Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Embedded System Technologies for Deep
Learning and Approximate Computing

Under the SPARC Project P:271 — "Approximate Computing Techniques for
Resource Constrained Edge Devices"

Prof. Alessandro Cilardo
acilardo@unina.it

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Day 2
May 30", 2021

Microcontroller-based systems: software development

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Cortex-M software development flow and tools

* Numerous vendors selling C compiler suites for Cortex-M microcontrollers

* For example:
— Keil™ Microcontroller Development Kit (MDK-ARM)
— ARM DS-5™ (Development Studio 5)
— GNU Compiler Collection (GCC)
— 1AR Systems (Embedded Workbench for ARM Cortex-M)
— Red Suite from Code Red Technologies (acquired by NXP in 2013)
— Mentor Graphics Sourcery CodeBench
— mbed.org, free open source loT OS and development tools
— Atollic TrueStudio (STM32Cube)

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Typical software development tools

* C compiler
— translates C program files into object files
Assembler
— translates assembly code files into object files
* Linker
— joins multiple object files together and defines memory configuration
Flash programmer
— transfers the compiled program image to the flash memory of the microcontroller

* Debugger

— controls the operation of the microcontroller and accesses internal information so that status
of the system can be examined and the program operations can be checked

Simulator
— allows the program execution to be simulated without real hardware

* Other utilities
— various tools, for example to convert the compiled files into different formats

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

What does an embedded software dev flow need to care about?

* The hardware architecture is more or less directly exposed to the software

* Many aspects need to be explicitly addressed
— access functions for configuring and accessing the peripheral registers
— system configuration and management
— interrupt setting
— specifying the layout of the program and data memory
— etc..

* The flow is often dependent on the specific vendor and tools
— microcontroller vendors usually provide specific header files and C codes
— aspects like memory layout can be specified in a tool-specific manner
— e.g. with "scatter-loading" files in some toolchains
— or, through command line options to specify the locations of ROM and RAM
—in a GNU-based toolchain, the memory specification is handled by linker scripts

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

General software compilation flow

Emulator

linkerscript (.1d)
— | scatter-loadfile (.scat) —
I_:I

SRR ey
—B | I:Ilﬂ
OooC—1000

.cpp —| Compiler >

=SS Compiler > .0 » Linker >

Executable (e.g. .elf)

A A

||_‘J I ||_7I

——| Assembler

nJn g

=[] =

Binary image
Disassembled list

Physical execution

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

General software compilation flow

Emulator

GNU tools linkerscript (.1d)
— | scatter-loadfile (.scat) —

— Compiler >

.cpp

SRR ey
—B | I:Ilﬂ
OooC—1000

— Compiler > .0 » Linker >

Executable (e.g. .elf)

A A

||_‘J I ||_7I

——| Assembler

nJn g

=[] =

Binary image
Disassembled list

Physical execution

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Types of embedded software

 Software developed by in house
developers

* Software reused from other projects

e Device-driver libraries from
microcontroller vendors

* Embedded Operating Systems

* Other third-party software products
such as communication protocol
stacks

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Cortex-M low-level software: how are peripherals accessed?

* Registers are memory mapped: Write to memory (peripherals blocks) through pointers

* For example, consider a GPIO device:

// "GPIO A Port" Configuration Register
#define GPIOA CRL (*((volatile unsigned
// "GPIO A Port"™ Configuration Register
#define GPIOA CRH (*((volatile unsigned

vold GPIOA reset (void) {

GPIOA CRL = 0; // Bits 0 to 7 corre

* Problems:
— the approach is not scalable

Low

long
High
long

spond

*) (0x40010800)))

*) (0x40010804)))

to pins, all set as analog input mode

— many addresses to store (many registers, to be distinguished for each peripheral)
— difficult to write general functions working for multiple instances of the same peripheral type

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Low-level software: how are peripherals accessed?

* Define the peripheral registers as data structures:

typedef struct{

IO uint32_t CRL;

IO uint32 £ CRH;

IO uint32 t IDR;

IO uint32 t ODR;

I0 uint32 t BSRR;
IO uint32 t BRR;

IO uint32 t LCER;

} GPIO TypeDef;

* Then each peripheral base address (GPIO A to GPIO G) is defined as a pointer to the data structure:

// Peripheral base address (in the bit-band region)

#define PERIPH BASE ((uint32 t)0x40000000)

#define APB2PERIPH BASE (PERIPH BASE + 0x10000)

#define GPIOA BASE (APB2PERIPH BASE + 0x0800)

#define GPIOA ((GPIO TypeDef *) GPICA BASE)

#define GPIOB ((GPIO TypeDef *) GPIOB BASE)

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Low-level software: how are peripherals accessed?

