
IET Research Journals

ECAP:Energy Efficient CAching for Prefetch
Blocks in Tiled Chip MultiProcessors.

ISSN 1751-8644
doi: 0000000000
www.ietdl.org

Dipika Deb 1∗,John Jose 1,Maurizio Palesi 2
1 MARS Research Lab, Department of Computer Science and Engineering, Indian Institute of Technology, Guwahati, India
2Department of Electrical, Electronic and Computer Engineering, University of Catania, Catania, Italy.
* E-mail: d.dipika@iitg.ac.in

Abstract:
With the increase in processing cores performance have increased, but energy consumption and memory access latency have
become a crucial factor in determining system performance. In Tiled Chip MultiProcessor, the tiles are interconnected using a
network and different application runs in different tiles. Non-uniform load distribution of applications result in varying L1 cache
usage pattern. Application with larger memory footprint uses most of its L1 cache. Prefetching on top of such application may
cause cache pollution by evicting useful demand blocks from the cache. This generates further cache misses which increases the
network traffic. Therefore, an inefficient prefetch block placement strategy may result in generating more traffic that may increase
congestion and power consumption in the network. This also dampens the packet movement rate which increases miss penalty at
the cores thereby affecting Average Memory Access Time (AMAT). We propose an energy efficient caching strategy for prefetch
blocks, ECAP. It uses the less used cache set of nearby tiles running light applications as virtual cache memories for the tiles
running high applications to place the prefetch blocks. ECAP reduces AMAT, router and link power in NoC by 23.54%, 14.42%,
and 27%, respectively as compared to the conventional prefetch placement technique.

1 Introduction

With the advancement towards green computing, it is important
to design multicore architectures that can provide efficient power
savings and enhanced system performance with minimal hard-
ware overhead. Advancements of CMOS technology enabled in an
increase of computational units to be placed in the same chip area
known as Chip MultiProcessor (CMP). Though transistor scaling
has enabled an increase in computational units but the power con-
sumed by the other on-chip units is no more negligible. Hence, the
design choice has now been shifting its focus in developing energy-
aware architectures satisfying the needs of modern data-intensive
applications.

For processors like Intel Xeon-Phi [1], Tilera TILEPro [2] archi-
tectures, the processors are organized as tiles and each tile consists
of an out-of-order superscalar processor (core), a private L1 cache
and a slice of shared L2 cache. Such architectures are also called as
Tiled CMP (TCMP) [3]. The L2 cache is inclusive, and it is equally
divided among all the tiles. Each such slice of L2 cache is called
a bank. The tiles are arranged in a mesh topology and intercon-
nected by an underlying Network on Chip (NoC) [4, 5] as shown in

Figure 1. A conventional NoC consists of routers and bi-directional
links that communicates cache block request (cache misses) and
cache block reply (data) as packets. The packets are further divided
into multiple flits with each flit size equal to the inter-router link
bandwidth. All cache miss request and replies are carried to the
destination tile as per the SNUCA bank mapping policy [6].

As shown in Figure 2, different application in TCMP runs at
different cores with individual data requirements. The cache block
demand and cache access pattern of the application varies across
the cores. Such a distributed system provides high-throughput com-
puting [3]. But in these systems, data communication and on-chip
interconnect has become a costly affair in terms of energy con-
sumption [7, 8]. Therefore in TCMPs, a high throughput and energy
efficient communication backbone is must to achieve a better system
performance.

All tile to tile communication in TCMP travels through the NoC
as either cache miss request, cache block reply or coherence packets.
Miss penalty of a cache miss can be estimated in traditional CMPs
having monolithic L2 cache. But in TCMPs, miss penalty consists
of memory access latency of L2 cache bank and the round trip net-
work latency between the respective tiles. The round trip network

Fig. 1: a) 4x4 TCMP. b) Router in NoC

IET Research Journals, pp. 1–xii
c© The Institution of Engineering and Technology 2015 i

ReView by River Valley Technologies IET Computers Digital Techniques

2019/04/30 13:48:32 IET Review Copy Only 2

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.



Fig. 2: Different application running at different cores in TCMP.

latency in such a scenario depends on the network congestion. Hence
in TCMP, the network contributes in miss penalties occurring dur-
ing cache misses which in turn regulates the average memory access
time (AMAT). Reduction of AMAT is imperative in achieving high
throughput. This is possible if the underlying NoC provides a low
latency communication backbone for packet movement. Since the
NoC characteristic changes dynamically based on the network traffic
status, prefetching comes handy in this regard.

Prefetching is a technique that helps in hiding the long memory
access latency and the underlying network latency by speculatively
bringing cache blocks for future use [9–16]. A prefetch engine mon-
itors the runtime activities of cache access pattern by the core.
Upon observing a pattern, the prefetch engine fetches the desired
block into the cache for later use. Since in TCMP, the L2 cache
is distributed among all the tiles, the cache access pattern is also
distributed across them. Therefore in TCMP, the prefetch engine is
trained using the L1 cache access patterns which is local to each tile.

In TCMP, an enormous amount of energy and power is consumed
by the underlying NoC, after the cores. NoC consumes around 28%
of each tile-power in Intel-Teraflop chip [17] and 36% in MIT-RAW
chip [18]. NoC being the bottleneck in inter-tile communication, the
energy and power consumed by NoC has become a major concern.
The power consumption in NoC can be classified into two categories:
static power and dynamic power. Static power is mostly consumed
by buffers (Virtual Channels, VC) in the router as shown in Figure
1(b). On the other hand, dynamic power is consumed due to switch-
ing activity per cycle which occurs during transmitting a flit from an
upstream router to a downstream router. Hence, reducing the num-
ber of packets will result in reducing network congestion as well as
reduction in the static and dynamic power consumption in NoC.

In a prefetch enabled cache, there are two types of blocks:
Demand, and Prefetch blocks. Demand blocks are fetched when the
processor requests for them and prefetch blocks are fetched ahead
of its use. In conventional prefetching, the prefetch block is placed
in the local cache (L1 or L2) of the requesting core. In this paper,
we call such prefetch block placement as Source Core Placement
(SCP). In SCP, placing a prefetch block may result in evicting a use-
ful demand block from the cache location where it is placed. Thus,
the speculative nature of a prefetcher can pollute the cache which
triggers frequent cache block replacements [10]. In TCMP, cache
replacement increases the network packets which in turn increases
power consumption in NoC. There are many notable techniques that
focuses in reducing power consumption in NoC like Dynamic Volt-
age Frequency Scaling (DVFS) [19], Bufferless NoC [8, 20, 21],
Packet Compression [22]. Thus taking this into account, we propose
a prefetch block placement technique which can prefetch aggres-
sively as in L2 cache and achieves a faster cache access time as that
of an L1 cache.

This paper proposes to increase the L1 cache size virtually at
run-time. Increase in cache size will result in placing more prefetch
blocks which in turn will reduce cache misses. Reduction in cache
misses will also reduce network packets. Hence, we build an Energy

efficient CAching strategy for Prefetch blocks (ECAP) in TCMPs by
reducing the number of network packets and AMAT during cache
misses. ECAP uses the fact that applications running in each tile
has different cache miss rates. For application experiencing heavy
misses, it may happen that the L1 cache size is not sufficient to hold
the working set size. Prefetching in such cases may harm the applica-
tion performance by causing severe cache pollution. To reduce cache
pollution, ECAP uses an intelligent prefetch block placement strat-
egy at the L1 caches of neighboring tiles that has less used cache sets.
This helps in virtually increasing the L1 cache size without harming
the useful demand blocks of that application. ECAP also reduces the
number of network transactions by reducing cache pollution and also
providing the extra storage options for the prefetch blocks.

We evaluate ECAP using out-of-order simulations with gem5
[23], booksim [24] simulator and multi-programmed workloads
from SPEC CPU 2006 benchmark suite [25]. We compare ECAP
with the baseline prefetch block placement technique (see Section 4
for more details). The result shows that ECAP is capable of having
power savings in the network routers and links by around 14.42%,
and 27%, respectively over the other techniques in a 64-core system.
Moreover the average memory access time in ECAP is reduced to
23.56% with respect to the baseline prefetch block placement tech-
nique. It incurs only a small hardware overhead per tile with a power
savings in the NoC for tile-to-tile communication.

