Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Embedded System Technologies for Deep
Learning and Approximate Computing

Under the SPARC Project P:271 — "Approximate Computing Techniques
for Resource Constrained Edge Devices"

Prof. Alessandro Cilardo

acilardo@unina.it

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Day 4
June 6t" 2021

Arm Cortex-A-based systems-on-chip: software development

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

* In the previous classes, we addressed advanced architectural aspects related
to Cortex-A systems:
— e.g. vector extensions (Arm NEON)
— FPGA-based systems-on-chip relying on Cortex-A9 or Cortex-A53 cores
— etc..

* Similar to the Cortex-M profile, let's now take a look at the software
perspective
— let's start with a low-level approach

— ..and then, let's look at software packages which provide an interface to the low-level
features

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

ARM Neon extensions

* ARM architectural support for SIMD-like operations (instruction set extensions)

— ARMVG6: introduced support for SIMD instruction (~2002)
— ARMV7: introduced Neon SIMD extensions (~2009)
— earlier versions (<v5) supported Vector Floating Point (VFP) extensions, offering more basic functions

* ARMv7 Advanced SIMD, also known as Neon
— 16 additional 128-bit registers (Q0-Q15), which can also be viewed as 32 64-bit registers (D0-D31)

— Data types: signed/unsigned 8-bit, 16-bit, 32-bit, 64-bit integral types, single precision floating point
— Additional QC integer saturation summary flag (sticky) in the FP status and control register (FPSCR)

128 bit
Q register (e.g. QO0)
N S R RS | T] R R R T Each of the sixteen 128-bit Neon
registers Q can be alternatively
L [()]) accessed as a pair of 64-bit
32 bit registersD.
8 bit / ;
; ically, t et
D register (e.g. DO) D register (e.g. D1) Worereaysicalbhets namedhe

same physical bits in the Neon

I JJJJ]| O JJC I I register file)
OO0l OO

64 bit

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

ARM Neon extensions

* Assembly instruction modifiers are used to
indicate special behaviors:

— Q (operation uses saturating arithmetic, e.g.
VQADD), Qk | | | | | | I

— H (operation halves the result, e.g. VHADD),
— D (operation doubles the result, e.g. VQDMUL),
— R (operation performs rounding, e.g.
VRHADD)
* Shape modifiers:
— L (result is double the width of both operands) Q] 1M

— W (result and first operand are twice the
width of the last operand)

— N (result is half the width of both operands)

* |nstructions also indicate a Conditional
(with IT instruction) and a data type

L Shape

2

W Shape
e
— O
i - |:
it
L LT
S
ol
|
S
3
|

N Shape

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

ARM Neon extensions: Loading/Storing arrays of structures

Interleaving/de-interleaving of data to/from memory from/to SIMD registers

v1ldx. y: Structure Load, vstx. y: Structure Store (where x: stride, y: data size)

— for example wv1d3.8 {di16-d18},[r1l] accesses 8-bit datain memory, strided by 3, and de-
interleaves them to the lanes of three D registers (3x8 = 24 bytes overall, see the figure below)

Stride x can be one of {1,2,3,4}, data size y can be {8,16,32,64}, up to four D registers can
be indicated as operands, affecting the total number of transferred bytes, e.g.:

- v1ldl.32 {dO}, [xO0], vld4.16 {d0,dl,d2,d3}, [x0], vstd.1l6 {dl,d3,d5,d7},[x1l0]
Can also move a single element to a specific lane, e.g.: v1d2.16 {d8[3],d9[31},[r7]
..or copy the same element to all the lanes, e.g.: v1d2.32 {d1[],d3[]},[rl0:64]

LT [T |Memory
first address in rl 8 bit
Processor
LT ldie ,
v1ld3.8 {dlé6-d18}, [rl] 'I I l | l I I I | G417 I Three Arm NEON D registers
: ' (64 bit each)
'LI L 0 & I 1 ldis }

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

ARM Neon extensions: vector arithmeticinstructions

» Addition, Subtraction (with various modes: Saturating, Halving, Rounding,..)
e Multiplication (VMUL, VMLA, VMLS, VFMA, ..)
* Comparison, Selection (VCEQ, VCGE, VCGT, ..)