* Note: IO isdefinedin a standardized header file in CMSIS

— It implies a volatile data item (e.g., a peripheral register), which can be read or
written to by software

— A peripheral register can also be definedas“ I” (read only)and “ O” (write only)

#ifdef cplusplus

#define I volatile // for read-only operations

telse

#define I volatile const // for read-only operations
#endif

#define O volatile // for write-only operations

#define IO volatile // for read/write operations

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Low-level software: how are peripherals accessed?

. B}/ using structures, we can create functions that can be invoked for each instance
of the peripheral easily

* For example, the code to reset the GPIO port can be written as:

vold |GPLO | reset (GP10 TypeDef* |GP1OxX){
GPIOx=>CRL); // Bit 0 to 7 set as analog input
GPIOx=>CRH); // Bit 8 to 15 set as analog input
GPIOx->0ODR = Ff Defdult® output. value will be~0
return:

}
. }'o use this function, we just need to pass the peripheral base pointer to the
unction:

GPIO reset(GPIOA); // Reset GPIO A
GEIO reset (GEIOBY? // Reset GPIO B

* This method for declaring peripheral registers is used by almost all of the Cortex-
M microcontroller device-driver packages

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Cortex-M low-level vector programming (VFP)

* Single Instruction Multiple Data (SIMD)
instructions and associated SIMD registers

— (only Single-Precision in Cortex-M4, SP/DP in M7)
* Floating-point registers are accessed in banks for

SIMD operations
—e.g.the [S4, S6, S8, S10] setis a four-element bank

50 |

51 |

52

V[V [V][V]

53

527 |

528
. D14

529 |

* Two parameters (length, L, stride, S) are set in the
Floating-Point Status/Control Register (FPSCR)

— a SIMD bank will be formed as L registers spaced by §
positions in the register file

— all floating point operations following a write to FPSCR i
will be performed in SIMD fashion if L>1 EDDDDDDDD """" INENE

530 | i b1

V[V][V][V][V]

531

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Cortex-M low-level vector programming | =—=—= Eemamr st
| S2 | [52 |

] , | 5 | | 5 |

* a couple of examples of SIMD floating point | B : | = |
addition operations | % | | % |
— Length=4 elements processed by a single instruction : = : : = :

— first example: Stride=1 - consecutive registers e e
form a bank | ST | | S11 |

— second example: Stride=2 > registers in a bank are : — : : SE :
spaced by 2 indices | 514 I | 514 I

| $15 | [$15 |

* The same instruction £add can be executed e — e —
affecting different numbers and positions of et Ol T |

: . . | 5§19 | I 19 |
registers, depending on Length and Stride | 20 | | 20 |

| | | |

——— —

fadds s24, sO, s8 : e : : 2 :

| 525 | | 525 |

FPSCR I 526 | I 526 |
0 1 2 3 4 5 & 7 8 9 10 11 12 13 14 15 16 17 18 1% 20 21 22 23 24 25 2% 27 28 29 30 31 | 227 | | 227 |
| | | |

LOODOOOOOODOODD O OOOOaCOOOOO0HO0H T —)
| 530 | | 530 |

T [531 I [31 I

Length Stride

{only 1 and 2 Length = 4, Stride =1 Length = 4, Stride =2
supported)

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Cortex-M low-level vector programming (VFP)

* Two parameters (length, L, stride, S) are set in the FP control register FPSCR
— L registers spaced by S are accessed by a single SIMD instructions

* An example: perform element-wise addition between two vectors

1bl 1:
fmxr fpscr, ro0

asr r7, #3

.loop:
fldmias rl!, {s8-s15}
fldmias r2!',{sl6-s23}
fadds s24, s8, sl6
fstmias rb!, {s24-s31}
subs r7, r7, #1
bne .loop

fmxr fpscr, r9

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Cortex Microcontroller Software Interface Sta ndard (CMSIS)

* Developed by ARM with various microcontroller vendors, tools vendors, and
software solution providers. Ensures:

— Enhanced software reusability, Enhanced software compatibility, Easy C-based
development, Toolchain independence, Open-source access

User application debugger tool
CMSIS pack T
E CMSIS-NN standard middleware dev-:ce Spedjic
middleware
—- CMSIS-RTOS CMSIS-DSP CMSIS-Driver Peripheral HAL CMSIS-SVD
CMSIS Core CMSIS-DAP

Communication

R Special Peripherals Debug infrastructure

Arm Cortex-M processor

CMSIS (as of v5.7.0)

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Cortex Microcontroller Software Interface Standard (asofvs.7.0)

» Core(M) (all Cortex-M, SecurCore)
— Standardized API for the Cortex-M core and peripherals. Includes intrinsic functions for Cortex-M4/M7/M33/M35P SIMD instructions.

» Core(A) (Cortex-A5/A7/A9)
— Standardized API and basic run-time system for the Cortex-A5/A7/A9 processor core and peripherals.