Additional experimental result confirms that ECAP performs
fairly well for a wide variety of system parameters as described in
section 4. Therefore, by virtually increasing cache size with minimal
hardware overhead, can result in achieving enhanced system perfor-
mance with reduced energy and power consumption. This results in
addressing the following questions:

• How does ECAP searches less used space in adjacent tiles?
• How is a prefetch block located when it is placed in adjacent tiles?
• How does ECAP helps in achieving reduced network transac-
tions?
• What are the hardware overheads involved in ECAP?

This paper addresses the above queries in the subsequent sec-
tions. Section 2 provides the motivation behind this work. Section
3 describes the proposed technique, ECAP followed by a detailed
experimental analysis in Section 4. Section 5 analyses the sensitiv-
ity of different parameters that determines the best performance of
ECAP. Section 6 contains the hardware aspect of our proposed tech-
nique. Section 7 presents the related work done in this regard and
finally the paper is concluded in Section 8.

2 Motivation

Some important terms used in this paper are defined as follows:
Target-set: The target-set of a block in a cache indicates the set
index in the cache where the block is mapped.
Home cache: In TCMP, when a core c associated with a tile Tc
requests for a block b, then the private L1 cache of Tc is considered
as the home cache for the block b.
Remote cache: In TCMP, for a block b, the neighboring (one-hop
distant neighbors) L1 caches of its home cache are considered as
remote cache.

We use next-line prefetcher as the baseline prefetching technique.
This prefetcher on a cache miss for a block b initiates a prefetch
request for the next sequential block (b + 1), if it is not already
present in the cache. If the target-set of cache block b is I, then
next-line prefetcher fetches the block (b + 1) and places it in I +
1.

We model a 64-core TCMP in gem5 [23] running real workloads
from the SPEC CPU 2006 benchmark suite [25]. The workloads are
generated by choosing different benchmarks with various cache foot-
prints. Figure 3 shows the tile-wise distribution of L1 cache misses in
a 64-core TCMP enabled with next line prefetcher. We can observe
that the number of L1 cache misses vary significantly across the
cores. This is due to the diversity in cache footprints of applications
running on these cores.

IET Research Journals, pp. 1–xii
ii c© The Institution of Engineering and Technology 2015

ReView by River Valley Technologies IET Computers Digital Techniques

2019/04/30 13:48:32 IET Review Copy Only 3

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.



Fig. 3: Distribution of L1 cache misses per tile.

We categorize the applications into high and low based on the
number of L1 cache misses. For high applications, the working set
size is much larger than the available L1 cache size. Such applica-
tions suffer from cache space constraints resulting in an increase in
the cache miss count. Prefetching for such applications may exacer-
bate the problem of cache pollution which may increase the number
of cache block replacements. Each cache block replacement con-
tributes to a network transaction, leading to increase in network
traffic. Moreover, the evicted cache blocks may be subsequently
re-requested by the cores. This can further lead generation of addi-
tional cache block request and reply packets. Light applications on
the other hand, may under-utilize the available L1 cache space. This
may occur in two cases: 1) L1 cache space is sufficient to hold the
working set of the application. 2) application exhibit more tempo-
ral locality than spatial locality. For such applications, the available
L1 cache space may remain under-utilized resulting in cache space
wastage.

Figure 4 shows the frequency of set access pattern in L1 cache
averaged across all the tiles in a 64-core TCMP enabled with next
line prefetcher. This statistics are collected for a time window of
10K cycles after performing sufficient fast forwarding to eliminate
cold misses. We can observe that the cache access pattern is non-
uniformly distributed across the cache sets. Some of the sets are
heavily used while some of them are lightly used. Thus, we can
conclude that some applications under-utilize their cache space. Few
cache sets of such cores can be utilized by the neighboring cores
running high applications for which either the cache is of insufficient
size or has higher miss rates. Hence, a high application can utilize the
lightly used cache sets of other cores to temporarily accommodate its
prefetch blocks.

This motivated us to propose ECAP that increases the cache size
of high applications as per its need. Further, it reduces cache miss
and cache pollution for high applications. It has an incremental effect
in reducing the number of network packets thereby reducing network
congestion and power consumption in NoC. Reducing network con-
gestion has a direct impact in reducing network latency which is
responsible in reducing the AMAT of cache misses in the cores.
Thus, the throughput of the core increases resulting in improved
system throughput.

3 Energy efficient CAching of Prefetch blocks
(ECAP)

ECAP is a placement strategy for prefetch cache blocks in a TCMP
system. When an L1 cache miss occurs at a core, a request packet
is sent from the source tile to the L2 cache bank where the block is
mapped. The L2 cache bank sends the demand block as well as the
next sequential block (prefetch block) as reply packets to the source
tile. Upon reaching the source tile, the demand block is placed in the
target-set of its home cache. Our proposed technique ECAP finds the
most suitable location to place the prefetch block.

Considering the L1 cache access time, the first suitable loca-
tion to place a prefetch block is the target-set in its home cache.
But if the target-set in the home cache is heavily used then plac-
ing a prefetch block there may result in evicting a useful demand
block thereby causing cache pollution. Therefore, ECAP then tries
to search for a lightly used target-set in the remote cache of its

Fig. 4: Cache set access behavior during execution of workloads
from SPEC CPU 2006 benchmark suite.

neighboring tiles. Subsection 3.1 explains this searching procedure
in detail. The prefetch block is stored in the suitable remote cache
upon finding a lightly used target-set. Some meta data is stored in
the home cache of the prefetch block which gives the information
of prefetch cache blocks placed in the remote caches. A detailed
description of the meta data storage is explained in subsection 3.2. If
no suitable target-set is found in a remote cache, ECAP uses a spe-
cial buffer called as Prefetch Buffer Pool (PBP) in each local tile to
accommodate few such prefetch blocks.

Figure 5(a) shows a 4x4 TCMP where tile 6 is running a high
application. The illustration of ECAP technique is described as fol-
lows. ECAP initially explores the possibility of placing a prefetch
block brought during a cache miss by tile 6 at its home cache itself.
If ECAP could not place the prefetch block in the target-set of its
home cache (due to heavy usage of the existing cache blocks already
present in the target-set) then it explores the possibility of finding a
suitable remote cache. ECAP searches for a lightly used target-set in
the remote caches i.e., tile 2, 5, 7, and 10. If none of the target-set is
lightly used, ECAP uses the PBP of local tile i.e., tile 6 to place the
prefetch block.

For prefetch block placement the remote caches are limited to one
hop distance only from the home cache. This is to reduce the traffic
in NoC. It also reduces the cache access time when there is a hit
in the remote cache. On a hit in remote cache, the prefetch block is
placed in its home cache and the corresponding meta data is updated
accordingly. The block searching mechanism in ECAP is explained
in detail at subsection 3.3. Throughout the paper we use the term
“adjacent” and “neighbor” interchangeably to indicate tiles that are
at one hop distance away from the source tile.

SCP and ECAP are not prefetch engines. A prefetch engine spec-
ulates the cache access pattern of an application. But SCP and
ECAP only uses caching strategy to place prefetch blocks in a
cache (remote or home). Hence both SCP and ECAP can be imple-
mented on top of any prefetchers like stream, correlating prefetchers
[14, 26]. If ECAP is implemented, an L1 cache block can be
classified into one among the four categories:

• Invalid Blocks (I): These are unused blocks.
• Demand Blocks (D): These blocks contain words that are fetched
on a cache miss by the local core.
• Local Prefetch Blocks (P): These blocks contain words that are
prefetched on a cache miss by the local core.
• Satellite Blocks (S): These blocks contain words that are
prefetched on a cache miss by one of the adjacent core.

3.1 Searching for a target-set in adjacent tiles.

Once the prefetch request is sent to the L2 cache tile, searching
for a suitable target-set in remote caches is done in parallel, if the
target-set of the home cache is heavily used. ECAP adopts a simple
neighbor searching scheme for prefetch block placement at remote
caches. The source core searches for a suitable target-set in the
remote caches. This is done by sending probe packets to one hop
neighbors of the source core.

For prefetch block placement at remote caches, ECAP uses two
policies: (a) Prefetch block placement policy, and (b) Cache block
replacement policy. Prefetch block placement policy deals with the
selection of a target-set in the remote cache. It uses the frequency

IET Research Journals, pp. 1–xii
c© The Institution of Engineering and Technology 2015 iii

ReView by River Valley Technologies IET Computers Digital Techniques

2019/04/30 13:48:32 IET Review Copy Only 4

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.



