability of bugs in microcode

● Opportunity to switch from CISC to RISC
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RISC

● RISC instructions simple as microinstructions
– Can be executed directly by the hardware

● Fast memory (formerly used for microcode) 
– Repurposed to be a cache of RISC instructions

● Register allocators based graph-coloring 
– Allows compilers to efficiently use registers

● Moore's Law 
– Enough transistors in the 1980s to include a full 32-

bit datapath, along with I$ and D$ in a single chip
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RISC

● IEEE International Solid-State Circuits
Conference, in 1984
– Berkeley, RISC-I and Stanford MIPS

– Superior in performance than commercial
processors

– (RISC-I and MIPS developed by few graduate
students!)
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RISC Supremacy

● x86 shipments have fallen almost 10% per year
since the peak in 2011

● Chips with RISC processors have skyrocketed
to 20 billion!

● CISC based x86 ISA
– x86 instructions converted on-the-fly to RISC

instructions 
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Quantitative Approach

CPU Time = IC × CPI 

● IC
CISC

 ≈ 75% IC
RISC

● CPI
CISC

 ≈ 6 × CPI
RISC

● CPU Time
CISC

 ≈ 4 × CPU Time
RISC

[Flynn, M. “Some computer organizations and their effectiveness”. IEEE Transactions on
Computers 21, 9 (Sept. 1972)]



18

End of Moore's Law

[Moore, G. No exponential is forever: But 'forever' can be delayed! [semiconductor industry]. In
Proceedings of the IEEE International Solid-State Circuits Conference Digest of Technical Papers (San
Francisco, CA, Feb. 13). IEEE, 2003, 2023.]
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End of Dennard Scaling

[Dennard, R. et al. Design of ion-implanted MOSFETs with very small physical dimensions. IEEE
Journal of Solid State Circuits 9, 5 (Oct. 1974), 256268]
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Amdahl's Law for Parallel
Computing
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End of Growth of Single Program Speed

[J. L. Hennessy and D. A. Patterson. A New Golden Age for Computer Architecture. Communications of
the ACM, 62(2), Feb. 2019.]
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Agenda

● A bit of history
● Inefficiency in GP architectures
● Domain Specific Architectures
● Source of acceleration
● Cost models
● Communication issues
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General-Purpose CPU

● Easy to program 
● Large code bases exist

...
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The “Turing Tariff”

● Refers to the cost of performing functions using
GP hardware

● The theoretical machine proposed by Alan
Turing could perform any function, but not
necessarily efficiently

Prof. Paul Kelly, Imperial College, London
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The “Turing Tariff”

...

Fetch/Decode

10× to 4000×

Instruction 
execution
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What Opportunities Left?

● Hardware-Centric approach
● Software-Centric approach
● Combination



27

Hardware-Centric Approach

● Domain-Specific Architecture
– a.k.a. Domain Specific Accelerator (DSA)

– Tailored to a specific problem domain
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ASIC vs. DSA

● ASIC: often used for a single function
– With code rarely changes

● DSA: specific for a class of applications
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DSA Examples

● Graphic Processing Units (GPUs)
● Neural Network Processors
● Processors for Software-Defined Networks

(SDNs)
● ...
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Inefficiencies of HL Languages

● SW makes extensive use of HL languages

– Typical interpreted → Inefficient

[Leiserson, C. et al. There's plenty of room at the top.  Science, June 2020, Vol 368(6495)]

7x

20x

9x
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Productivity vs. Efficiency

● Big gap between
– Modern languages: emphasizing productivity

– Traditional approaches: emphasizing performance

 

 

Modern languages
(productivity first objective)

Traditional approaches
(performance first objective)
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Software-Centric Approach

● Domain-Specific Languages
● DSAs require targeting high-level operations to

the architecture
– Too difficult to extract structure information form

general-purpose languages (Python, C, Java, ...)

