Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Embedded System Technologies for Deep
Learning and Approximate Computing

Under the SPARC Project P:271 — "Approximate Computing Techniques
for Resource Constrained Edge Devices"

Prof. Alessandro Cilardo

acilardo@unina.it

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Workshop overview

* Microcontrollers and Application processors

* ARM ecosystem: processor families and evolution of the ARM architecture
* Introduction to ARM Cortex-M architecture

* System-on-Chip technologies based on ARM Cortex-M

* A case-study: STM32 SoC devices
* Software development and debug tools, GNU toolchain _ 000101001
» ARM CMSIS framework 10101010011
* CMSIS Neural Network library (CMSIS-NN) HESsanary UHdmr

* Real-Time Operating Systems A ETEA R T

* A case-study: FreeRTOS 1001001100

* Introductionto ARM Cortex-A architecture 1490101001
« ARM Cortex-A software stack =

* Hardware-customizable FPGA-based System-on-Chip technologies

* Case-study: Xilinx Zynq-7000 SoC architecture

* An overview of Xilinx FPGA design flows

* FPGA-based customized hardware acceleration and opportunities for Approximate Computing

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Day 1
May 29th, 2021

Microcontroller-based systems

edge cloud

thing
O\

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Embedded systems are everywhere .

r'_‘w
I

@@@@

gateways storage

.. ModBus, OPC-UA,

Industry

i
L

] decision making

r‘; zi cloud analytics

on-premise analytics

motors turbines controllers SEnsors production machines pumps

Automotive

Application
layer

Analytics layer ~——

RELELL

Cyber-physical
layer

1Y

LRRERAI i

Device layer
LiLLiL

T

T

LALii)

Aerospace

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Embedded systems and embedded development flows

inline static double computeNeighbor (double 8 [][] r1r]
if (v==0) return 0.0; [] []
int sgn=false; ssessete: [j[] r4r]
- - — " i 20909 1900080 296 |
if (v<0) { v*=-1; sgn=true; } System-on-Ch|p | | | i
int e; T]

1b1 1: (I (N

1dr r0, [r6] — —
1dr rl4,= Nil+2

cmp r0,rl4d FPGA
bne case_PZ

signal stop : std logic;

begin

controller inst: controller
port map (
ClkxCI => ClkxCI,
ResetxRBI => ResetxREBI,

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Quick Review of Computer Architecture concepts (=15 min)

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Quick Review of Computer Architecture concepts (=15 min)

* Processor organization [Bootstrap]
— General-purpose registers | ke
— Special registers: Program Counter, |
Status registers, .. [Decode |
— Arithmetic-Logic Unit (ALU) [Beatl S
— Instruction Set Architecture (ISA) PC :
— RISC paradigm vs. CISC paradigm Ro MA _
. : R
— Types of instructions: “’ IR ' >
R h 5
- data processing R2 MB £
3
- data movement read 5 =
- control flow O; Oz |write y
- special instructions op
U
Gl
SR Processor

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Quick Review of Computer Architecture concepts (=15 min)

e Subroutines Saling

— Linkage sequence of >

instructions
— Parameter passage

— Role of the stack

called sequence of
Instructions
(“subroutine”)

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Quick Review of Computer Architecture concepts (=15 min)

° It N
Sub‘out es] - |
— Linkage iy I MAI: I_ b
R | | R | ;
— Parameter passage . = | d :
— Role of the stack S : s l . -}
write
S\ w [>
| |u
o
|_|_|_|_| SR Processor
E] called by _—
@ called by 1 HJ['"
[lled by 2 parameters
. (@] carcany merers |
subroutine Cilarda

jumpto
subrqufine ;I,
1 parameters

; 1

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Quick Review of Computer Architecture concepts (=15 min)

| Bootstrap |

* Interrupts/exceptions
— basic mechanism
— types of interrupts/exceptions | Decode

instructions of the I

— interru pt priority running program : |

) 38 &
* execution modes and mAlegdandfo Ci

privilege levels 4.

| Fetch

Execute

& Interrupt Service .
g SR Routine "supervisor" mode

instructions of the

Interrupt Service
Routine (ISR), aka
Exception Handler
instruction
addresses

"user" mode "supervisor" mode

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Quick Review of Computer Architecture concepts (=15 min)