* Driver (all Cortex)
— Generic peripheral driver interfaces for middleware (e.g communication stacks, file systems, or graphic user interfaces)

» DSP (all Cortex-M)
— 60+ functions for fixed-point (fractional q7, q15, q31) and SP-FP (32-bit). SIMD versions available for Cortex-M4/M7/M33/M35P

* NN (all Cortex-M)
— Efficient neural network kernels maximizing the performance and minimizing the memory footprint on Cortex-M processor cores.

» RTOS vl (Cortex-M0O/M0+/M3/M4/M7)
— Common API for RTOSs along with a reference implementation based on RTX. It enables portability across multiple RTOSs.

* RTOS v2 (all Cortex-M, Cortex-A5/A7/A9

— Extends CMSIS-RTOS v1 with Armv8-M support, dynamic object creation, provisions for multi-core systems, binary compatible interface.
» Pack (all Cortex-M, SecurCore, Cortex-A5/A7/A9

— Delivery mechanisms for software components, device parameters, and evaluation board support.

 Build (all Cortex-M, SecurCore, Cortex-A5/A7/A9)
— Aset of tools, software frameworks, and work flows that improve productivity, for example with Continuous Integration (Cl).

» SVD (all Cortex-M, SecurCore)
— Peripheral description of a device that can be used to create peripheral awareness in debuggers or CMSIS-Core header files.

» DAP (all Cortex)
— Firmware for a debug unit that interfaces to the CoreSight Debug Access Port.

» Zone (all Cortex-M)
— Defines methods to describe system resources and to partition these resources into multiple projects and execution areas.

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

CMSIS: most important components

» CMSIS-DSP library

— released in 2010, supports many common DSP operations such as FFT and filters,
allowing software developers to create DSP applications on Cortex-M
microcontrollers easily

* CMSIS-SVD (System View Description)

— an XML-based file format to describe peripheral set in microcontroller products.
Debug tool vendors can use the SVD files from microcontroller vendors to construct
peripheral viewers

* CMSIS-RTOS

— an API specification for embedded OS running on Cortex-M, allowing reusability and
portability, as middleware/applications can be developed for multiple embedded OSs

* CMSIS-DAP (Debug Access Port)

— a reference design for a debug interface adaptor, supporting USB to JTAG/Serial
conversions, allowing low-cost debug adaptors to work for multiple toolchains

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

CMSIS-Core (Cortex-M processor support)

* A set of APIs for application or middleware developers to access the features
on the Cortex-M processor

— regardless of the microcontroller devices or toolchain used
* implements the basic run-time system for a Cortex-M device
* gives the user access to the processor core and the device peripherals

* defines:
— Hardware Abstraction Layer (HAL) for system peripherals
— support to system exceptions without compatibility issues

— Naming conventions for device-specific interrupts and header file organization for
improved software portability

— Methods for system initialization

— Intrinsic functions for CPU instructions that are not supported by standard C
— A variable for the system clock frequency which simplifies the setup of timers
— etc..

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

CMSIS-Core: details

Standardized definitions for the processor’s peripherals

— include the registers in the Nested Vector Interrupt Controller (NVIC), a system tick timer in the processor SSysTick), an
optional Memory Protection Unit (MPU), various programmable registers in the System Control Block (SCB

Standardized access functions to access processor’s features
— include various functions for interrupt control using NVIC, and functions for accessing special registers in the processors.

Standardized functions for accessing special instructions easily
— The Cortex-M processors support a number of instructions for special purposes (e.g., Wait-For-Interrupt, WEi, for
entering sleep mode), instead of relying on the toolchain, e.g. for intrinsic functions or inline assembly
Standardized function names for system exception handlers
— A number of system exception types are presented in the architecture for the Cortex-M processors. By giving the
corresponding system exception handlers standardized names, it makes it much easier to develop software solutions
that can be applied to multiple Cortex-M products. This is especially important for embedded OS developers.
Standardized functions for system initialization

— control configuration of clock circuitry and power management registers before the apﬁlication starts. In CMSIS, these
steps are placed in a function called SystemInit (). The actual implementation of this function is device specific and
might need adaption for various project requirements, but the standardized naming and location simplifies development

Standardized software variables for clock speed information

— knowing the actual clock frequency might be needed for setting up the baud rate divider in a UART, or to initialize the
SysTick timer for an embedded OS. A software variable called SystemCoreClock is made available for that

* A common platform for device-driver libraries
— Each device-driver library has the same look and feel, making it easier for beginners to learn how to use the devices

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

CMSIS-Core

* CMSIS supports the complete range of Cortex-M processors and the Armv8-
M/v8.1-M architecture including security extensions:
— Cortex-MO, Cortex-MO+, Cortex-M3, Cortex-M4, Cortex-M7
— Cortex-M23, Cortex-M33

* CMSIS also supports the following Cortex-M processor variants:

— Cortex-M1

- a processor designed specifically for implementation in FPGAs (Armv6-M architecture)
— SecurCore SC000