● Domain-Specific Languages
– Make vector,  dense/sparse matrix operations

explicit

– Help compiler to map operations to the processor
efficiently
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DSLs Examples

● Matlab: for operating on matrices
● TensorFlow: dataflow language for

programming DNNs
● P4: for programming SDNs
● Halide: for image processing specifying high-

level transformations
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DSLs Challenges

● Architecture independence
– SW written in a DSL can be ported to different

architectures achieving high efficiency in mapping
the SW to the underlying DSA

● Example XLA system
– Translates TensorFlow to heterogeneous

processors that use Nvidia GPUs or Tensor
Processor Units  (TPUs)
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Combination

● Domain Specific Languages & Architectures
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Agenda

● A bit of history
● Inefficiency in GP architectures
● Domain Specific Architectures
● Source of acceleration
● Cost models
● Communication issues
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Reduced Overhead

[M. Horowitz, "1.1 Computing's energy problem (and what we can do about it)," 2014 IEEE International
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 10-14]

25pJ 6pJ Control

I-Cache Access Register File
Access

Add

CPU

70 pJ

Add

ASIC

< 1 pJ
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Domain Specific Accelerators

● A hardware computing engine that is
specialized for a particular domain of
applications

Specialized   
Operations            Parallelism

Efficient 
Memory
Systems

Reduction of
Overhead

DSA
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Domain Specific Accelerators
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Domain Specific Accelerators

● Several different domains
– Graphics

– Deep learning

– Simulation

– Bioinformatics

– Image processing

– Security

– ...
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Machine Learning Domain
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Landscape of Computing

Accelerators/Co-processors
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Acceleration Options -- ASIC

 Highest efficiency

 High nonrecurring engineering (NRE) cost 

 Poor programmability

 Hardwired logic for a single application domain
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Acceleration Options -- FPGA

 Lowers the efficiency by 10–100×

 Dynamically configured for different applications 

 Allows for an accelerator to be instantiated near the
data it operates on, reducing communication cost
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Acceleration Options -- GPU

 Accelerate multiple domains by incorporating
specialized operations

 Offers order of magnitude better efficiency than CPUs
(near-ASIC efficiency for the application they accelerate) 

 S IMT  e xe cution mod e l ine f cie nt for single-
thread application
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Example

● Deep Learning
● Genomics
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Deep Neural Networks
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Comparison

[W. J. Dally, et al., Domain-Specific Hardware Accelerators.
Communications of the ACM, 63(7), pp. 48-57, July 2020.]

ResNet-50
● Intel Xeon S(with DL Boost technology)
● NVIDIA Tesla deep learning product
● Goya Inference Platform
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Genomic Data
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Comparison

[W. J. Dally, et al., Domain-Specific Hardware Accelerators.
Communications of the ACM, 63(7), pp. 48-57, July 2020.]

● Intel Xeon E5-2670
● NVIDIA V100
● Darwin-WGA mapped on FPGA 

Smith-Waterman 
algorithm
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Cost vs. Performance

● Banded Smith-Waterman algorithm 
– In CUDA for the GPU in one day

● 25x improvement in efficiency over the CPU

– On an FPGA in two months of RTL design and
performance tuning

● 4x the efficiency of the GPU

– RTL into an ASIC gives 
● 16x the efficiency of the FPGA but with significant

nonrecurring costs and lack of flexibility

[Turakhia, Y., et al. “Darwin-WGA: A co-processor provides increased sensitivity in
whole genome alignments with high speedup. HPCA (2019)]
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Application Porting

● Applications require modifications to achieve
high speed up on DSA
– These applications are highly tuned to balance the

performance of CPU with their memory systems

● Specialization reduces the cost of processing to
near zero
– They become memory limited
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Agenda

● A bit of history
● Inefficiency in GP architectures
● Domain Specific Architectures
● Source of acceleration
● Cost models
● Communication issues
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Sources of Acceleration

● Techniques for performance/efficiency gain
– Data Specialization

– Parallelism

– Local and optimized memory

– Reduced overhead
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Data Specialization

● Specialized operations on domain-specific data
types can do in one cycle what may take tens of
cycles on a conventional computer 
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Data Specialization

● Example 1 – Smith-Waterman algorithm
– Used in genome analysis to align two gene

sequences

– Computation performed in 16-bit integer arithmetic
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Data Specialization

● Conventional x86 processor without SIMD
vectorization
– 37 cycles

● 35 arithmetic and logical operations
● 15 load/store operations
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Data Specialization

● Intel Xeon E5-2620 4-issue, out-of-order, 14 nm
– 37 cycles and 81nJ (mostly for spent fetching,

decoding, and reordering instructions)

● Darwin accelerator, 40 nm
– 1 cycle, 3.1 pJ  (0.3 pJ is consumed computing the

recurrence equations)

● 37× speedup, 26,000× energy reduction
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Data Specialization

● Example 2 – EIE accelerator for sparse NNs
– Store dense networks in compressed sparse

– Run-length coding for feature maps

– Compress weights using a 16-entry codebook

– 30x reduction in size allowing the weights of most
networks to fit into efficient, local, on-chip memories