Fig. 5: Meta data storage for ECAP.

Fig. 6: Contents of cache block in different scenarios.

of set access pattern of applications running in the remote caches
and classify them as either heavy or light. We define a cache set
as heavy or light by counting the frequency of accesses per set
within an interval of 1024 cycles. We use a 4-bit saturating counter
per set with a threshold value of 12 for categorizing sets into
heavy and light. The cache replacement policy proposed in ECAP is
Confidence-Aware Replacement policy (CARP) which assigns dif-
ferent confidence value to the blocks present in the cache. Section
3.5 explains CARP in detail.

If one such target-set is identified, the corresponding remote cache
acknowledges with a positive response to the home cache. The
remote cache also books a cache way in the target-set to avoid race
conditions. The satellite block upon reaching at the home cache is
forwarded to the corresponding target-set in the remote cache.

3.2 Meta data management for satellite block mapping

For maintaining the records of satellite blocks and its subsequent
management, ECAP uses forward pointer and backward pointer for
each set of the L1 cache. The forward pointer is used for identifying
the remote cache where the block is currently residing and the back-
ward pointer is used to identify the owner of a cache block (local
cache block or satellite block).

3.2.1 Forward pointer: ECAP uses an additional map per tile
called as Prefetch Tag Array (PTA). The number of PTA entries is
equal to the number of L1 cache set. It contains the details of all
prefetch blocks placed at the remote caches. The target-set of the
prefetch block in the remote cache is same as that of the home cache.
Similarly, the PTA also is indexed by the same target-set. The meta
data of the prefetch block is stored in PTA as shown in Figure 5(b).
Each PTA index contains a set of Mapping Vectors (MV) for prefetch
blocks. Since PTA index and target-set of remote cache is same, we
need not store the set number in an MV.

A mapping vector contains a valid bit (V), tag bits for a prefetch
block, and four flag bits for each direction (N, S, E, W). In a mesh
topology, a tile is surrounded by four adjacent tiles. The direction

flag corresponds to one of the four neighbors. Since MV is used to
forward a cache miss request to a remote cache, we call the mapping
vector as forward pointer. In a valid MV, exactly one of the direc-
tion flags will be set. Experimentally we have found that in ECAP,
each PTA index can store at most four prefetch blocks (n = 4) for
optimized system performance.

3.2.2 Backward pointer: As shown in Figure 6(d), an ECAP
enabled cache may contain four types of blocks in its home cache
i.e., Invalid block, demand block, local prefetch block, and satellite
block. To indicate whether the block stored in an L1 cache belongs
to itself or to a neighbor (satellite), four bit flag is used. Each flag
bit corresponds to one of the four neighbors in a mesh topology. For
satellite blocks, exactly one of the flag bits are set. On the other hand,
for demand blocks and local prefetch blocks, none of the flag bit is
set. Since the flag points back to the owner of the block, these flags
are also called as backward pointers as shown in Figure 5(c).

3.3 Block searching and identification

In a conventional cache, whenever a core generates a request for a
word, the block containing the word is searched in its home cache.
For a TCMP enabled with ECAP, the block is searched in its home
cache, PTA of the local tile and also PBP of the local tile in parallel.
Figure 7 depicts the block searching procedure in ECAP.

If the block is a hit in its home cache, it is called as “direct hit”.
On a direct hit, the word is returned to the core immediately. If
the block is found either in PTA or PBP, it is called as an “indi-
rect hit”. If the indirect-hit is from PTA, this indicates that the block
is placed in a remote cache. The forward pointer in the correspond-
ing mapping vector of the PTA index will identify the remote cache.
Request packets are sent from the source tile to the remote cache
tile to bring the cache block in its home cache. Upon placing the
block in home cache, the backward/forward pointers are updated in
the remote cache and the local PTA, respectively. Similarly on a hit
in PBP, the block is removed from PBP and placed in the target-set

IET Research Journals, pp. 1–xii
iv c© The Institution of Engineering and Technology 2015

ReView by River Valley Technologies IET Computers Digital Techniques

2019/04/30 13:48:32 IET Review Copy Only 5

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.



Fig. 7: Flowchart for block searching.

of its home cache. Once the block is placed in the home cache after
an indirect hit, it is considered as a demand block.

3.4 Cache coherence management

Multicore processors can have the same data cached in the private
caches of different cores. We use MESI CMP protocol for main-
taining data coherence across multiple cores. Neighbor placement of
prefetch blocks is hidden from the underlying coherence protocol.
The actual placement of prefetch blocks is known to the L1 cache
only but not to its L2 cache bank. Implementation of ECAP requires
minor modification in the cache coherence protocol as described in
the following example.

Example: Figure 8 shows that core 42 sends a prefetch request for
a block whose L2 bank is in tile-19 as per the SNUCA block map-
ping policy. Consider that the prefetch block is stored as a satellite
block in tile-43 with backward pointer set to tile-42. Hence, the tag
address of the block is stored in the PTA of tile-42. The coherence
protocol running in the system updates the block status as E (Exclu-
sive) and owner as 42 (not tile-43). Upon receiving any request for
the same block (RD/WR) from a different tile-54, the L2 bank sends
a request to the current owner of the block i.e. tile-42 as per the
record. Tile-42 searches for the block using block searching proce-
dure as described above. The block search procedure results into a
hit in its PTA. From the mapping vector, the location of the block
is determined i.e. tile-43. Hence, tile-42 sends a request to tile-43 in
order to forward the corresponding block from tile-43 to the request-
ing core in tile-54. On successfully forwarding the block, tile-54
acknowledges back to the L2 bank (tile-19) and the status of the
block is changed from E to S (Shared) with an addition of another
owner as 54. The remote cache have no RD or WR access permis-
sion on its satellite blocks. This avoids the case of data inconsistency
that may arise when the block resides in a remote cache.

3.5 Confidence-Aware Replacement Policy (CARP)

The simplest block replacement policy used in traditional CMPs is
Least Recently Used (LRU). LRU works within each cache set to
identify a victim block during cache replacement [27–29]. It exploits
the reuse factor of the cache block. A newly inserted block is placed
in MRU position and for every reuse of the block, it is promoted to
MRU. Otherwise, the block eventually reaches the LRU position and
gets evicted from the cache.

But the inherent problem of LRU is that a block once promoted to
MRU position requires a longer time period to become LRU [27, 28],
if the access to the cache set is very less. Hence, the demand blocks
in such cache sets become dead blocks [30, 31]. A cache block is
called dead if it is never accessed again before its eviction. Evic-
tion of such blocks from the set gets delayed resulting in poor usage
of critical resources like cache space. Some interesting dead block

Fig. 8: Example of coherence protocol for 8× 8 2D mesh in ECAP

prediction mechanisms are already been proposed [30, 31]. Most
of the existing proposals are for the Last Level Caches. We under-
stand this limitation of conventional LRU policy and propose a new
Confidence-Aware Replacement Policy (CARP) that is more suited
for ECAP enabled caches.

Fig. 9: Snapshot of ECAP enabled cache.

To discuss this issue in detail we have taken an example as shown
in Figure 9. The figure shows the structure of a 4-way set-associative
L1 cache filled with three possible type of blocks. Multiple colors are
used to show the different type of blocks present in each cache set.

• Category I: Lightly used sets (set i) containing all demand
blocks.
• Category II: Lightly used sets (set j) containing a combination of
demand blocks and local prefetch blocks.
• Category III: Lightly used sets (set h, k, l) containing a combi-
nation of demand blocks, local prefetch blocks and satellite blocks.
• Category IV: Heavily used sets. These sets can also be divided
into two sub categories based on the presence of local prefetch, and
demand blocks. Since ECAP does not use such sets for satellite
blocks, the sub-categorization is not relevant for this discussion.

For the placement of a satellite block, ECAP may choose a lightly
used set of any category i.e., I, II or III as the target-set (in a remote
cache). The category shown in the figure is for a particular instance
and the set behavior may change dynamically. Such a behavior of
cache set is discussed in Section 3.6.