- designed specifically for smartcard and security applications (Armv6-M architecture)
— SecurCore SC300

- designed specifically for smartcard and security applications (Armv7-M architecture)
— Cortex-M35P

- a temper resistant Cortex-M processor with optional software isolation using TrustZone for
Armv8-M

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

CMSIS coding rules

* The CMSIS uses the following essential coding rules and conventions:
— Compliant with ANSI C (C99) and C++ (C++03)
— Uses ANSI C standard data types defined in<stdint.h>
— Variables and parameters have a complete data type
— Expressions for #define constants are enclosed in parenthesis

— Conforms to MISRA 2012 (but does not claim MISRA compliance). MISRA rule violations are
documented

* In addition, the CMSIS recommends the following conventions for identifiers:
— CAPITAL names to identify Core Registers, Peripheral Registers, and CPU Instructions
— CamelCase names to identify function names and interrupt functions

— namespace_ prefixes avoid clashes with user identifiers and provide functional groups (i.e. for
peripherals, RTOS, or DSP Library)

* The CMSIS is documented within the source files with:
— Comments that use the C or C++ style
— Doxygen compliant function comments that provide:
- brief function overview
- detailed description of the function
- detailed parameter explanation
- detailed information about return values

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

CMSIS validation

* Components of CMSIS Version 5 validated using mainstream compilers
— to get a diverse coverage, Arm uses the Arm Compiler v5 (based on EDG front-end), the Arm
Compiler v6 (based on LLVM front-end), and the GCC Compiler in the various tests
* CMSIS components are compatible with a range of C and C++ language standards
— comply with the Application Binary Interface (ABI) for the Arm Architecture (exception
CMSIS-RTOS v1) = C API interfaces ensuring inter-operation between various toolchains
* The scope of the run-time test coverage is limited
— CMSIS APl interfaces and functions need to scale to many processors and devices
— however, several components are validated using dedicated test suites

* CMSIS source code checked for MISRA C:2012 conformance using PC-Lint
— deviations are documented with reasonable effort
— however Arm does not claim MISRA compliance

— note: CMSIS source code not checked for MISRA C++:2008 conformance (may be
incompatible with C standards, e.g. for warnings generated by the various C compilers)

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

GNU Compiler Collection (gcc) toolchain

* The gcc toolchain contains a C compiler, assembler, linker, libraries, debugger, and
additional utilities
— e.g. arm-none-eabi-as is the Arm-targeted assembler tool

— (note: the tool is pre-built for ARM EABI 3 without any specific target OS platform, hence the
prefix “none.” Some GNU toolchains could be created for developing applications for Linux
platforms, and in those cases the prefix would be “arm-1inux-")

Tools Generic command name Command Name in GNU Tools
for ARM Embedded Processors

C compiler gcc arm-none-eabi-gcc
assembler as arm-none-eabi-as

linker 1d arm-none-eabi-1d

Binary file generation tool objcopy arm-none-eabi-objcopy

Disassembler objdump arm-none-eabi-objdump

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Example of a project structure using CMSIS-core

Device-specific files from the device

Generic CMSIS files from ARM aufdcturet (e STM)

User files toolchain

mem.ld sections.ld
system_stm32f4xx.c

core_cmd.h system_stm32f4xx.h linkerscript

_lh (gce.ld)

.
L

nJ

core_cmFunc.h
core_cminstr.h

4

core_cmd4_simd.h o i it 1
stm32fdxx.h = p GCE :) :
application Compiler I 1= |
N code Assembler I executable (.elf)!
= » Linker L= - .
startup_stm32f4dxx.s

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Example of a project structure using CMSIS-core

mem.ld defines the memory map (flash and SRAM) of the sections.ld defines the
microcontroller: layout inside the executable
MERQRY image (included in the GNU

{ T ,
ools, can be used as is
FLASH (rx) : ORIGIN = 0x08000000, LENGTH = 1024FK " }

The system stm32f4xx.cprovides the RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 112K
SystemInit () function initializing the clocking }

system (e.g. PLL and clock control registers).
May need user customization system_stm32f4xx.c

mem.ld sections.ld

core_cmd.h system_stm32f4xx.h linkerscript

= o (gcc.ld)
core_cmFunc.h =
core _cminstr.h kA

4

core_cmd_simd.h o Caial it ki .
stm32fdxx.h — > GCE I f
Device-specific header file stm32f4xx .h defines all the . ; l " [|
peripheral registers (no need to define them manually) application Compller | = i
BN code Assembler I executable (.elf)!
— Linker b= .
star‘tup_stm3.2f{1xx .S deﬁr‘qes _tf?e? v‘ector table and startiih Sioya2itaic s
contains the very initial code which initializes the system

(written in assembly language)

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

ARM / STM32 dev tools and libraries: a few useful links

* GNU Arm Embedded Toolchain:

- https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads
* For Windows users:
Windows Build Tools (as a lightweight alternative to MSYS2 or CygWin):

- https://github.com/gnu-mcu-eclipse/windows-build-tools/releases

* CMSIS v.5:

- https://github.com/ARM-software/CMSIS 5

* xPack OpenQOCD:

- https://github.com/xpack-dev-tools/openocd-xpack/releases

e STM32CubeF4 MCU Firmware Package (includes CMSIS)
- https://github.com/STMicroelectronics/STM32CubeF4

CMSIS-DSP software library

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

* A suite of common sighal processing functions for use on Cortex-M and -A processors
* Provides a number of functions, covering:

* Basic math functions

* Fast math functions

¢ Complex math functions
* Filtering functions

* Matrix functions

* Transform functions

* Motor control functions
 Statistical functions

* Support functions

* Interpolation functions
» Support Vector Machine functions (SVM)
* Bayes classifier functions
» Distance functions

* In most cases, provides separate functions for:

— 8-bit, 16-bit, 32-bit integer values
— 32-bit floating-point values

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

RTOS supportin ARM CMSIS and the STM32 Cube platform

User application debugger tool
CMSIS pack P T
P CMSIS-NN standard middleware devirce Spedijic
middleware
CMSIS-RTOS CMSIS-DSP CMSIS-Driver Peripheral HAL CMSIS-SVD
CMSIS Core CMSIS-DAP

Communication

B inb il Special Peripherals Debug infrastructure

Arm Cortex-M processor

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

CMSIS-NN software library

A collection of efficient neural network kernels for Cortex-M processors

User NN application

* Maximizes performance while minimizing the memory footprint

Provides a number of functions, covering:
— Convolution Functions
— Activation Functions
— Fully-connected Layer Functions
— Pooling Functions
— Softmax Functions

Convolution

Fully-Connected

Pooling
— Basic math Functions
* Provides separate functions for operating on different weight and activation Activations
data types, including NN functions

— 8-bitintegers (q7_t)
— 16-bit integers (q15_t)

The functions can be classified into two segments

— Legacy functions supporting ARM's internal symmetric quantization (8 bits),
identified with their suffix of _g7 or _g15

(now discontinued)

Data type conversion

Activation tables

o= = e e e e e e e e e e =

NN support functions
— Functions that support TensorFlow Lite framework with symmetric quantization (8 pport
bits), identified by the _s8 suffix and can be invoked from TFL micro
(the latter types of functions are bit exact to TensorFlow Lite) -= CMSIS-NN ------cccecoean- E

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

CMSIS-NN software library: converting a network for Cortex-M

CMSIS-NN supports a limited number of layers
— for unsupported layers: need to manually combine CMSIS-NN
layers an functions from CMSIS-DSP

Weights to be reordered if: Adapt data layouts

— The layer is a convolutional layer or a fully connected layer
— The input of the layer is a matrix or tensor
— The ML framework and the CMSIS-NN orderings are different

Quantization

— the CMSIS-NN flow supports only quantization of existing FP
networks (no training of quantized networks)

— Compute activation statistics
— Decide the quantization schemes
— Determine the Q-formats (8- and 16-bit supported). Some

a network model in a ML framework

Characterize the activation statistics

Decide the quantization schemes

Decide the Q formats for each layer

constraints may apply for certain layers Compute the layer shifts
* Compute layer shifts
* Generate the network Generate the network

Test (possibly, iterate the process)

Test (possibly iterate)

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

CMSIS-NN software library: designh and evaluation (*)

* Quantization: 32-bit FP 2 g7, g15 Q-format (benefits performance and footprint, still ok for inference)
— developed kernels supporting both 8-bit and 16-bit data
— wise data transformation, e.g. from q7_t to q15_t using SIMD within a register (SWAR)

* Matrix Multiplication, based on the mat_mult kernels in CMSIS, 2x2 kernel
— one batch, small kernel. The limited number of registers can be a challenge when implementing larger kernels
— reorder the matrix weights so that row data are interleaved and can be read with only one pointer access

» Convolution
— to contain footprint, only expand a limited number of columns (e.g. 2), still ok to get the maximum performance
— Height-Width-Channel (HWC) layout (pixels are consecutive, efficient use of SIMD)

* x-y pooling (faster than window-based pooling), based on in-situ destructive updates
— 4.5 X speed-up, no memory overhead

 Activation function:
— Relu uses SIMD within a register (SWAR), Sigmoid and Tanh based on 256-entry tables and interpolation

» Tested for a CIFAR-10 dataset, q7_t quantization, an off-the-shelf Arm Cortex-M7 platform
— results: 87 kB footprint for weights, 55 kB footprint for activations
— classify 10.1 images per second with an accuracy of 79.9% (vs. 80.3% achieved by the pre-quantized network)
— 4.6X Throughput, 4.9X Energy efficiency vs: 1D convolution (arm_conv from CMSIS-DSP) + Caffe-like pooling + RelLU