● Two orders of magnitude less energy to access than off-
chip memories

[Han, S., et al.  EIE: Efficient inference engine on compressed deep neural network.
ISCA 2016]
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Sources of Acceleration

● Techniques for performance/efficiency gain
– Data Specialization

– Parallelism

– Local and optimized memory

– Reduced overhead
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Parallelism

● High degrees of parallelism provide gains in
performance

● Parallel units must exploit locality 
– Make very few global memory references or their

performance will be memory bound

Memory

PE

PE

PE

PE

...

bottleneck

Memory
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Parallelism

● Example 1 -- Smith-Waterman algorithm 
● Parallelism exploited at two levels

– Outer-loop

– Inner-loop
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Parallelism

● Example 1 -- Smith-Waterman algorithm
● Parallelism exploited at two levels

– Outer-loop
● 64 separate alignment problems in parallel
● No communication between subproblems
● Synchronization required only upon completion of each

subproblem
● Typical billions of alignments → Ample outer-loop

parallelism

– Inner-loop
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Parallelism

● Example 1 -- Smith-Waterman algorithm 
● Parallelism exploited at two levels

– Outer-loop

– Inner-loop
● 64 PEs compute 64 elements of H, I, and D in parallel
● Element (i, j) depends only on the elements above (i−1,j),

directly to the left (i,j−1), and above to the left (i−1,j−1)
● Only nearest neighbor communication between the

processing elements is required
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Parallelism

● Example 1 -- Smith-Waterman algorithm 
● Parallelism exploited at two levels

– Outer-loop

– Inner-loop

...

...

...

...

...

...

...

...
... ... ... ... ... ... ... ... ...
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Parallelism

● Example 1 -- Smith-Waterman algorithm 
● Parallelism exploited at two levels

– Outer-loop

– Inner-loop

...
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...
... ... ... ... ... ... ... ... ...
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Parallelism

● Example 1 -- Smith-Waterman algorithm 
● Parallelism exploited at two levels

– Outer-loop

– Inner-loop

...
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...
... ... ... ... ... ... ... ... ...
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Parallelism

● Example 1 -- Smith-Waterman algorithm 
● Parallelism exploited at two levels

– Outer-loop

– Inner-loop
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Parallelism

● Example 1 -- Smith-Waterman algorithm 
● Parallelism exploited at two levels

– Outer-loop

– Inner-loop

...
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... ... ... ... ... ... ... ... ...
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Parallelism

● Example 1 -- Smith-Waterman algorithm 
● Parallelism exploited at two levels

– Outer-loop

– Inner-loop

...
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...
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...
... ... ... ... ... ... ... ... ...
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Parallelism

● Very high utilization
– Outer-loop

● Utilization close to 100%
● Until the very end of the computation, there is always

another subproblem to process as soon as one finishes
● With double buffering of the inputs and outputs, the

arrays are working continuously

– Inner-loop
● Utilization 98.5%
● Loss of utilization at the start and end of computation

(due to the systolic nature of the accelerator)
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Parallelism

● Speedup
– Parallelization speed-up 4,034×

– Data specialization speed-up 37×

● Total speed-up 150,000×
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Sources of Acceleration

● Techniques for performance/efficiency gain
– Data Specialization

– Parallelism

– Local and optimized memory

– Reduced overhead
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Local and Optimized Memory

● Storing key data structures in many small, local
memories
– Very high memory bandwidth

– Low cost and energy
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Local and Optimized Memory

● Data compression 

– Increase the effective size of a local memory 

– Increase the effective bandwidth of a memory interface
● Example, NVDLA

– Weights as sparse data structures → 3×-10× increase
in the effective capacity of on-chip memories

● Example, EIE

– Weights are compressed using a 16-entry codebook → 
8× savings compared to a 32-bit float 
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Weights as Sparse Data Structures

● Pruning techniques
– Remove not useful neurons and/or connections

[S. Han, et al., Learning both weights and connections for efficient neural
networks. NIPS 2015]
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Weights as Sparse Data Structures

● Pruning techniques

[S. Han, et al., Learning both weights and connections for efficient neural
networks. NIPS 2015]
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Weights as Sparse Data Structures

● Pruning techniques
– Irregular memory access 

● Adversely impacts acceleration in hardware platforms

– Achieved speedups are either very limited or
negative even the actual sparsity is high, >95%
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Local and Optimized Memory

● Data compression 

– Increase the effective size of a local memory 

– Increase the effective bandwidth of a memory interface
● Example, NVDLA

– Weights as sparse data structures → 3×-10× increase
in the effective capacity of on-chip memories