During classification of sets into heavy or low, ECAP uses the
core behavior of local tile only (access by neighboring tiles are not
considered). Since the cache set is lightly used by the local core,
demand blocks residing in such a cache set may experience mini-
mal access. In addition to these if LRU replacement policy is used,
such cache blocks will require a longer time in demoting to LRU
position (due to low access by the local core) before finally evicting
from the cache. Hence, the chances of a demand block becoming a
dead block is more for a lightly used set. Since prefetch blocks (both
local prefetch blocks and satellite blocks) are speculatively brought
into the cache for future use; such blocks are expected to experience
a hit after a longer time period than a demand block. Hence, LRU
replacement policy will result in demoting the prefetch blocks faster

IET Research Journals, pp. 1–xii
c© The Institution of Engineering and Technology 2015 v

ReView by River Valley Technologies IET Computers Digital Techniques

2019/04/30 13:48:32 IET Review Copy Only 6

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.



than a demand block. For category II and III, such a dead block may
result in evicting the prefetch blocks early. Therefore, LRU replace-
ment policy may result in decreasing the effectiveness of prefetch
block placement strategy used in ECAP.

Dead blocks in category IV can also create similar issues and may
remove important blocks from the set. Since this work uses only the
lightly used set of remote caches, CARP gives equal priority to every
local block that is placed in the heavily used sets. The policy gives
benefit for sets belongs to Category I, II and III. For category-IV, the
policy may not improve the performance but at least gives the same
performance as that of LRU.

Fig. 10: Percentage of prefetch blocks evicted (due to replacement
policy) from a set in presence of dead block in the same set.

Figure 10 shows the percentage of prefetch blocks evicted from
a cache set in presence of dead blocks. The percentage is calculated
as (total prefetch blocks evicted in presence of dead blocks / total
prefetch blocks evicted)*100. The experiment is performed in an
in-house stand alone cache memory simulator written in C++. In
order to detect dead blocks with 100% accuracy, the program takes
the traces as input and simulates the cache evictions. Without trace,
the detection of a dead block with 100% accuracy is not possible
as the future cache access pattern is unknown. From the figure we
can observe that in most of the cache sets, the prefetch blocks are
unnecessarily evicted in presence of dead blocks within the same
set. Our proposed CARP handle this issues effectively. This is done
by assigning different confidence values to cache blocks pertaining
to different categories of cache sets (heavy / light).

A replacement algorithm has three policies: insertion, promotion
and eviction. Insertion means where to place the block initially. Pro-
motion policy deals with how to handle the block when there is a hit
in the block. Replacement/eviction policy selects the victim block to
be replaced from the cache.

Table 1 Confidence values used in CARP for a lightly used set.

Block types Confidence Value

Demand block 3
Local Prefetch block 4
Satellite block 4

3.5.1 Insertion, Promotion and Demotion Policy of CARP.:
CARP uses a 3 bit saturating counter per block, also known as the
confidence-value of the block. Confidence-value is used as a weight
to define how important the cache block is for the local core’s per-
formance. Lower the confidence-value, lower is the reuse frequency
of the cache block. During the event of cache block replacement in
a target-set in remote cache, the cache block with lowest confidence
value is chosen as the victim.

When a block is newly inserted to a cache set, based on the type of
the block, the confidence-value is initialized with either 3 or 4. The
confidence-values are decided experimentally. Whenever the cache
block experiences a hit, its confidence-value is incremented. At the
end of every 32 cycles also called as window, the confidence-value
of all the blocks are decremented by one. By this process, the con-
fidence value of dead blocks will eventually become lower than the
blocks that are frequently accessed. However, the confidence-value

of those blocks that are accessed frequently keeps on increasing.
This results in clear separation of cache blocks based on its access
pattern within each set. For a heavily used set, since the set is
accessed frequently, equal confidence-value is given to each cache
blocks that are mapped to it. Thus, the confidence-value of each
blocks are initialized with 4 irrespective of its type. This is simi-
lar to LRU where each block is initially placed to MRU position. For
a lightly used set, the confidence-value is initialized as mentioned in
Table 1.

The main motive of attaching a higher value, 4 to the satellite
block is to retain such blocks for a longer period of time. This is
because replacing a satellite block incurs more cost in terms of net-
work packets. Moreover, when the cache set is lightly used; the usage
of such set by the local core is also less. Therefore, more priority is
given to the satellite blocks so that it is kept for a longer time period.
This helps in effectively utilizing the less used sets in L1 caches of
low applications.

3.5.2 Replacement Policy of CARP.: During a cache block
replacement, a block with least confidence-value is considered as
the victim block. If more than one such block is present, then CARP
selects a random block. Before a victim block is evicted, the L1
cache controller checks the direction flags in its backward pointer.
In case any of the direction flag is set (the victim is a satellite block),
the cache controller informs the owner of the satellite block by send-
ing an invalidation message. In the meantime, the evicted block is
stored in the victim buffer until it hears from the owner. Meanwhile,
the tile can store the incoming block in its target-set.

The owner of the prefetch block upon receiving the invalid
request, invalidates the forward pointer in its PTA. It then acknowl-
edges back to the remote cache. Upon receiving the acknowledgment
from the block owner, the evicted block which is temporarily stored
in the victim buffer for ensuring consistency is removed. With this
the replacement procedure is completed.

3.6 Behavioral changes of cache sets

In TCMP, the access pattern of cache set changes with time [32].
Some cache sets which are lightly used previously may change its
pattern to heavy and vice versa. This is because the load on the
cache set changes as the application makes progress. Hence, the
heavy sets that are not used to place the satellite blocks in one phase
may be used for prefetch block placement in another phase. A cache
replacement policy should also handle the dynamic nature of cache
sets.

CARP handles this issue very efficiently. When a heavily used set
changes into lightly used, new incoming satellite blocks are given
higher priority by attaching a higher confidence-value (4). For the
existing blocks in the set, the blocks are evicted based on the least
confidence-value as explained in subsection 3.5.2. On the other hand,
when a lightly used set changes to heavily used, no satellite blocks
are further mapped to such sets. Hence, blocks further mapping to
such sets are local to the core and are initialized with the same
confidence-value as mentioned in the previous subsection. In addi-
tion to these, the confidence-value of the previously mapped satellite
blocks to such lightly sets are gradually decremented after every win-
dow. Therefore, CARP dynamically avoids the insertion of any new
satellite blocks into a newly converted heavily used set.

3.7 Near Vicinity Prefetcher

The idea of prefetch block placement in neighboring tiles is taken
from our previous work, Near Vicinity Prefetcher (NVP) [33]. On
top of the naive NVP design, ECAP uses additional features like
the replacement policy CARP and suitable neighbor selection which
significantly improves its performance. NVP focused on increas-
ing the performance of prefetch-enabled caches running multiple
applications in TCMP. It uses LRU replacement policy in the caches.

On the other hand, ECAP specially focuses on providing the best
choices on satellite block placement and dead block removal. ECAP
proposes a replacement policy, CARP to remove such blocks from

IET Research Journals, pp. 1–xii
vi c© The Institution of Engineering and Technology 2015

ReView by River Valley Technologies IET Computers Digital Techniques

2019/04/30 13:48:32 IET Review Copy Only 7

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.



Table 2 Simulation Parameters

gem5 and Booksim Configuration.
Processor 64, x86 cores with out-of-order execution
Processor frequency 3 GHz
L1 cache/core 64KB, 4-way associative, 32B block
L2 cache/core 1MB, 16-way associative, 64B block
L1 cache access latency 2cycles
L2 cache access latency 12 cycles
Prefetcher Next line prefetcher
Prefetch block placement SCP (Baseline), ECAP (proposed)
NoC topology 8× 8 2D mesh with XY routing
Packet size 1-flit request and 4-flit reply

Table 3 Details of SPEC CPU 2006 workload constituents;
X(Y )n : Benchmark X runs in Y cores with repetition of n times

High MPKI (H): hmmer, leslie3d, lbm, mcf
Medium MPKI (M): bwaves, gcc, bzip2, gamess
Low MPKI (L): calculix, gromacs, h264ref, gobmk

B1 (Mix1) P (16), Q(16), R(16), S(16)

B2 (Mix2) (P (4), Q(4), R(4), S(4))4

B3 (Mix3) (P (2), Q(2), R(2), S(2))8

B4 (Mix4) (P (4), Q(4))4, (R(4), S(4))4

B5 (Mix5) (P,Q,R, S, S,R,Q, P )8

Fig. 11: Reduction of L1 cache misses for different prefetch block placement techniques.

the lightly used set of remote caches thereby enabling efficient uti-
lization of cache space in remote caches. This also helps in reducing
the network packets by providing more time for a satellite block
to reside in the caches. Hence, ECAP also contributes in reducing
the power and energy saving aspects of prefetch block placement
in remote caches. This is supported by additional results produced
using extensive experimental analysis as described in the subsequent
sections.