(*) L. Lai, N. Suda, V. Chandra, "CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs", 2018

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

RTOS supportin ARM CMSIS and the STM32 Cube platform

User application debugger tool
CMSIS pack P T
P CMSIS-NN standard middleware devirce Spedijic
middleware
CMSIS-RTOS CMSIS-DSP CMSIS-Driver Peripheral HAL CMSIS-SVD
CMSIS Core CMSIS-DAP

Communication

B inb il Special Peripherals Debug infrastructure

Arm Cortex-M processor

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Real-Time Operating System (RTOS): FreeRTOS

* FreeRTOS™ is an RTOS designed to fit in a microcontroller
— deeply embedded applications

— provides the core real-time scheduling functionality, inter-task communication,
timing and synchronization primitives only

— could more appropriately be defined as real-time kernel or real-time "executive"

— additional functionality (command console interface, networking stacks) can be
included with add-on components

* FreeRTOS in the STM platform relies on the common APIs provided by the
CMSIS-RTOS wrapping layer
— applications using FreeRTOS can be directly ported on any other RTOS
— no need to modify the high level APls, only the CMSIS-0OS wrapper has to be changed

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Overview of FreeRTOS

» Support for 27 architectures, including ARM7, Arm Cortex-MO0O, Cortex-M3, Cortex-M4
* FreeRTOS-MPU supports the Arm® Cortex®-M3 Memory Protection Unit

* Small footprint, e.g. 4K to 9K bytes

» Very portable code structure predominantly writtenin C

» Supports both tasks and co-routines

* Queues, binary semaphores, counting semaphores, recursive semaphores and mutexes for communication
and synchronization between tasks, or between tasks and interrupts

* Mutexes with priority inheritance

* Supports efficient software timers

* Powerful execution traces functionality

» Stack overflows detection options

* No software restriction on the number of tasks that can be created or priorities that can be used

* No restrictions imposed on priority assignment (more than one task can be assigned the same priority)
* Royalty free

* Free development tools and embedded software source code

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

FreeRTOS source organization

* The real-time kernel is contained e T
in JUSt fOUI’ flleS | 1 arlchf'relcru.r'éIpar’r
— software timers and co-routine Demo Source
functionality require additional files |
* Source files available for every e v ‘
= Task.c Portable
processor port, and for every = | -
demonstration application S — L jelic Ry
* The portable folder also includes S | Gompier
several sample heap allocation N Lste N ecsandre Gilasde ——- -
schemes in the MemMang TR o :
subfolder (heap_x.c¢) =ttt L I . erarvrey |
: % croutine.c . : | ! :
®* FreeRTOSConfig.h controls most L ' e .
. s i . | ! ! ort.c I
settings and configuration choices =+ CrAleS ro Cil M |

Alessandro Cilardo - Embedded System

Kernel control

ol e, et W e e i e
2s for DL and Approximate Lomputing

FreeRTOS API

Task creation

XTaskCreate
vTaskDelete

Task control

vTaskDelay

vTaskDelayUntil
uxTaskPriorityGet
vTaskPrioritySet
vTaskSuspend

vTaskResume
xTaskResumeFromISR
vTaskSetApplicationTag
xTaskCallApplicationTaskHook

Task utilities

xXxTaskGetCurrentTaskHandle
XTaskGetSchedulerState
uxTaskGetNumberOfTasks
vTaskList

vTaskStartTrace
ulTaskEndTrace
vTaskGetRunTimeStats

vTaskStartScheduler
vTaskEndScheduler
vTaskSuspendAll
xTaskResumeAll

Queue management

et sedke

XxQueueSend
XxQueueReceive
XQueuePeek
XQueueSendFromISR
XxQueueSendToBackFromISR
XxQueueSendToFrontFromISR
xQueueReceiveFromISR
vQueueAddToRegistry
vQueuelUnregisterQueue
XOneuctreadke

Semaphores

vSemaphoreCreateBinary
vSemaphoreCreateCounting
xSemaphoreCreateMutex
xSemaphoreTake
xSemaphoreGive
xSemaphoreGiveFromISR

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

FreeRTOS memory management

* static vs. dynamic

— Static optionally used (since v9.0.0) for: Tasks, Software Timers, Queues, Event
Groups, Binary Semaphores, Counting Semaphores, Recursive Semaphores, Mutexes

— static allocation avantages: controlled addresses and footprint, no allocation checks
needed
* Dynamic memory management (heap):
— heap_1: the very simplest, does not permit memory to be freed
— heap_2: permits memory to be freed, but does not coalescence adjacent free blocks

— heap_3: simply wraps the standard malloc () and free () supplied with the user's
compiler for thread safety

— heap_4: coalescences adjacent free blocks to avoid fragmentation. Includes absolute
address placement option

— heap_5: as per heap_4, with the ability to span the heap across multiple non-
adjacent memory areas