* Bitwise logical operations (VAND, VBIC, VEORR, VORN, VORR,..)
— work on 64-bit and 128-bit registers. Operations are independent of data types

* Bitwise operations: Insert if True, Insert if False, Select (VBIT, VBIF, VBSL)
— support bit-level manipulation operations. Work on 64-bit and 128-bit registers

* Reciprocal Estimate/Step, Reciprocal Square Root Estimate/Step (FRECPS, ..)
* Further arithmetic operations: MIN, MAX, NEG, MOV, ABS, ABD, ..

* Reduction-like operations (e.g. VPADD: adds adjacent pairs of lanes)

* Miscellaneous: DUP, EXT, CLZ, CLS, TBL, REV, ZIP, TRN, ...

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

ARM Neon extensions used in many software projects..

* Google WebM video codec: around 11,000 lines of code in Neon assembler
* sbc audio encoder in Linux Bluetooth protocol stack (Bluez)
* Pixman library in the cairo 2D graphics library, uses Neon for compositing/alpha blending

» ffmpeg suite, libavcodec codec library (used in LGPL media players of many Linux distros):

— Neon used for video processing SIVI PEG-2, MPEG-4 ASP, H.264, VC-1, VP3, Theora, ..) as well as audio
processing (AAC, Vorbis, WMA,..

* Android libraries, e.g. Skia library, S32A_ D565 Opaque, ..

— rely on several Neon optimizations

* Various mathematical and digital signal processing libraries
— Eigen2 vector mathematics and linear algebra C++ template library
— Theorarm, also available in a Neon version
— libjpeg optimized JPEG decode library
— FFTW Neon-enabled FFT library

* LLVM-based code generation backend in Android Renderscript supports Neon
* Anincreasing number of ML libraries targeted at ARM systems rely on Neon
* etc..

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

SIMD software development

* Optimized libraries

— e.g. NEON OpenMAX DL (Development Layer): APls contain a comprehensive set of
audio, video and imaging functions that can be used for a wide range of accelerated
codec functionality such as MPEG-4, H.264, MP3, AAC and JPEG

— Broad open source support for NEON

* Vectorizing compilers

— Exploit SIMD automatically with existing C source code
* Intrinsics

— C function call interface to SIMD operations

— Supports all data types and operations supported by the SIMD extensions
* Assembler

— for those who really need to optimize code at the lowest level

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

SIMD software development

* vectorizingcompilers vs. intrinsics

void add intfint * | restrict pa,; ing*

unsigned int n, int x) {

unsigned int 1i;
for(i = 0; 1 < (n & ~3);
palil = pbl[i]l + x;

vold add int(int *pa, int *pb, unsigned n, 1int x) {

i4+)

unsigned int 1i;

foxr (1
* (pa
*(pa
* (pa
* (pa
pa += 4; p

)
)
)
)

+ 4+ + 1

=

+=

((n & ~3) >
: *(pb +
*(pb +
*(pb +
*(pb +

] «
X F

2)

i
1)
2)
)

=+
-
+
<+

restrict pb,

1==34

Float=32x4 [0 A0
float3Zxd t .Al;
float32x4 t AZ2;
hloat3z2xd L K35

AOQ vldlg £32(A);

Al = vldlg f32(A+4);

A2 = vldlg f32(A+3);

A3 = vldlg f32(A+12);

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

A r m CO m p Ute I_i b ra ry https://github.com/ARM-software/ComputeLibrary

* Low-level machine learning functions optimized for
— Cortex-A CPU, including NEON
— Mali GPU

* provides superior performance to other open source alternatives and immediate support
for new Arm technologies e.g. SVE2

Key Features:
— 100+ machine learning functions for Cortex-A CPU and Mali GPU
— multiple data types supported, i.e. FP32, FP16, int8, uint8, BFloat16
— multiple convolution algorithms: GEMM, Winograd, FFT and Direct
— microarchitecture optimization for key Machine Learning primitives
— configurable build options enabling lightweight binaries
— advanced optimizations for kernel fusion, fast math enablement, texture utilization, ..
— OpenCL tuner and GEMM optimized heuristics for device- and workload-specific tuning

Agnostic to Operating System and portable to Android, Linux and bare metal systems
Used in countless smartphones, smart cameras, automotive applications, etc.
Open source software (under permissive MIT license)