4 Experimental Analysis and Workload
Characterization

Experimental Setup: We evaluate the effectiveness of our proposed
technique, ECAP using gem5 [23], a cycle-accurate full system sim-
ulator. Booksim 2.0 [24] is closely integrated with gem5 to model
the NoC. We also use CACTI 6.0 [34] to evaluate the power and
area analysis of ECAP, and Orion 2.0 [35] to calculate the network
power. The experiments are conducted using workloads generated
from SPEC CPU 2006 benchmark suite [25].

The system is modeled with out-of-order x86 superscalar proces-
sor, two level of memory hierarchy and uses directory-based MESI
CMP coherence protocol. The L2 cache is shared among all the
tiles and the L1 caches (L1I-cache and L1D-cache) are private to
each core. The access latency of L1 cache is 2 cycles while that of
L2 cache is 12 cycles. We assume that the access latency of PBP
and PTA is same as that of L1 cache. The main memory latency
is modeled as 100 cycles. We use SCP as the baseline prefetch
block placement technique with the conventional next line prefetcher
for data prefetching. The simulation parameters are summarized in
Table 2.

We have also implemented NVP with LRU replacement policy
(NVP-LRU), NVP with PLRU replacement policy (NVP-PLRU),
and our proposed technique ECAP with CARP replacement policy.
We analyze the performance of ECAP with different replacement
policies in terms of cache misses (in MPKI), network packets, packet
latency in the network, AMAT, percentage of direct and indirect hits,
and packet distribution per hop. We also analyze the sensitivity of
various design parameters to evaluate the performance of ECAP in
section 5.

Workload Description: The workloads used to evaluate ECAP
are created from real SPEC CPU 2006 benchmark suite. As men-
tioned in table 3, 12 benchmarks from SPEC 2006 suite are used
as single core applications. The benchmarks are classified into three
categories based on their MPKI values as Low (MPKI < 5), Medium
(25 > MPKI < 5), and High (MPKI > 25) as described in Table 3.
The MPKI’s are calculated after fast-forwarding for 10L cycles in
order to avoid cold misses. Using the benchmarks, 64-core multi-
programmed workloads are generated where in each core one of the
SPEC CPU 2006 benchmark application (high, low or medium) is
mapped.

We have generated 5 workload mixes (B1 to B5) each consisting
of four (P, Q, R, S) benchmarks chosen from high, low or medium
MPKI benchmark categories. H(Bi), M(Bi), and L(Bi) indicates that
the workload Bi (1 ≤ i ≤ 5) is generated from high, low or medium
MPKI benchmarks, respectively. The workload B1 is generated for
64-core TCMP by mapping benchmark P to first 16-cores (0-15),
Q to next 16-cores (16-31), R to the next set of 16-cores (32-47)
and S to the remaining set of 16-cores (48-63). B2 is generated by
dividing 64-cores into four equal clusters where each cluster has 16-
cores. Within each cluster, benchmark P runs on core 0-3, Q runs
on core 4-7, R runs on core 8-11 and S runs on core 12-15. The
pattern is repeated across all the four clusters. Similarly for B3, 64-
cores are divided into 8 clusters where each cluster has 8 cores. With
the pattern repeated within each cluster, P runs on first two cores, Q
runs on next two cores and so on. In a similar fashion B4 and B5
workloads are also generated.

4.1 Effect on L1 cache miss

As detailed above, we examine the impact of ECAP and NVP with
different replacement policies on L1 cache misses using real work-
loads from SPEC CPU 2006 benchmarks mixes. Figure 11 shows the
normalized reduction in L1 cache miss of various workloads gener-
ated from the three benchmark categories (high/low/medium). From
the figure we can observe that on an average the L1 cache miss for
NVP-LRU, NVP-PLRU and ECAP reduces by 8.05%, 14.28%, and
23.42% as compared to SCP.

IET Research Journals, pp. 1–xii
c© The Institution of Engineering and Technology 2015 vii

ReView by River Valley Technologies IET Computers Digital Techniques

2019/04/30 13:48:32 IET Review Copy Only 8

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.



Fig. 12: Reduction of flits in NoC for different prefetch block placement techniques.

L1 cache miss reduction in ECAP is due to many reasons. ECAP
increases the cache space of high applications dynamically at run-
time. This increase in cache space allows placing more prefetch
blocks in remote caches and in PBP. Applications that has good
spatial locality benefits from this placement. ECAP also reduces
cache pollution. A useful demand block that is already cached can
reside for a longer time period. The confidence-value associated with
a demand block increases when it experiences re-referencing dur-
ing its residency in the cache. Therefore, the cache sets where such
blocks are mapped turns out to be a heavily used set. ECAP targets
only lightly used set for prefetch block placement in its home cache
and also in the remote caches. Thus, ECAP avoids evicting useful
demand blocks from the cache thereby decreasing the L1 cache miss
count.

From Figure 11, we can observe that for high MPKI workloads,
the performance improvement of NVP-LRU is negligible as com-
pared to that of SCP. The load on local L1 cache is more when
high MPKI applications are running on the cores. As a result of this,
the home caches as well as the remote caches are almost utilized
by the applications running on the respective cores. This makes it
hard for NVP to place prefetch blocks in remote caches. In addi-
tion to this, LRU replacement policy cannot recognize dead blocks
within a cache set. Hence, NVP-LRU cannot utilize the cache space
efficiently.

However, NVP-PLRU and ECAP perform better than NVP-LRU.
The relative reduction of L1 cache misses in both the techniques
is due to the fact that NVP-PLRU provides a sub-optimal choice
whereas ECAP produces an optimal choice in identifying victim
blocks during cache replacement. PLRU policy distinguishes only
the most recently accessed cache block within a set. Apart from
the most recently accessed block, PLRU selects a victim randomly
among other blocks within the cache set. This results in providing
a sub-optimal solution to find a victim block during prefetch block
placement in the home cache and remote caches. Hence, NVP-PLRU
may also evict a demand block that has been accessed by the core
within few cycles.

CARP on the other hand, provides an optimal solution by replac-
ing a less used cache block or a dead block within a cache set.
If a cache block is not accessed periodically within a window,
the confidence value of the block reduces. The eviction policy of
CARP chooses a victim block that has the least confidence value.
Hence, ECAP evicts the least used cache block from the cache. This
results in fewer cache misses as compared to SCP, NVP-LRU, and
NVP-PLRU. This also improves the efficiency of ECAP in placing
prefetch blocks in home cache and remote caches. In the figure,
we can clearly observe a considerable reduction of L1 cache miss
in ECAP as compared to NVP-PLRU and NVP-LRU in all the
workloads.

4.2 Effect on network traffic

Figure 12 shows the normalized reduction of flits (basic flow control
unit in NoC) in 64-core TCMP organized as 8x8 2D mesh network
running SPEC CPU 2006 benchmark mixes. Reduction in number of

flits reduces traffic in the network. From the figure we can observe
that there is an average reduction of flits by 23.58%, 27.93%,
and 32.93% in NVP-LRU, NVP-PLRU, and ECAP, respectively as
compared to SCP.

As described in subsection 4.1, ECAP reduces the number of L1
cache misses in the system by efficiently utilizing the less used cache
space as well as removing dead blocks from remote caches. Efficient
utilization of cache space increases the cache size virtually which
in turn reduces cache misses. Reduction in cache misses results in
generating less network packets. Therefore, the amount of network
traffic decreases in ECAP.

In NVP, the reduction of network packets for high MPKI work-
load is less than that of medium and low MPKI workloads. This is
evident from the fact that in high MPKI workloads, the number of
lightly used set is less. Therefore, most of the prefetch blocks are
placed in the PBP of local tiles. Hence, high MPKI applications are
not NVP friendly. But for all types of application, ECAP reduces
network packets by identifying dead blocks from the cache irrespec-
tive of the set type (light/heavy). So removal of an inactive demand
block results in placing useful demand blocks in the cache. Hence,
the cache space is efficiently utilized resulting in fewer cache misses
which further reduces network packets.