* Memory subsystem and
|/O peripherals %ﬂ%
11 1] IIO_A [;
« "I/O-mapped" approach o }: =
- resfd >]
write >
PC N T —
A . [__© Ales?
R
IR] -
-, - (— |2
R, g
read
O, O, write
U
C V
SR Processor

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Quick Review of Computer Architecture concepts (=15 min)

* Memory subsystem and 1/0
peripherals

* "memory-mapped"

approach]
* The bus to the l/O -
subsystem is typically Ro MA
hierarchical R R
R,
MB
Rs
read >
O, O, write
op \
U
C V
- [Processor

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

ARM history and evolution of the ARM ecosystem
 Originally developed in 1982-1985 by Acorn Ltd

— initially known as Acorn RISC Machine

ARM (Advanced RISC Machine) founded in 1992
— by Acorn, Apple, VLSI technologies coond

Business model based on an IP licensing, not on manufacturing

Many, many integrators today rely on Arm Intellectual
Properties ?/|PS)

* For example:
Cortex-M3/M4. Microcontroller vendors (as of 2014):

- Analog Devices, Atmel, Cypress, EnergyMicro, Freescale,
Fujitsu, Holtek, Infineon, Microsemi, Milandr, NXP,
Samsung, SiliconLaboratories, ST Microelectronics, Texas
Instrument, Toshiba

Arm Cortex-A9. Some real products using it:
- Apple A5 (iPhone 4S, iPad 2, iPad mini) e
- NVIDIA Tegra 2 (Motorola Xoom, Droid X2) YA L
- PlayStation Vita z
- Intel FPGA SoC
- Xilinx Zynq

(]

% .8 i =3

ELEXT

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

The ARM processor architecture

* Driving design principle: architectural simplicity
— leads to very resource-efficient implementations
— ..and hence, very low power consumption
— implementation size, performance, and low power consumption are known to be key
benefits of the ARM architecture

e ARM is a "RISC" architecture

— uniform register file
— load/store architecture
— simple addressing

* An example of implementation: ARM Cortex-A9
— high performance choice in a family of low power, cost-sensitive devices
— Cortex-A9 microarchitecture is delivered either as
- asingle core processor
- or ascalable multicore processor: the Cortex-A9 MPCore™ processor

Alessandro Cilardo - Embedded System Technologies for D

Evolution of the Arm architecture

"classic" ARM processors

ARM11

ARMSE

O
Cortex-A15

Cortex-A9

O

Cortex-A8 COHECA T
O

Cortex-A5 O

Cortex-R7

o o
o Cortex-Rap O
Cortex-R4

® Cortex-M4

Cortex-M3 O

O
ARM7TDMI

Cortex-MO0+
) Cortex-MO

Cortex-M1

o
Cortex-A57

o
Cortex-A53

jmate Computing

Application processors

i

2003

2005 2009 2012

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Evolution of the Arm architecture

v4

Halfword and
signed halfword
/ byte support

System mode

Thumb
instruction set
(v4T)

vh

Improved
interworking

Clz

Saturated arithmetic
DSP MAC
instructions

Extensions:
Jazelle (5TEJ)

V6 v’
I I
: I I
SIM!I) Instructllons | Thumb-2 |
Multi-processing I |
v6 Memory architecture : Arih :
I

Unaligned data support ™
7-A - Applications

7-R - Real-time
7-M - Microcontroller

Extensions:
Thumb-2 (6T2)
TrustZone® (62)
Multicore (6K)
Thumb only (6-M)

v8

Key features of the ARMv7-A
compatibility

(Thumb2, TrustZone, VFPv3/v4,
NEOCN, Adv SIMD,..)

A32+T32[SAs A64ISA

+scalar FP (SP «scalar FP (SP
and DP) and DP)

*Adv SIMD (SP «Adv SIMD

float) (SP+DP float)

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

ARM-based systems on chip (SoC)

* One or more ARM cores and associated

system peripherals MiaMcore) | [oma contoten
— on-chip RAM and Flash memory | l | l
— plus, possibly, off-chip RAM and non- smeries [SezCe [Sevestr] [Amars
VOlat”e memory interface) interface)
* Multiple on-chip peripherals and e [e [

controllers

* Interconnect:

— Advanced High-performance Bus (AHB)
— Advanced Peripheral Bus (APB)

* An example: STmicroelectronics STM32 an STM32F407 development board
3 featuring an Arm Cortex-M4 based SoC
family

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

"Application"-class ARM-based MPSoC: XilinxZyng .