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

A 'm N N https://github.com/ARM-software/armnn

Provides an interface between popular NN frameworks and

user NN application

Cortex-A CPUs, Arm Mali GPUs, or Arm Ethos NPUs I 3
— relies on the Arm Compute Library for exploiting Cortex-A CPUs (v7, 3
v8) and Mali GPUs sl A
— custom IP and associated backend can be provided B E z
— (backend can be dynamically loaded) 5 TR
— Ethos-N Driver Stack for the NPU IP (yet not available commercially) . 1
* Can also interface with Google's Android NNAPI Arm NN
— uses the HAL driver targeted at the Arm IP %
. : : [backend |
« Takes in a given model and replaces the underlying : —_—
operations with optimized versions for the target platform P !
— scripts used for translation are part of the framework Arm Compute libitary| [0 C;S_tom
— (can accept TensorFlow Lite, ONNX, PyTorch, and Caffe models) ¥ "
* Open-source software and tools cortex-acpt]| maiicru | [EthosN | [customip

— written in portable C++14

Note (1): only inference is supported

Note (2): no support for Cortex-M

Arm NN: modes of use

* Three modes of use
supported:

— Direct use of the graph
builder API

— ML frameworks (through
parsers)

— Android NN APl integration

Alessandro Cilardo - Embedded System Technologie

TensorFlow

3

TensorFlow Lite ONNX Caffe
| AndroidNN |
Parsers ! ! v 3
TSlite | | HALdriver | | oONNx | | caffe
A
Graph builder Application code
Graph representation
Optimizer runtime NN
scheduler _tal_'get_ _grf@tph_ RO, W
optimizations| |optimizations Imanagement

-

L 4

- -

h 4 h 4

-

h 4

Arm Compute Library St custom
| OpenCL | driver
Cortex-A CPU|| Mali GPU Ethos-N custom IP

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Arm NN

Arm NN vs. various CPU-based inference engines (mean values)

1.6

ResNet-50 B Ui cortex-A

- . big Cortex-A
1.0 MobileNet-224 B walicru
Inception v3
Mean
>

Source: https://github.com/ARM-software/armnn

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

FPGA design flows

general-purpose CPU + SIMD

Processing system

= — |

for example, some layer of a
Binarized NN or a Quantized NN

|]
D—: : :] peripheral peripheral
!
] : 1] L i T
L e (e D e e) 1 | e

Programmable logic

IGLEIETEn

soft-core

control logic written in C logic
running on a custom soft core

float computeNeighbor(float) {
if (v==0) return 0.0;

int sgn=false:;

if (w<0) { wh=-1; sgn=true; }

int e;

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

- :
FPGA design flows ssgmad stop ;| st gt
begin
controller_inst: controller

port map(
Clkx=CI => Clkx=CI,

Processing system ResetxRBI => ResetxRBI,
| 1]
I |
|] HDL
I |
i . L —
I] =
] -
|

[l—

T T B !] synthesis E—

w o =

peripheral peripheral v

B

iliitiiiite

peripheral

place

IP integration

LLELE] 2

soft-core h 4

bitstream generation

Programmable logic

L J

FPGA programming

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

float computeNeighbor(float w) {

FPGA design flows

signal stop : std logic;
= if (v==0) return =

begin

" int sgn=false;
contr - -

ngh Level SynthESIS if (v<0) { v*=-1; sgn=true; }
| infi e;
C AR p—— _r_LM_rJ.r i

high-level C code

Processing system ResetxRBI => ResetxRBI,

L J

FPGA programming

— I 'J. HLS pEECTTEE e x
C L HDL : HDL ;
|]
|] 1 I
[L :]] peripheral peripheral v : ¥ :
T
- T ' Jr—) synthesis : synthesis :
P - -
o I—T 2 : 2 '
peripheral I |
place 1 place I
I I
I I
v | Y |
t : t :
- v route | route I
TR0 : :
soft-core ; A . R B
Programmable logic bitstream generation bitstream generation

v

FPGA programming

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

FPGA design flows

Processing system

[|
[] ||
:] peripheral peripheral
i
| L

& 1 !
P
e e s o e i 4|__.__| AMBA AXl interfaces

peripheral

——
ILEIEEn

soft-core

Programmable logic

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

AMBA 3 and 4: Advanced Extensible interface (AXI)