FreeRTOS task management

task scheduler

blocking API

start unblocking event

Blocked

vTaskResume ()

vTaskSuspend ()
vTaskSuspend()

vTaskSuspend()

Suspended

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Higher priority Eeady
periodictask
= Periodic task blocked running blocked

continuous task 1 ready | running | ready | running ready running
Continuous task 2 running ready | running ready running ready

Two continuous

tasks v-'.ﬂtf} same idle task

priority
L l J 1 r J L I J time
The two continuous tasks The period of the periodic
get alternate time slices task expires. The task is

moved to ready state and

thenimmediatelyrun asit
has the highest priority,

until it gets blocked again

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

. gueue
FreeRTOS: further topics Task 1 Task 2
Task 1 Task 2
* Queue management e =
* Mailboxes, binary and counting semaphores, mutexes Task 1 Task 2
* Software timer management Task 1 Task 2
* Interrupt management Taskit Toskid
— note: re-entrant routines denoted with ..FromISR(..) Task 1 Task 2
— no need to determine the context (from Task vs. from ISR) in
the API COde semaphore
— e.g. interrupt safe version of the Binary Semaphore API can Task 1 2 Task 2
be used to unblock a task each time a particular interrupt
Task 1 Task 2
occurs
* Resource management 22l AL
* Event groups Task A # blocked | running blocked
* Task notification
Task B running ready running

L]
. s e

Reference: Richard Barry, Mastering the FreeRTOS™ Real Time Kernel - A Hands-On Tutorial Guide

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

A common APl for Real-Time operating systems
— standardized programming interface that is portable to many RTOS
— enables software templates, middleware, libraries, and other components
that can work across the supported RTOS systems user application

. What it provides:

intuitive naming for functions, parameters, .

— high-level abstraction for thread management CMSIS-RTOS API

— portable interface for scheduling functionality (osDelay, osWait, y
osThreadYield,..) object definitions

— most functions can be called from ISR (based on macros)

7 coqfllr?unication support between threads and/or ISRs (signals, messages, ! !
mails

— Mutex and semaphore management function call translation

* Kernel objects defined and accessed using macros
— allows kernels to be optimized for specific processors

« A few optional features include: thiec.barty RealTimaKeme

— Support for multi-processor systems

— Support for Cortex-M Memory Protection Unit (MPU) and DMA controller
— Zero-copy mail queue

— Deterministic or round-robin context switching

— Deadlock avoidance, for example with priority inversion

— Zero interrupt latency using Cortex instructions LDEX and STEX

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

CMSIS-RTOS2 File Structure

* CMSIS-based applications are extended for RTOS by adding a CMSIS-RTOS2 component

— such a component may be provided as library or source code (library case shown below)

— the emsis os2.h header file gives access to RTOS API functions and is the only interface header
required when dynamic object allocation is used

* Static object allocation requires access to RTOS object control block definitions
— An implementation specific header file (rtos.h) provides access to such definitions

CMSIiS-core device files Implementation-specific RTOS files CMSIS-RTOS standard files
: _B CMSIS device startup CMSIS compliant _B 5
startup_device.s —= | Vectortable RTOS library | == RTOS.lib
Implementation-
rtos.h = | specificinterface
_B —
startup_device.c | == | cMsISsystemand CMSIS-RTOS RTOS_config.h
i — || clock configuration configuration | == RTOS config.c

Il

device.h » « — | cmsis_os2.h
CMSIS device —_— standard CMSIS-| =

peripheral access Sh— RTOS interface

<userfile>.c
<userfile>.cpp

user code

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

CMSIS-RTOS2 example of code

// CMSIS-RTOS 'main' function template
#include "RTE Components.h"

#include CMSIS device header

#include “"cmsis’ os2. "

// Bpplication main thread
void app main (void *argument) {

P aen
s 2o il Gty I U
}

int main (void) {

// System Initialization
SystemCoreClockUpdate () ;

£

osKernelInitialize () ; // Initialize CMSIS-RTOS
osThreadNew (app main, NULL, NULL); // Create application main thread
osKernelStart () ; // Start thread execution

For: (:5) {1

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

CMSIS-RTOS2 API

+ KernelInformationand Control — osThreadNew : Create a thread and add it to Active Threads.
— osKernelGetinfo : Get RTOS Kernel Information. — osThreadResume : Resume execution of a thread.
— osKernelGetState : Get the current RTOS Kernel state. — osThreadSetPriority : Change priority of a thread.
— osKernelGetSysTimerCount : Get the RTOS kernel system timer count. — osThreadSuspend : Suspend execution of a thread.
— osKernelGetSysTimerFreq : Get the RTOS kernel system timer frequency. — osThreadTerminate : Terminate execution of a thread.
— osKernellnitialize : Initialize the RTOS Kernel. — osThreadYield : Pass control to next thread that is in state READY.
— osKernellLock : Lock the RTOS Kernel scheduler. e Thread Ftags

— osKernelUnlock : Unlock the RTOS Kernel scheduler.