* Zyng-7000 SoC (2011)

: S
— Processing System ¢§*§,j:
- Application Processor Unit (APU) -

- Interconnects and memory interfaces (CAN, 12C, USB, ..)
- 1/O Peripherals

— Programmable Logic (used for custom as well as programmable cores like Microblaze)
— PS Frequency: up to 1GHz; PL Frequency up to 741GHz

e Zyng MPSoC (2015)
— Dual or Quad APU, Dual RPU (opt. an Arm Mali GPU), General Purpose and Video domains
— PS: Arm Cortex-A53 for APU, Cortex-R5 for RPU, VCU IP supporting H.265 and H.264
— PL: Xilinx Ultrascale+, up to 1M+ Flip-Flops and 500k+ LUTs
— PCle Gen2, USB3.0, SATA 3.1, DisplayPort, Gigabit Ethernet, ..
— Configuration and Security Unit, Platform Management Unit, ..
— PS Frequency: up to 1.5GHz; PL Frequency up to 891GHz

* Application domains:

— mobile base-station signalcs)rocessing, video compression/decompression, broadcast camera
equipment, navigation and radar systems, high speed SW|tch|n%_rout|ng infrastructure for data
centres, Advanced Driver Assistance Systems%ADAS), and even big data analytics, ..

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

ARM subsystem within the Zynqg MPSoC

* Arm Intellectual Property (IP) licensed to Original Equipment Manufacturers
(OEMs) such as Xilinx:

— Cortex-A53 and Cortex-R5 processor + additional Arm IPs in the MPSoC
— can be partly customized by the OEM

& | Dual-Core RPU Dual-Core APU
(Cortex-R5) (Cortex-A53)

E Dual-Core RPU | |GPU Mali-| |Quad-Core APU
(Cortex-R5) 400 (Cortex-A53)

E Dual-Core RPU | |GPU Mali- | |Quad-Core APU
(Cortex-R5) 400 (Cortex-A53)

=i
—
& | 400100 H.264/H.265 |
= — Video Codec

FPGA (PL)
n
]
=
]
O
]
-
]
=
|

00 C 0 L
| |
T | | |
———————— CG Device -—-—----- l-———-—-—-—-- EGDevice ==---- I-————-—-—-- EVDevice -=—=-----

|
[
-
[
=
L]
)
[
=
T
|
]
=
[
s =
0
]
[
=
T

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Arm Cortex-M profile

* Let's take a closer look at the "M" profile:
— Arm MO, MO+, M1, M3, M4 cores

* what are we interested in?
— Instruction set details and programmers model
— Processor states/modes
— Exception model
— Memory model
— Debug architecture

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Arm Cortex-M profile

* M3 and M4 processor cores

* Architectural details
— Three-stage pipeline

g Cortex-M4
Cortex-M3

— Harvard architecture
— 32bit addresses (4GB memory) }
— on-chip AMBA bus TG Cortex-MO+
— Nested Vectored Interrupt Controller *?rtex-lvlo
(NVIC) ' ARMV6 ARMV7

— optional Memory Protection Unit (MPU) s
— 8 to 64 bit data, basic instructions +

MAC and saturation arithmetic, bit

fields, system control and OS support

— M4: enhanced DSP support, SP FP
operations

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Arm Cortex-M profile: advantages

* Low power consumption
— as low as 200 or even 100 pA/MHz

* Performance
— e.g. 3 CoreMark/MHz and 1.25 DMIPS/MHz

e Code density
* Price and scalability
e "C-friendliness" and simple programming model

» Software portability and reusability

— Cortex Microcontroller Software Interface Standard a_
(CMSIS) Cortex-M1

 Versatility and OS support
— 30+ embedded OS ported to M3/M4

* Tool support and debug features

ey |
v
AL

* Cortex-MO+

Cortex-M0
- ARMV6 ARMV7

* Areas of application

— Microcontrollers and Systems-on-Chips (SoC), Automotive, Data communications, Industrial control,
Consumer products, Mixed signal designs, . .