4.3 Effect on average packet latency

Reduction in network packet reduces the traffic in NoC. This results
in faster tile to tile communication. Hence, the average packet
latency in the network reduces. This can be clearly observed in
Figure 13 where NVP-LRU, NVP-PLRU, and ECAP reduces packet
latency by 16.2%, 20.05%, and 25.34%, respectively. For high
MPKI applications, H(B1), H(B2), and H(B3) performs better than
H(B4) and H(B5). Because of the cache usage pattern for such
applications, the performance of ECAP is nominal.

For medium and low MPKI applications, the variations in cache
set usage leads in increased performance of ECAP. From the aver-
age packet latency figure we can observe that ECAP performs better
than NVP-LRU and NVP-PLRU. This is because in lightly used sets,
the demand blocks residing in such sets becomes inactive. Satellite
blocks residing in such cache sets may experience a delayed access
due to its speculative nature. Therefore, the chances of evicting such
block is more than an inactive demand block. CARP gives more
chances for a satellite block to stay in a remote-cache by assigning
them higher confidence-values. This effectively helps in utilizing the
less used cache sets in remote caches thereby increasing the cache
size for a high applications.

4.4 Effect on Average Memory Access Time.

In TCMP, the average memory access time of an L1 cache depends
upon the hit time of L1 cache, miss rate of L1 cache, miss penalty
of L1 cache and also on the underlying network condition. Since
each cache miss is carried as packets in the network, the network
congestion plays a major role in determining the AMAT. As shown
in Figure 14, NVP-LRU, NVP-PLRU, and ECAP reduces 12.9%,

IET Research Journals, pp. 1–xii
viii c© The Institution of Engineering and Technology 2015

ReView by River Valley Technologies IET Computers Digital Techniques

2019/04/30 13:48:32 IET Review Copy Only 9

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.



Fig. 13: Reduction of packet latency in the network for different prefetch block placement techniques.

Fig. 14: Reduction of AMAT for different prefetch block placement techniques

17.86%, and 23.56% of AMAT as compared to SCP. On an average
reduction of 32.93% network packets in ECAP, results in reducing
the packet latency by 25.34%. This has a direct impact on reducing
AMAT during cache misses occurring in the core.

For high applications, the reduction of packets in the network is
less as compared to SCP. Therefore, the reduction of AMAT is also
less for such applications. On the other hand, for medium and low
MPKI applications, NVP-LRU, NVP-PLRU and ECAP performs
better in reducing the network packets. Therefore, the AMAT for
medium and low applications shows significant reduction as com-
pared to high MPKI benchmarks. However, ECAP helps in achieving
best performance than NVP-LRU and NVP-PLRU as shown in the
figure.

Fig. 15: Power consumption across routers and links in NoC.

4.5 Effect on Dynamic Power Consumption across routers
and links in NoC

Orion 2.0 tool [36] is used to evaluate the dynamic power consump-
tion of routers and links in NoC. The proposed techniques are built
using 32nm process technology and the operating frequency of the

NoC is 1 GHz. The tiles in NoC are arranged as 8x8 2D mesh topol-
ogy. For our experimental purpose, the routers are input-queued with
five input/output ports. The number of Virtual Channel (VC) used
per input port is four. Power is consumed when a flit resides in the
VCs and also during flit traversal from one router to another through
NoC links.

Figure 15 shows the dynamic power consumption across routers
and links in NoC. From the figure, we can observe that for vari-
ous techniques i.e., SCP, NVP-LRU, NVP-PLRU and ECAP, ECAP
achieves the best reduction in power consumption across routers
and links. ECAP on an average reduces the router power and link
power by 14.42% and 27%, respectively as compared to SCP. This
is because the reduction of cache pollution reduces the number of
cache misses. Thus, the number of flits in the NoC reduces. Hence,
the routers and links in the underlying NoC have to carry less num-
ber of traffic across the tiles. This resulted in reducing the dynamic
power consumption at the routers and links in NoC.

4.6 Percentage of hits in different categories.

Figure 16 shows the percentages of direct and indirect hits in ECAP
for different types of benchmark mixes. In this figure, we have
shown the hit percentages for ECAP only because CARP replace-
ment policy helps in achieving better performance than NVP-LRU
or NVP-LRU. Indirect hits are achieved either from PTA or PBP. Hit
in PTA means that the prefetch block is placed in remote caches.
Such hits are mentioned as PTA-hits in the figure. More PTA-hits
indicates that more number of prefetch blocks are placed in remote
caches. Therefore, applications with more PTA-hits are better ECAP
friendly than those with less PTA-hits.

Clearly from the figure we can observe that for most of the high
applications, the number of PBP-hits is more than that of PTA-hits.
From 18.8% of indirect hits, around 7.9% of the hits are from PTA
and rest 10.9% of the hits are from PBP. As mentioned earlier, for
High MPKI application, the number of lightly used set is substan-
tially less. Therefore, experimentally it is found that most of the
prefetch blocks are accommodated in the PBP of its local tile as
shown in the figure. For medium MPKI applications, 21.74% of hits

IET Research Journals, pp. 1–xii
c© The Institution of Engineering and Technology 2015 ix

ReView by River Valley Technologies IET Computers Digital Techniques

2019/04/30 13:48:32 IET Review Copy Only 10

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.



Fig. 16: Percentage distribution of direct and indirect hits in ECAP.

are indirect hits. Out of the total indirect hits, most of the hits are
from PTA i.e., 15.04%. In low MPKI applications, a total of 30% hits
are indirect hits and maximum hits are PTA-hits which constitutes
around 21.26% of total indirect hits.

Therefore, it is clear that ECAP combined with CARP replace-
ment policy performs better for benchmark mixes that has a combi-
nation of high, medium and low MPKI or some specific patterns of
high MPKI workloads like H(B1).

Fig. 17: Normalized reduction of long distance communication
during cache miss in NoC.

4.7 Reduction of long distance network packets in ECAP

Figure 17 shows the normalized reduction of long distance packets
occurring during cache misses in ECAP as compared to the baseline
prefetch block placement technique, SCP. In this figure, we call those
packets as long distance that requires equal or more than three hop
to reach its destination. From the figure we can observe that on an
average ECAP reduces around 49.2% of long distance packets in the
network during cache miss.

In ECAP, the prefetch blocks are placed at remote caches that
are at one-hop distance away from the requesting core. Hence, such
prefetch blocks are fetched from shorter distances thus avoiding long
distance communication during cache misses. As a result of this,
ECAP hides the number of long distance communication required to
travel for a cache miss packet in the network by placing the prefetch
blocks in a remote cache. This also justifies the fact that due to
placement of prefetch blocks in remote caches, the existing demand
blocks from the cache is not evicted. Thus, in a prefetch-enabled
cache, ECAP reduces cache pollution caused by prefetch blocks.

5 Sensitivity Analysis

We hereafter concentrate solely on CARP and examine its sensitivity
to various parameters. CARP uses various parameters like Window
size (W), and different confidence values for satellite block and local
block (prefetch and demand block) in each L1 caches. We change

different parameters and plot the results as network packet latency,
cache misses, number of PTA hits, and number of flits. For ECAP,
the PBP size is also one of the parameters that determines the per-
formance of ECAP. Combining the parameters like PBP size with
window and confidence values plays a significant role in determining
the performance of ECAP.

This section describes the variation among the parameters and
tries to come up with an optimal design parameter for better system
performance. For each PBP size, we change different parameters of
CARP and we name each variations as CARP_W_S_D where W is
the window size, S is the confidence value for satellite block and
local prefetch block and D is the confidence value for local demand
block. Figure 18, 19, 20 shows variation in different parameters and
its impact on system performance.

From the figures we observe that for different PBP size, the
least value of average packet latency in figure 18(a), 19(a), and
20(a) is around 21.8, 21, and less than 21, respectively. This
behavior is found in CARP_32_4_3 (PBP size = 32). It is self
explanatory from the fact that larger the PBP size, more number
of prefetch blocks can be placed in the PBP of local tile. Hence,
the average packet latency in the network reduces. Among all the
variation of CARP parameter, CARP_32_4_3 performs better than
CARP_32_5_4, CARP_16_5_4, and CARP_16_4_3.