● Example, EIE

– Weights are compressed using a 16-entry codebook → 
8× savings compared to a 32-bit float 
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Weights Compressed with
Codebook

Network
Parameters

(e.g., N parameters
with B bit per param)

NxB bits

K-Means
(e.g., C clusters)

Centroids
CxB bits

Compressed
Network

Parameters
Indexes

N log
2
(C) bits

compression ratio
B/(CxB + Nxlog

2
(C))
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Sources of Acceleration

● Four main techniques for performance and
efficiency gains
– Data Specialization

– Parallelism

– Local and optimized memory

– Reduced overhead
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Reduced Overhead

● Specializing hardware reduces the overhead of
program interpretation

[M. Horowitz, "1.1 Computing's energy problem (and what we can do about it)," 2014 IEEE International
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 10-14]

25pJ 6pJ Control

I-Cache Access Register File
Access

Add

CPU

70 pJ

Add

ASIC

< 1 pJ

Overhead
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Reduced Overhead

● A simple in-order processor spends over 90%
of its energy on overhead
– Instruction fetch, instruction decode, data supply,

and control

● A modern out-of-order processor spends over
99.9% of its energy on overhead
– Adding costs for branch prediction, speculation,

register renaming, and instruction scheduling

[Dally, et al. “Efficient embedded computing”, Computer 2008]

[Vasilakis, E. “An instruction level energy characterization of ARM processors”, Tech.
Rep. FORTHICS/TR-450, 2015]
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Reduced Overhead

● Example
– 32 bit integer add @ 28 nm CMOS → 68 fJ

– Integer add on 28 nm ARM A-15 → 250 pJ
● 4000× the energy of the add itself!
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Reduced Overhead

● Overhead reduction in DSAs
– Most adds do not need full 32-bit precision

– No instructions to be fetched → no instructions
fetch and decode energy

– No speculation → no work lost due to mis-
speculation

– Most data is supplied directly from dedicated
registers → no energy is required to read from a
cache or from a large, multi-ported register file
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Reduced Overhead

● Complex instructions
– Matrix-multiply-accumulate instruction (HMMA) of

the NVIDIA Volta V100
● 128 floating-point operations in a single instruction
● Operation energy many times the instruction overhead

128 FP ops: 64 half-precision multiplies and 64 single-precision adds
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Codesign is Needed

● Achieving high speedups and gains in efficiency
from specialized hardware usually requires
modifying the underlying algorithm
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Codesign is Needed

● Existing algorithms are highly tuned for
conventional general-purpose processors
– Tuned to balance the performance of conventional

processors with their memory systems

● Specialization makes cost of processing nearly
zero
– Algorithm becomes memory dominated
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Memory Dominates Accelerators

● GACT

– Dynamic programming module in Darwin platform

– Kernel: 16-bit additions and comparisons
 

● D-SOFT

– D-SOFT filtering hardware module in Darwin platform

– Kernel: simple arithmetic and comparisons

● EIE Sparse NN Accelerator

– Kernel: Matrix Vector Multiplication
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Memory Dominates Accelerators

TSMC 40 nm technology

[Turakhia, Y. et al. , “Darwin: A genomics co-processor provides up to 15,000×
acceleration on long read assembly”. ASPLOS 2018]

[Han, S. et al., “EIE: Efficient inference engine on compressed deep neural network”.
ISCA 2016]

When logic is “free,” memory dominates!
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Specialization vs. Generality

 Engine specialized for just one application → 
highest possible efficiency

 Range of use may be too limited to generate
enough volume to recover design costs

 New algorithm may be developed rendering
the accelerator obsolete
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Specialization vs. Generality

● Smoothing the transition... Accelerates a
domain of applications not a single application
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Special Instructions 
vs. Special Engines

● Building accelerators for broad domains by
adding specialized instructions to a general-
purpose processor
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Special Instructions 
vs. Special Engines

● Example, NVIDIA Volta V100 GPU

– HMMA (half-precision matrix multiply-accumulate)
● Multiplies two 4x4 half-precision (16-bit) FP matrices accumulating

the results in a 4x4 single-precision (32-bit) FP matrix
● 128 FP operations: 64 half-precision multiplies and 64 single-

precision adds

– Turing IMMA (integer matrix multiply accumulate)
●  Multiplies 8×8 8-bit integer matrices accumulating an 8x8 32-bit

integer result matrix
● 1024 integer operations

– Accelerating training and inference for convolutional, fully-
connected, and recurrent layers of DNNs
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Special Instructions 
vs. Special Engines