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Cortex-M3/M4 block diagram and bus interfaces

- - - - - - - - ----—-—-—-—-"—-—-"—""""""""""-""- |
: S 3-stage pipe :
1| Nested Vector _ |
Ll Interrupt FP unit !
I > (M4 [
1 7| Controller [1 [| | I
Ll (NI Q@ only) I
B =gl ;
i %L | b | I
l [EU:I 1 Debug
: g N : infrastructure
Memory interface
I SysTick B | . i (opt)
| |
! - ! L trace
R I e W T e Memory Protection 1
IUnit (opt) — jtag or SWD
e Private Peripheral i
Bus (PPB)

A J k4 A J

Instruction/Databus RAM + system bus
(peripherals)

General-purpose registers

Nested Vector
Interrupt

i Controller
[(NVIC)

SysTick

3-stage pipe
FP unit
(M4
EL | b] only)
= 1 1
S —
Qo
s

i

Memory interface

Memory Protection| — —

Unit

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

L RO
o R1
L R2
I R3
> R11
s R12
L R13
e R14
s R15

(general-purpose register)

(general-purpose register)

(general-purpose register)

(general-purpose register)

(general-purpose register)

(general-purpose register)

Stack Pointer — SP (banked)

Link Register— LR

Program Counter — PC

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Floating Point Unit, or FPU (M4 only, and later)

* FPU provides further 32 single- PSR
precision registers I_DDDDDDDDD """ Hooao
* Can be viewed as either
— 32 x 32-bit registers = SO I -
— 16 x 64-bit doubleword registers I 51 .
— Any combination of the above B =
* Operation controlled by a Floating 3 '
Point Status and Control Register
(FPSCR)
5 - 527
* FPU also introduces several
additional memory-mapped registers =22 | puw
into the system > 529
— e.g., Coprocessor Access Control = 530 A
Register (CPACR) B T B

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Instruction set: Thumb and Thumb-2

* Thumb instruction set
— a compact 16-bit encoding for a subset of the ARM instruction set
— introduced since ARM7TDMI (released in 1994)
— some of the instruction operands are implicit
— limits the number of possibilities for operand addressing
— only branches can be conditional
— only half of all of the CPU's general-purpose registers can be accessed
— can make a difference where RAM and memory bandwidth are an issue
— of course, may require additional instructions for the same functionality
— improves code density by 35%

* Thumb-2: variable-length ISA (some instructions are 32-bit long)
— appeared with ARM1156 core, announced in 2003
— bit-field manipulation, table branches, and conditional execution, . ..
— ARM M processors only support Thumb-2

* Unified Assembly Language (UAL)
— supports generation of either Thumb or ARM instructions from the same source code
— e.g. use "if-then" instructions to emulate in Thumb the conditional instructions provided by ARM

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Cortex-M3/M4 (Thumb?2) instruction set overview

* General instruction types: — Divide instructions

— Moving data within the processor — Memory barrier instructions

- Memory accesses = Exception‘rEIatEd inStrUCtionS

— Arithmetic operations — Sleep mode-related instructions

— Logic operations — Other functions

— Shift and Rotate operations * In addition, Cortex-M4 supports

— Conversion (extend and reverse Enhanced DSP instructions:
ordering) operations — SIMD operations and packing

— Bit field processing instructions instructions

— Program flow control (branch, — Fast multiply and MAC instructions

conditional branch, conditional
execution, and function calls)

— Multiply accumulate (MAC)
instructions

— Saturation algorithms

— Floating point instructions (if the
floating point unit is present)

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Cortex-M3/M4 (Thumb?2) instruction set overview

.equ targetAddress, 0xE000E100

* Recent ARM development I.DR 1'20,=targetAdd.ress /* Put O0xEOOOE100 into RO. Note: ARM does NOT
re support absolute addressing. In fact,
tools support Unified e B R pe sme e i vy
Assem bler I_a nguage (UAL) E%SR?%’[gé] /* Store value 0xl to address 0xE000E100 */
— allows better portability
bEtween arChIteCtures LDR RO,=myVariable /* Get the memory location of myVariable */
Il f . I ILDR R1l, [RO] /* Read the data at memory address in RO * /
allows use of 4 Slng € . LDR E'i0,=myrunction /* Get the starting address of a subroutine */
Assembly |anguage syntax N ﬁL'mirFunction /* Call a function by its starting address */
ARM processors Wlth :aiit_;;'n 4 /* Enforce data alignment */
. . myVariable:
various architectures “yord 0xAB12CD34