In figure 18(b), 19(b), and 20(b) we can observe that the num-
ber of PTA-hits is almost similar for all the variations of CARP
parameter in larger window size i.e. W=32 (CARP_32_5_4 and
CARP_32_4_3). For W=16, the PTA-hits are less as compared to
that of W=32. Figure 18(c), 19(c), and20(c) shows the number of L1
cache misses occurred in different combination of W and confidence
values. Among the three figures, in 19(c), CARP_32_4_3 experi-
ences less misses as compared to CARP_32_5_4, CARP_16_5_4,
and CARP_16_4_3. This scenario is also similar for 18(c), and
20(c).

This behavior can be well explained because if the window size
is small, then CARP reduces the confidence value of blocks faster.
As a result of this, the blocks are demoted faster. This may result
into evicting a cache block from the lightly used set much prior than
experiencing a hit. Experimentally it is found that CARP_32_4_3 is
the optimal combination of PBP size, window size, and confidence
value as compared to other combinations. This is also evident from
figure 18(d), 19(d), and 20(d) which shows that the reduction of flits
is maximum for W=32 and confidence value for satellite block and
local prefetch block as four and that of demand block as three.

Therefore, we use the combination of PBP size = 16, and CARP
parameters as window of 32 cycles and confidence values as men-
tioned in Table 1 throughout our experiments.

6 Hardware Analysis

The extra hardware used in ECAP is a prefetch tag array, prefetch
buffer pool, backward pointer, access counter per set (to check
whether the set is lightly used or heavily used), and confidence value

IET Research Journals, pp. 1–xii
x c© The Institution of Engineering and Technology 2015

ReView by River Valley Technologies IET Computers Digital Techniques

2019/04/30 13:48:32 IET Review Copy Only 11

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.



(a) Network packet latency (b) PTA-hits (c) Cache Miss (d) Number of flits

Fig. 18: PBP = 8, Change in window size and confidence value in CARP replacement policy.

(a) Network packet latency (b) PTA-hits (c) Cache Miss (d) Number of flits

Fig. 19: PBP = 16, Change in window size and confidence value in CARP replacement policy.

(a) Network packet latency (b) PTA-hits (c) Cache Miss (d) Number of flits

Fig. 20: PBP = 32, Change in window size and confidence value in CARP replacement policy.

Table 4 Additional hardware cost per tile in ECAP.

Cache size per tile: 1024 KB (L2) + 64 KB (L1) = 1088 KB
Component Bits/entry number of entries Bytes per tile

Backward Pointer 4 512 (sets) * 4 (ways) 1024
PTA 22 512 (sets) * 4 (MV) 5632
PBP 274 16 548
Access counter/set 4 512 (sets) 256
Confidence value/block 3 512 (sets) * 4 (ways) 768

Additional storage in ECAP per tile: ≈9 KB
Hardware cost per tile (in %): 0.83%

per block for CARP replacement policy. The detailed hardware anal-
ysis of ECAP in terms of the additional storage as well as energy and
power consumption is shown in Table 4 and Table 5. The main mem-
ory used in our experiment is of 4GB. Hence, 32-bit address is used.
Based on the conventional address split-up, 17-bits are reserved as
tag bits per block and 9-bits are reserved for set index bits.

Experimentally it has been found that ECAP performs well when
each PTA index holds four mapping vectors. Since each mapping
vector has 1-valid bit, 17-bits of tag, and 4-bits of direction flag, the
total bits required for each mapping vector is 22-bits. The backward
pointer require 4-bits of direction flag per cache block. As mentioned
in subsection 5, the optimal value of PBP size is 16 which requires
around 5632B. ECAP also stores a 4-bit value per set to check the
access count within 1024 cycles.

When CARP is implemented in conjunction with ECAP then an
additional hardware overhead of 3-bits per block is used for the
confidence value that is attached with each block. If LRU replace-
ment policy is used then the number of bits required for a 4-way set
associative cache is 2-bits per block. Hence, the additional overhead
required in ECAP with CARP replacement policy is 512 x 4 x 3 bits
≈ 768B. This has a marginal impact on the hardware overhead in
ECAP.

Table 4 shows that the additional hardware cost per tile for ECAP
design increases by only 0.83% as compared to SCP. If 64-bit
address is used then ECAP has an additional hardware overhead
of 1.47% per tile because of the increase in tag bits per mapping

Table 5 Area and Power consumption analysis in ECAP

Component L1 cache L2 cache PTA PBP

Area(mm2) 0.1374 1.92 0.0074 0.00027
Power (nJ) 0.0304 0.2872 0.0017 0.00006

Total Area (in SCP): (L1 + L2) 2.0574 mm2

Total Area (in ECAP): 2.066 mm2

Total Power (in SCP): (L1 + L2) 0.3176 nJ
Total Power (in ECAP): 0.3194 nJ

Increase in area per tile (in %): 0.42%
Increase in power per tile (in %): 0.57%

vector. From table 5, we can observe that the area and power con-
sumption of ECAP increases minimally by 0.42% and 0.57% per
tile as compared to SCP.

7 Related Work

Existing works in prefetching focused in reducing the cache pollu-
tion, timeliness etc. of prefetchers [12, 15, 16, 37–39]. But these
works are compatible with either a non-banked cache [39] or a
banked cache with centralized access [12]. Prefetching in a dis-
tributed banked cache like TCMP is still an active research area
and very less works have been done in this regard. Since this paper
focuses on distributed banked cache architecture we summarize
related work for such cache structures only.

Albericio et al. [11] proposed an adaptive controller, ABS to
prefetch blocks in the last level cache. The controller controls the
number of misses generated from each L2 cache bank when the
prefetch aggressiveness varies. Since increase in miss count reduces
system performance, ABS dynamically assigns different aggressive-
ness value to each L2 bank. It uses a hill climbing approach to
control the aggressiveness of prefetchers running at each L2 bank
separately.

Maria et al. [13] proposed a prefetch system that uses a server and
client for each core. Upon encountering a cache miss, the client feeds

IET Research Journals, pp. 1–xii
c© The Institution of Engineering and Technology 2015 xi

ReView by River Valley Technologies IET Computers Digital Techniques

2019/04/30 13:48:32 IET Review Copy Only 12

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.



this information to a finite state machine. The finite state machine
uses time series prediction to predict the time when the core will
generate a next request. The server prefetches block based on the
prediction to increase the timeliness of the prefetcher.

Andre et al. [40] proposed a balanced prefetch controller to
prefetch blocks in L1 cache. The controller reduces miss penalty by
controlling the aggressiveness of prefetchers in TCMPs. The author
uses a cache sniffer and a directory sniffer at each tile. The direc-
tory sniffer samples out misses to predict the next cache request.
The cache sniffer estimates the delay involved in fetching a block
from lower level of memory to L1 cache. Both together controls
the aggressiveness of prefetchers by reducing the network delays.
Hence, the miss penalties in a core also reduces. This paper also
emphasizes in reducing miss penalty by placing prefetch blocks
closer to the source core.

8 Conclusion

In this paper, we propose an energy efficient prefetch block place-
ment technique to reduce the negative impact of prefetching like
cache pollution which in turn increases the number of network pack-
ets in TCMP. For high MPKI applications, ECAP leverages the less
used cache space of remote caches that are running low applications.
Hence, prefetch blocks of high applications are placed in the remote
caches. This results in virtually increasing the cache space of high
applications thereby reducing cache pollution. Experimentally we
found that ECAP achieves an overall reduction of 23.42% of L1
cache misses as compared to SCP. This results in reduction of around
32.93% of network packets. As a result of this, the packet latency of
cache miss packets reduces by 25.34% which further reduces the
AMAT by 23.56%, router and link power by 14.42%, and 27%,
respectively.

9 Acknowledgments

This research is supported in part by Department of Science
and Technology (DST), Government of India vide project grant
ECR/2016/000212.

10 References
1 A. Sodani et. al, “Knights landing: Second-generation intel xeon phi product,”

IEEE Micro, vol. 36, no. 2, pp. 34–46, 2016.
2 S. B. et. al, “TILE64 - Processor: A 64-Core SoC with Mesh Interconnect,” in 2008

IEEE International Solid-State Circuits Conference - Digest of Technical Papers,
2008, pp. 88–598.

3 R. Balasubramonian, N. P. Jouppi, and N. Muralimanohar, Multi-Core Cache
Hierarchies. Morgan and Claypool Publishers, 2011.