● NVIDIA Volta V100 GPU vs. Google TPU
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Special Instructions 
vs. Special Engines

● NVIDIA Volta V100 GPU
– HMMA 77% of the energy consumed by arithmetic

– IMMA 87% of the energy is consumed by
arithmetic

● Energy consumed by instruction overhead and
fetching the data operands from the large GPU
register files and shared memory
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Special Instructions 
vs. Special Engines

● Google TPU
– 23% and 13% more efficient on matrix multiply

compared to HMMA and IMMA

– Use of on-chip memories and optimized data
movement

[Jouppi, N.P., et al., Domain-specific architecture for deep neural networks. Commun.
ACM 2018]
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Special Instructions 
vs. Special Engines

● NVIDIA Volta V100 GPU vs. Google TPU
– GPU die will be larger and hence more expensive

– It includes area for the general-purpose functions, and
for other accelerators, which are unused when doing
matrix multiply
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Agenda

● A bit of history
● Inefficiency in GP architectures
● Domain Specific Architectures
● Source of acceleration
● Cost models
● Communication issues
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Cost Model

● Arithmetic @ 14 nm technology
– 10 fJ and 4 μm2 for an 8-bit add operation

– 5 pJ and 3600 μm2 for a DPFP multiply

[Horowitz, M. Computing’s energy problem (and what we can do about it). In ISSCC
(2014), IEEE, 10–14]
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Cost Model

● Local Memory @ 14 nm technology
– SRAM 8 KB, 50 fJ/bit

– 0.013 μm2 per bit

– Larger on-chip memories 
● Communication cost of getting to and from a small 8

KByte subarray → 100 fJ/bit-mm
● Several hundred megabytes with today’s technology

– 100 MB memory 0.7 pJ/bit
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Cost Model

● Off-chip Global Memory
– LPDDR4, 4 pJ/bit 

– Higher-speed SDDR4, 20 pJ/bit

– Bandwidth limited
● Memory bandwidth off of an accelerator chip is limited to

about 400 GB/s
● Placing memories on interposers can give bandwidths up

to 1 TB/s, but at the expense of limited capacity

[MICRON. System power calculators, 2019. https://tinyurl.com/y5cvl857]
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Cost Model

● Local Communication
– Increases linearly with distance at a rate of 100 fJ/

bit-mm
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Cost Model

● Global Communication
– High-speed off-chip channels use SerDes that have

an energy of about 10 pJ/bit
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Cost Model

● Tools
– DSENT

https://github.com/mit-carbon/Graphite/tree/master/contrib/dsent/dsent-core

– CACTI
https://github.com/HewlettPackard/cacti

– Ramulator
https://github.com/CMU-SAFARI/ramulator 

https://github.com/mit-carbon/Graphite/tree/master/contrib/dsent/dsent-core
https://github.com/HewlettPackard/cacti
https://github.com/CMU-SAFARI/ramulator
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Agenda

● A bit of history
● Inefficiency in GP architectures
● Domain Specific Architectures
● Source of acceleration
● Cost models
● Communication issues
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Communication Issues

● Logic and local memory energies scale linearly
with technology

● Communication energy remains roughly
constant!

● This nonuniform scaling makes communication
even more critical in future systems
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Link Performance
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Interconnect Delay Bottleneck
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Interconnect Delay Bottleneck
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Interconnect Delay Bottleneck

[S. W. Keckler et al., "A wire-delay scalable microprocessor architecture for high
performance systems," ISSCC 2003]

Fraction of chip
reachable in one cycle

with an 8FO4 clock
period
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Uniprocessor Architecture
Inefficiency

● Pollack's rule
– New architectures take a lot more area for just a

little more performance

– ...global interconnect is part of this problem!

Die area
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fo
rm

an
ce



113

Communication Impact
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Inference Latency/Energy

[M. Palesi, et al., “Improving Inference Latency and Energy of Network-on-Chip based
Convolutional Neural Networks through Weights Compression”, IPDPS 2020]
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[W. J. Dally and B. Towles, "Route packets, not wires: on-chip interconnection networks,"
DAC 2001]
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Network-on-Chip Paradigm
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Conclusions

● Technology related issues
– End of Moore's law, Dennard Scaling, ...

● Turing Tariff
● Need for architectural innovations!
● A new golden age for computing architectures

– Domain Specific Architectures

– Domain Specific Languages
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