ADR R5, myData
ALIGN
myData
DCD -23, 1, 324, -543,
A few random examples of
ARM assembly code p
MOVW R6, #0x5678 /* Set RO to 32-bit walue 0x00005678 */
MOVT R6, #0x1234 /* Set the upper 16 bits of RO to 0x1234 */
/* After these two instructions, RO = 0x12345678 */
/* Note: ARM cannot support 32-bit immediates */

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

AAPCS Sta nda rd int myFunction(int nl, int n2, float wvl, int n3) {

=
2
* Arm Architecture Procedure Call Standard 5 e ion P A
— defines how C and asm subroutines can be o return rst; registers can also be used for the return value.
separately written, compiled, and assembled
to work together g RO ol - rst
* A contract between a calling routine and E RL |>n2 BRI -
a called routine, involving: E R2 . 00
— obligations on the caller to create a certain = R3 |+ n3 E_ RZ |-
program state for the called routine I R4 | E R4 |
— obligations on the called routine to preserve oy _—
the caller's program state across the call E R11 | & R11 |
~ the rights of the called routine to alter the i i R12 I E_R12]
caller’'s program state Stack Pointer— SP = R13 | E R13 |
* Can be used to easily write combined Link Register— (R=___R14 | = Rle
C/assemb|er routines Program Counter— PC |= R15 | & R15 |
o segg-lsrteegrléllatlng para meter passing through S RegisterL- PSR | _
* Note: Exception handling mechanismsin ~ Frsti6fregsterse__SOSL5] w0515
ARM allows handlers to be written as Last 16 FP regiters &=__516:531___ = loil
normal C functions which follow AAPCS PP Status/Culregister = FPSCR __| B FPSCR |

Register usagein a function call in AAPCS
(note: darker boxes denote registers that can be changed after a function call)

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

M3/M4 execution states, modes and privilege levels

* States: Debug, Thumb (note: no "ARM" state in M-profile)

* Modes: Handler, Thread

* Thread mode can be privileged and unprivileged (sometimes called "user state")

ﬁhumb State

Handler
mode

exception

exception

Thread ~/ Thread
start
Sl mode i mode
Privileged Unprivileged

access

aCcess

~

-

Debug State\

Interacting with an
external debugger.
No instruction is
executed

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Banked Stack Pointers

- RO (general-purpose
register)

* One of multiple, physically T e puose
distinct Stack Pointers is used 5 R2 ggggﬁmme
dependlng on the mOde - R3 {genera;‘-purpose

register

* For Stack Pointers, note:

— PSP can only be used in Thread = (CR e e
Mode - R12 general-purpose
) . i — register
— selection of Stack Pointer is (b R13 Stack Pointer — SP
determined by a special register T R e
(CONTROL)
= R15 Program Counter — PC
s MSP

L PSP

Peripherals

Exceptions and interrupts

: » NMI 3-stage pipe
— 1)
— NVIC FP unit
—Nlg (M4
—=-> &« system |, ok | b | only)
— excpts = | [|
1 “ Z

l £)

I F 3 e

: soh |

! . b Memory interface

I SysTick T

1

I

Lo moen onmp sup pmnes o im e e Memory Protection

Unit

higher priority

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

bW N

7-10
11
12
13
14
15

16-255

(*)

-2
-1
settable

settable

settable

settable
settable
settable
settable
settable

-3

Reset
NMI — Non-Maskable interrupt
HardFault — all faults

MemManage — MPU violation or invalid memory
access fault

BusFault — bus error (instruction prefetch abort or
data access error)

Usage fault — invalid/unsupported instruction or
invalid state transition

(reserved)

SVC — Supervisor Call, based on SVC instruction
Debug — reserved to software-based debug settings
(reserved)

PendSV - Pendable request for a system service
SYSTICK — System timer interrupt

IRQ - Interrupt requests from peripherals

Interrupt numbering used in the CMSIS framework is different
(interrupt numbers are dimished by 16 in CMSIS)

System Timer (SysTick)

* A flexible system timer, providing

— a 24-bit self-reloading down counter
- Reload whenever the counter reaches 0
- Optionally raise a SysTick interrupt on 0