— osThreadFlagsSet : Set the specified Thread Flags of a thread.
— osKernelRestorelLock : Restore the RTOS Kernel scheduler lock state.

— osThreadFlagsClear : Clear the specified Thread Flags of current running thread.
— osKernelResume : Resume the RTOS Kernel scheduler.
— osKernelStart : Start the RTOS Kernel scheduler. — osThreadFlagsWait : Wait for one or more Thread Flags of the current running
— osKernelSuspend : Suspend the RTOS Kernel scheduler. thread to become signaled.

— osKernelGetTickCount : Get the RTOS kernel tick count.

— osKernelGetTickFreq : Get the RTOS kernel tick frequency.

— osThreadFlagsGet : Get the current Thread Flags of current running thread.

+ EventFlags
— oskventFlagsGetName : Get name of an Event Flags object.
* Thread Management — osEventFlagsNew : Create and Initialize an Event Flags object.
— osThreadDetach : Detach a thread (thread storage can be reclaimed when thread — osEventFlagsDelete : Delete an Event Flags object.
terminates). — osEventFlagsSet : Set the specified Event Flags.
— oskventFlagsClear : Clear the specified Event Flags.
— osEventFlagsGet : Get the current Event Flags.

— oskEventFlagsWait : Wait for one or more Event Flags to become signaled.

— osThreadEnumerate : Enumerate active threads.

— osThreadExit : Terminate execution of current running thread.

— osThreadGetCount : Get number of active threads.

— osThreadGetld : Return the thread 1D of the current running thread.
— osThreadGetName : Get name of a thread.

— osThreadGetPriority : Get current priority of a thread.

— osThreadGetStackSize : Get stack size of a thread.

— osThreadGetStackSpace : Get available stack space of a thread based on stack
watermark recording during execution.

— osThreadGetState : Get current thread state of a thread.
— osThreadloin : Wait for specified thread to terminate.

CMSIS-RTOS2 API

= Generic Wait Functions
— osDelay : Wait for Timeout (Time Delay).
— osDelayUntil : Wait until specified time.

+ Timer Management
— osTimerDelete : Delete a timer.
— osTimerGetName : Get name of a timer.
— osTimerlsRunning : Check if a timer is running.
— osTimerNew : Create and Initialize a timer.
— osTimerStart : Start or restart a timer.
— osTimerStop : Stop a timer.

* Mutex Management
— osMutexAcquire : Acquire a Mutex or timeout if it is locked.
— osMutexDelete : Delete a Mutex object.
— osMutexGetName : Get name of a Mutex object.
— osMutexGetOwner : Get Thread which owns a Mutex object.
— osMutexNew : Create and Initialize a Mutex object.
— osMutexRelease : Release a Mutex that was acquired by osMutexAcquire.

* Semaphores

- osSm_ein*LEiphoreAcquire : Acquire a Semaphore token or timeout if no tokens are
available.

— osSemaphoreDelete : Delete a Semaphore object.

— osSemaphoreGetCount : Get current Semaphore token count.
— osSemaphoreGetName : Get name of a Semaphore object.

— osSemaphoreNew : Create and Initialize a Semaphore object.

— osSemaphoreRelease : Release a Semaphore token up to the initial maximum
count.

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

* Memory Pool

osMemoryPoolAlloc : Allocate a memory block from a Memory Pool.
osMemoryPoolDelete : Delete a Memory Pool object.

osMemoryPoolFree : Return an allocated memory block back to a Memory Pool.
osMemoryPoolGetBlockSize : Get memory block size in a Memory Pool.

osl'wlemoryPooIGetCapacity : Get maximum number of memory blocks in a Memory
Pool.

osMemoryPoolGetCount : Get number of memory blocks used in a Memory Pool.
osMemoryPoolGetName : Get name of a Memory Pool object.

osMemoryPoolGetSpace : Get number of memory blocks available in a Memory
Pool.

osMemoryPoolNew : Create and Initialize a Memeory Pool object.

* Message Queue

osMessageQueueDelete : Delete a Message Queue object.
osMessageQueueGet : Get a Message from a Queue or timeout if Queue is empty.

osMessageQueueGetCapacity : Get maximum number of messages in a Message
Queue.

osMessageQueueGetCount : Get number of queued messages in a Message Queue.
osMessageQueueGetMsgSize : Get maximum message size in a Memory Pool.
osMessageQueueGetName : Get name of a Message Queue object.

osMessageQueueGetSpace : Get number of available slots for messages in a
Message Queue.

osMessageQueueNew : Create and Initialize a Message Queue object.
osMessageQueuePut : Put a Message into a Queue or timeout if Queue is full.
osMessageQueueReset : Reset a Message Queue to initial empty state.