Slave 1

* Advanced Extensible interface (AXI) it
— used for high bandwidth and low latency interconnects
— point-to-point interconnect, avoid the limitations of a shared bus
— the "interconnect"” can be a custom crossbar or a switch design or even a Slave 2

Network on Chip (NoC)

— enhances AHB: supports multiple outstanding data transfers (pipelined),
burst data transfers (up to 256 cycles), separate read/write paths and
different bus widths

* AXI-lite protocol: a simplified version of AXI
— no support for burst data transfers

Slave 3
(e.g. external
bus interface)

Inter-connection architecture
—

AXI2APB
BRIDGE

* AXI-stream protocol M
— supports only streaming of data from a master to a slave = |
— no separate read/write channels in the stream protocol unlike a full AXI or
AXI'I'te R —| sSPl
3 : : Masterinterface
— only streams in one direction m—
E——
— multiple streams can be transferred, possibly with interleaving, across a Slave interface
master and slave, e.g. for video streaming applications. Lo
APB

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Detail of the AXI protocol

address =2

master |:||:||:||:| data > slave

< response |:|

* Protocol based on independent "channels"
» Address Channels (R/W) |:|

— separate for reads and writes, provide all the address and
control information regardmg a transaction. They control:

— bursts, varying from 1 to 16 data transfers per burst
— burst transfer size: 8-1024 bits

— wrapping, incrementing and non-incrementing bursts
— caching and buffering control at the system-level

— atomic operations with exclusive or locked accesses
— secure and privileged access

* Write Data Channel
— adata bus ranging from 8-1024 bits wide

— a byte lane strobe for every eight bits of data, used for
identifying valid bytes in the data bus

* Read Data Channel |:| address =

— includes a data bus with an identical range but also a read
response which indicates the completion of a read master slave

transaction
€ data
* Write Response Channel [”:":”]

— allows signalling of a completion to a write transaction from
the slave by sending a completion signal once for each burst

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Challanges for portingan NN to an FPGA

* Models may be extremely demanding
— e.g. ResNet-50 requires +7 billion operations for every
input image
— but, operations are highly parallel: Processing system

— parallel branches and topology parallelism across
consecutive layers and (GooglLeNet, DNN ensambles, ..)

— within a layer: multiple input/output feature map
channels and pixels in convolutional layers

— bit-level parallelism

peripheral peripheral

* Approaches to FPGA acceleration: JO01RI0T0
R Opt|m|ZEd “Streamlng“ CUStom arChltECtUre Programmable logic
— reusable processing engine /vector processor

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Xilinx FINN-R experimental framework (*)

» Support architectural choices and mixed/variable precisions beyond binary
* Feed-forward dataflow implementations for fully binarized neural networks

* The flow relies on a quantization-aware intermediate representation
— enables QNN-specific optimizations

* Originally only supported binary quantization for input and weight values
— resort to XNOR and bitcount (a.k.a. Hamming weight, or popcount) for multiply-accumulate
— only feed-forward dataflow (DF)

* Now, supports Multilayer Offload (MO)
— only some of the layers are implemented in the PL
— automatically generates a runtime schedule for the MO case
— identifies an optimized folding parameter for the DF case

* Templated HLS library + examples
— implements convolutional, fully-connected, pooling and LSTM layer types as streaming
components

(*) T. Preusser, G. Gambardella, N. Fraser and M. Blott, “Inference of Quantized Neural Networks on Heterogeneous All-Programmable
Devices”, Proceedings of the Design Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, March 2018.

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Xilinx FINN-R experimental framework (*)

* LLVM-based flow
* Front-end NN description

(Theano, TF, DarkNet, Caffe)

— responsible for interfacing with a selection of
training frameworks (Caffe, DarkNet and
Tensorflow) and translating trained QNNs into Intermediate Representation :)
the IR

* Quantization-aware intermediate
representation (IR) used for performance
modelling

architectural customization

. BaCk—end: C'Ode generation final hardware+ runtime

(*) T. Preusser, G. Gambardella, N. Fraser and M. Blott, “Inference of Quantized Neural Networks on Heterogeneous All-Programmable
Devices”, Proceedings of the Design Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, March 2018.