— a Reload Register
— a Calibration Register

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

I
- —:r NMI 3-stage pipe :
© | » |
—i] ' &
2 —s NviC m e |
o S—
£ g
) —:—b € system | | ob | b | | only) !
LR W excpts [| £}] | | '
1, < i |
: ' Sb | b | I
! i : = Memory interface !
| sysTick |y B |
I
Bl il LI g) A 1Al e Memory Protection| — — 1
Unit

* Clock source is CPU clock or optional external timing reference

— Software selectable

— The external reference pulse width must be larger than the processor clock period
- since the processor clock is used for sampling the external reference

* The Calibration Register provides a

countingvalue corresponding to 10ms

— STCALIB physical inputs to the core can be used for indicating the used reference

source and its properties (typically th

at depends on the specific SoC)

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Vector table

| IRQ 239 | 0X000003FC
. . . | IRQ 238 | 0X000003F8

* Contains the starting addresses of Exception Handlers
: IRQ 1 0x00000044
* Because handlers start at 4-byte aligned addresses, the | lRSO Ioiooooom
two Least Significant Bits (LSBs) are always 0 [systick] 0x0000003C
— in fact, as a trick, Arm uses the LSB to automatically change [Pendsv.___]0x00000038
the state (Arm/Thumb) when jumping to a Handler: 0x00000034
if the Handler is to be run in Thumb state, the LSB is set to 1 0x00000030
— In Cortex-M cores (Thumb only) the LSB must always be 1 VL B P
. _ (reserved) 0x00000028

* Can berelocated and changed by a user application
— for example, after boot, a new Vector Table can be loaded | (reserved) | 0x0000001C
from an external SD and stored to a different starting address ~ |_UsageFault | 0x00000018
— relocation is controlled by a programmable register in the | BUS FauK | | 000000014
NVIC: Vector Table Offset Register (VTOR) |_MemManage Fault | 0x00000010
| HardFault | 0x0000000C
| NMI | 000000008
| Reset | 0X00000004
[(1] | Initial MPS | 0x00000000
Note: In Cortex-M cores, Handler Note: The Vector Table used at boot starts at
addresses in the Vector Table always have Address 0x00000000. An application-loaded
the Least Significant Bit set to 1 Vector Table can start at a different address,

keeping the same offsets in the table

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Special Registers

31 30 29 28 27 26 25 24 23.

* Program Status Register (PSR) Stat“s'?:f;j;;; OOOO0O0O0OO0o-Og-og-0goc- |:I

2200 49 . 86 A5 10 8 3 L

— Application PSR (APSR) Application PSR o 2 €V
— Execution PSR (EPSR) (APSR) DDDDD

— Interrupt PSR (IPSR) INEETELPLPSH

(IPSR) Icim T

— status register can be Execution PSR C 0

read/written through special (EPSR)
instructions (MRS, MSR)

* Exception/Interrupt masking registers
— PRIMASK: mask all interrupts but hard faults and NMI
— FAULTMASK: mask all interrupts but NMI FAULTMASK
— BASEPRI: mask all interrupts with priority < value
- Used to modify exception priorities BASERR

— PRIMASK and FAULTMASK set/clear through Change
Processor State (CPS) instructions
- CPSIE i /CPSID i / CPSIE f / CPSID £

* Control register (CONTROL):
— privilege level, SP selection, FP context (M4-only)
— SPSEL: if O, Thread mode uses MSP, otherwise PSP

PRIMASK

CONTROL

B

Exception number

1.0

ICI/IT

1.0

7 6 5 4 3 2

O 0Oo00OOo0Oo
R
ﬁiiiDDDDDDDDD

i o o o e

Eameaorcdl a2

3 — 8 bits T 0- 5b|ts

GEoEEEEHA

FPCA SPSEL nPriv (not
(M4 only) found in ARMv6-
M, e.g. in MO)

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Memory subsystem

* 4GB linear address space

 Architecturally defined memory map

* Support for little endian and big endian memory systems
* Bit band accesses (optional)

* Write buffer

* Memory Protection Unit (optional)

* Unaligned transfer support

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Memory subsystem: memory map