4 W. J. Dally and B. Towles, “Route packets, not wires: on-chip interconnection
networks,” in Proceedings of the 38th Design Automation Conference, 2001, pp.
684–689.

5 T. Bjerregaard and S. Mahadevan, “A Survey of Research and Practices of
Network-on-chip,” ACM Computer Survey, vol. 38, no. 1, Jun. 2006.

6 C. Kim, D. Burger, and S. W. Keckler, “An Adaptive, Non-uniform Cache
Structure for Wire-delay Dominated On-chip Caches,” SIGARCH Computer Archi-
tecture News, vol. 30, no. 5, pp. 211–222, Oct 2002.

7 J. Jose, B. Nayak, K. Kumar, and M. Mutyam, “DeBAR: Deflection Based Adap-
tive Router with Minimal Buffering,” in In Proceedings of the Conference on
Design, Automation and Test in Europe, 2013, pp. 1583–1588.

8 C. Fallin, G. Nazario, X. Yu, K. Chang, R. Ausavarungnirun, and O. Mutlu,
“Minbd: Minimally-buffered deflection routing for energy-efficient interconnect,”
in 2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip, May
2012.

9 J. Lee, H. Kim, and R. Vuduc, “When Prefetching Works, When It Doesn’t, and
Why,” ACM Transaction on Architecture anf Code Optimization, vol. 9, no. 1, pp.
2:1–2:29, 2012.

10 S. Mittal, “A Survey of Recent Prefetching Techniques for Processor Caches,”
ACM Computing Surveys, vol. 49, no. 2, pp. 35:1–35:35, 2016.

11 Albericio Jorge, Gran Rubén, Ibáñez Pablo, Viñals Víctor Llabería and Jose María,
“ABS:A Low-cost Adaptive Controller for Prefetching in a Banked Shared Last-
level Cache,” ACM Transaction on Architecture and Code Optimization, vol. 8,
no. 4, pp. 19:1–19:20, 2012.

12 E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt, “Coordinated Control of Multiple
Prefetchers in Multi-core Systems,” in Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2009, pp. 316–326.

13 M. Cireno, A. Aziz, and E. Barros, “Temporized data prefetching algorithm for
NoC-based multiprocessor systems,” in IEEE 27th International Conference on

Application-specific Systems, Architectures and Processors, July 2016, pp. 235–
236.

14 An-Chow Lai and C. Fide and B. Falsafi, “Dead-block prediction amp; dead-block
correlating prefetchers,” in Proceedings 28th Annual International Symposium on
Computer Architecture, 2001, pp. 144–154.

15 S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback Directed Prefetching:
Improving the Performance and Bandwidth-Efficiency of Hardware Prefetchers,”
in 2007 IEEE 13th International Symposium on High Performance Computer
Architecture, Feb 2007, pp. 63–74.

16 S. Mehta, Z. Fang, A. Zhai, and P.-C. Yew, “Multi-stage Coordinated Prefetch-
ing for Present-day Processors,” in Proceedings of the 28th ACM International
Conference on Supercomputing, 2014, pp. 73–82.

17 S. R. Vangal et al., “An 80-tile sub-100-w teraflops processor in 65-nm cmos,”
IEEE Journal of Solid-State Circuits, vol. 43, no. 1, pp. 29–41, Jan 2008.

18 H. Wang, L.-S. Peh, and S. Malik, “Power-driven design of router microarchi-
tectures in on-chip networks,” in Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO 36, 2003.

19 L. Shang, L.-S. Peh, and N. K. Jha, “Dynamic voltage scaling with links for power
optimization of interconnection networks,” in The Ninth International Symposium
on High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings.,
Feb 2003, pp. 91–102.

20 C. Fallin, C. Craik, and O. Mutlu, “Chipper: A low-complexity bufferless deflec-
tion router,” in 2011 IEEE 17th International Symposium on High Performance
Computer Architecture, 2011, pp. 144–155.

21 T. Moscibroda and O. Mutlu, “A case for bufferless routing in on-chip networks,”
in Proceedings of the 36th Annual International Symposium on Computer
Architecture, ser. ISCA ’09. New York, NY, USA: ACM, 2009, pp. 196–207.
[Online]. Available: http://doi.acm.org/10.1145/1555754.1555781

22 S. Mittal and J. S. Vetter, “A Survey Of Architectural Approaches for Data Com-
pression in Cache and Main Memory Systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 5, pp. 1524–1536, 2016.

23 N. Binkert et. al, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,
N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5 Simulator,” SIGARCH
Computer Architecture News, vol. 39, no. 2, pp. 1–7, Aug 2011.

24 Jiang et.al, “A detailed and flexible cycle-accurate network-on-chip simulator,” in
Proceedings of Performance Analysis of Systems and Software.

25 J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” ACM SIGARCH
Computer Architecture News, vol. 34, no. 4, pp. 1–17, sept 2006.

26 C. Zhang and S. A. McKee, “Hardware-only Stream Prefetching and Dynamic
Access Ordering,” in Proceedings of the 14th International Conference on Super-
computing. ACM, 2000, pp. 167–175.

27 V. Seshadri, S. Yedkar, H. Xin, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C.
Mowry, “Mitigating prefetcher-caused pollution using informed caching policies
for prefetched blocks,” ACM Trans. Archit. Code Optim., vol. 11, no. 4, Jan. 2015.

28 V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry, “The evicted-address
filter: A unified mechanism to address both cache pollution and thrashing,” in
Proceedings of the 21st International Conference on Parallel Architectures and
Compilation Techniques, ser. PACT ’12, 2012, pp. 355–366.

29 N. Beckmann and D. Sanchez, “Modeling cache performance beyond lru,” in
2016 IEEE International Symposium on High Performance Computer Architecture
(HPCA), March 2016, pp. 225–236.

30 S. M. Khan, Y. Tian, and D. A. Jimenez, “Sampling dead block prediction for
last-level caches,” in 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, Dec 2010, pp. 175–186.

31 P. Faldu and B. Grot, “Leeway: Addressing variability in dead-block prediction for
last-level caches,” in 2017 26th International Conference on Parallel Architectures
and Compilation Techniques (PACT), Sep. 2017, pp. 180–193.

32 J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler, “A nuca substrate
for flexible cmp cache sharing,” in Proceedings of the 19th Annual International
Conference on Supercomputing, ser. ICS ’05, 2005, pp. 31–40.

33 D. Deb, J. Jose, and M. Palesi, “Performance enhancement of caches in tcmps
using near vicinity prefetcher,” in Proceedings of 2019 32nd International Con-
ference on VLSI Design and 2019 18th International Conference on Embedded
Systems (VLSID), 2019.

34 N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Cacti 6.0: A tool to
model large caches,” 01 2009.

35 A. B. Kahng, B. Li, L. Peh, and K. Samadi, “ORION 2.0: A fast and accurate
NoC power and area model for early-stage design space exploration,” in Design,
Automation Test in Europe Conference Exhibition, April 2009, pp. 423–428.

36 C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li,
H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building
Manycore Processor-to-DRAM Networks with Monolithic Silicon Photonics,” in
In Proceedings of the 16th IEEE Symposium on High Performance Interconnects,
Aug 2008, pp. 21–30.

37 P. Yedlapalli and J. K. et al., “Meeting midway: Improving CMP performance with
memory-side prefetching,” in Proceedings of the 22nd International Conference on
Parallel Architectures and Compilation Techniques, Sept 2013, pp. 289–298.

38 N. P. Jouppi, “Improving Direct-mapped Cache Performance by the Addition of a
Small Fully-associative Cache and Prefetch Buffers,” in Proceedings of the 17th
Annual International Symposium on Computer Architecture. ACM, 1990, pp.
364–373.

39 S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback Directed Prefetching:
Improving the Performance and Bandwidth-Efficiency of Hardware Prefetchers,”
in 2007 IEEE 13th International Symposium on High Performance Computer
Architecture, Feb 2007, pp. 63–74.

40 A.Aziz, M. Cireno, and E. B. et al., “Balanced prefetching aggressiveness con-
troller for NoC-based multiprocessor,” in 27th Symposium on Integrated Circuits
and Systems Design (SBCCI), Sept 2014, pp. 1–7.

IET Research Journals, pp. 1–xii
xii c© The Institution of Engineering and Technology 2015

ReView by River Valley Technologies IET Computers Digital Techniques

2019/04/30 13:48:32 IET Review Copy Only 13

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.