* CODE region

OXEOOFFFFF
—_ App“cation program COde Private Peripheral bus
System (512MB) (PPB) (1MB)
— Vector Tab|e 0xE0000000 OxE0000000
® SRAM region Exterr;la(lasievices
- Appllcatlon data 0xA0000000 The PPB window includes a
4k-byte window (in
¢ 0xE00OE000-0XEOOOEFFF) for
¥ Perlpherals External RAM (1GB) System Control Space (SCS)
* External Memory 0x60000000
* External Peripherals oaouanono | PPN G
SRAM (512MB)
* Private Peripheral Bus =S
} CODE (512MB)
— processor’s internal control, e.g. Ll

NVIC, and debug components

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing
L] L] -
[]
Memory subsystem: physical organization
Master1l (e.g. Master2 (e.g.
ARM core) DMA controller)
-- - - - - - - - - - - - - - - - - I ‘ {
: > 3-stage pipe : | | | |
B Nested Vector | Slave 2 (e.8. Slave 3 (e.g.
= . Slave 1(e.g. AHB2APB
: - Interrupt “ FFEMUZW : internal memory) ext?;?g:frgg;mry ext?;?g:frgg;mry bridge
13| Controller 0 x: y (B |]
Ll (Nvig) oo | | ,
¢ E I | | | |
| _ 2b | b | [[erio][sei J[12c][Timer |
| i - — |
b I
!) = Memory interface !
: SysTick Eiary : vendor-specific system
I : I region
[SH=SiE Tl TS et s P Memory Protection| — — 1 SSARLL 0x£0100000
Url“t PPB | External PPB (debug)
OxE0040000
Interconnect
Interconnect on- and off-chip RAM,
: any accesses -
Private — mterr!al and external
Peripheral peripherals (3GB)
vBus (PPB)
v v 0x20000000
. T v data accesses
i RAM + system bus D-CODE
Instruction / ; 4 CODE region (512MB)
Data bus (peripherals) I-CODE |
instructions and Vector 0x00000000

Table accesses

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Memory subsystem: physical organization

Master1l (e.g. Master2 (e.g.
ARM core) DMA controller)
Slave 2 (e.g. Slave 3 (e.g.
- tSIE‘"IE lleg. | external memory | | external memory ALIB.?‘PB
IRETIIHIEIROEY interface) interface) noee
r==-MASteIS — - o - o e oo)

DMA, USB, Eth .. control
registers SR

AHB-to-APB bridge — - -

I |
| I
) DMA USB Ethernet !
: Cortex-M !
: controller host/OTG MAC : [erio][sei J[12c][Timer |
) el et m— oy gy = 3 | asnowz (mp e o m s | : |
8 8 4% [——-SG’VES e e
- O i |
OO [: :
I I
]]] - - :
| I
I I
OO [[O T
I I
T . - : SRAM / high-speed 1/0 !
* |
|
|

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

| 4 bytes l
& ¢l
I I

Alignment and Endianess

byte3| |byte2 | |byte 1l | | byte O address

(multiple of 4)

* Cortex-M3 and Cortex-M4 cores support
unaligned data transfers in normal memory |
access instructions I | address
I

aligned accesses

5:‘ byte 3 [|byte 2| | byte 1 (multiple of 4)
e .with a few limitations: & | [oneo irdo
— Unaligned transfers are not supported in Load/Store E : -
Multiple instructions (LDM/STM) £ | byte 3| [oyte2] 777
— Stack operations (PUSH/POP) must be aligned E byte 1] [byte 0 |
— Exclusive accesses (such as LDREX or STREX) must be b !
aligned (a usage fault is raised otherwise) Silrcdo l .~
— Unaligned transfers are not supported in bit-band & & &
. " . - S O O O
operations (results will be unpredictable) S| ,° ¢ 0 SN
& ckal |
T 3 2 dd
« Most of the existing Cortex-M microcontrollers S | [byteo] [byte1] [byte 2] [byre3] U700
are little endian .] :
— but both endianess types are supported = rd '
iE e 2 | [=3] [z [t [owien] 2 ,,
& | | (multiple of 4)
pa I I
- I I

Bit-band region

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

— (mem address)

A 1-byte memory location mapping

T an 8-bit device register, made of
DDDDDDDD several distinct bit fields, meant to
* When device registers which contain distinct R P
bit fields are memory mapped to the same
: Writing or
byte |Ocat|0n Reading 32 bits
— accessing specific bit fields can be an issue Writing or Reading a
— the processor needs to read the whole byte, modify r@ssandrosiskehh
the bit fields without touching the other bits, and
write the byte back to memory
— race conditions might occur if other players (other pafiora———
masters in the system or the device itself) change .
other bits concurrently in the same register
. 2 . . . ” 0x22000000 -
— this situation would require an atomic read-modify- Ox23FEFEFC

write sequence from the processor

* Bit-band region: an "alias" region for re-
directing writes/reads (at the hardware level) _ 422000074 - 0x22000077 0x20000003

— operations to an aligned 32-bit word (at addresses 0+ 23 45 6 7
0x220..0 to 0x23F..FC) are turned into single | INNENENE
bit operations in an associated location (located in
0x200..0 to 0x200F..F)

Writing/Reading a 32-bitvalue

(occupying four bytes). . .

... infact writes/reads a single bitin the

corresponding bit-band location

So, its corresponding bit band word is located at address 0x22000000 + 29x4 = 0x22000074

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Memory attributes

* Bufferable
— Write to memory carried out by a

write buffer Bufferable | Cacheable Memory type and behavior
0 0 "Strongly ordered": wait until the transfer is
 Cacheable completed on the bus interface before starting
the next operation (if this operation is a
o E)(ecuta ble Strongly Ordered of Device Type access)
— processor can fetch and execute | 0 "Devif:etype": a write blnuffer can be used for
. ’ handling a store operation
code from this memory region ———
0 1 Normal memory with Write-Through cache
e Sh ald b I e 1 1 Normal memory with Write-Back cache

— Data could be shared by multiple
bus masters (the memory system
needs to ensure coherency)

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Memory protection unit (MPU)

* Divides the memory map into a number e e e e e T e .
of regions B e stagepiie |
. . . el I | Nested Vector |
— defines the location, size, access permissions, B rterrupt | D{}D{}D Punit| |
and memory attributes of each region - Controller [— (()Mc) :
| (NVIC) 2 |
* Supports: - = = i
— independent attribute settings for each ! | op] ;
- hL | =
reg ion . . : SysTick :l Memory interface :
— overlapping regions : | |
— export of memory attributes to the system b - - e -
* Memory attributes affect the behavior of . | ,
memory accesses to the region aibiaklic:

* The Cortex-M4 MPU defines:

— Eight separate memory regions v v ' v
— A background region

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Memory operation: advanced aspects

e Exclusive access instructions

— special Load/Store instruction pair ensuring exclusive access
— LDREX / LDREXH / LDREXB, STREX / STREXH / STREXB

* Memory barriers
— memory barrier instructions (ISB, DSB, DMB)
— note: Cortex-M3 and Cortex-M4 do not reorder instructions

— barriers can still be used in a few specific cases (e.g. when activating memory
remapping)

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Cortex-M3 and Cortex-M4 debug support

* Includes comprehensive

1 ITOra Cngaroir == === == o/ HIE557 |
debugging features: L, P |
; 1| Nested Vect
— program execution controls . Tt : D{}D{}D e i
— including halting and | R L fom |t
¢ . =
— instruction breakDOintS I @BD : infrastructure
. ! ;) b Memory interface I (opt) Q
— data watchpoints | cverick b : 5
— registers and memory | S— — e W —
accesses o =
i ili Interconnect =
profiling and traces n
@]
* Debug vs. trace modes E

Instruction/Databus RAM +system bus
(peripherals)

Alessandro Cilardo - Embedded System Technologies for DL and Approximate Computing

Cortex-M3 and Cortex-M4 debug support

Board
i rt , '] ‘
—_— Debugger el sy — Debug
! | ﬁ I::I infrastructure
jtag/SWD
OooOooooooQ
008800008
Oooooooo
[o | — |
ARM-based System-on Chip /
270N 20N
/ h / A
\
—3+——nTRST, \
Eead e TCK "1 L—TCK "|
——F+—FTm .
—1 p—TMS ’ _
\ ! \ ic Note: current Systems-on-Chip
r +———Tmmo » | # include the functions of the
\ P \ y external debugger on-chip.
A" LY agy s
it . You will just need a USB
jtag Serial Wire Debug (SWD) interface on the board
(standard interface) (ARM proprietary interface)

