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Abstract: New generation multi-processor system-on-chips integrate hundreds of processing elements in a single chip which
communicate with each other through on-chip communication networks, commonly known as network-on-chip (NoC). Routers
are the most critical NoC components and deflection routing is a technique used in buffer-less routers for better energy
efficiency. Massive integration of devices along with fabrication at deep sub-micron level feature sizes increases the possibility
of wear out and damage to various components resulting in unreliable operation of the chip. Hence NoC fabric in general and
routers, in particular, should be equipped with built-in fault tolerance mechanisms to ensure the reliability of the chip in the
presence of faults. The authors propose an energy-efficient routing technique that can tolerate permanent faults in NoC links by
introducing a simple logic unit placed next to the output port allocation stage of the deflection router pipeline. This technique
incurs minimum wiring overheads and promises a stable network throughput for high fault rates. Evaluation of the proposed
method on 8 × 8 mesh NoC for various fault rates reports reduced flit deflection rate and hop power which brings about a
significant reduction in dynamic power consumption at the inter-router links compared to state-of-the-art fault tolerance
techniques.

1 Introduction
Increasing the integration capacity of transistors in integrated
circuits has made it possible to realise multi-core chips which can
accommodate thousands of processing elements (Pes) in a single
silicon substrate. The high processing capability of these chips
demands modular communication architectures like networks-on-
chip (NoC), which offers packet-based communication through a
set of connected routers and links. Fig. 1a shows a two-
dimensional (2D) NoC system having 16 routers (interconnected in

a 4 × 4 mesh topology), each of which is connected to a PE. In a
homogeneous multi-processor system-on-chip, each PE consists of
an out-of-order superscalar processor and one or two levels of
cache memory. Cache misses account for the generation of packets
to the NoC framework. TERAFlops [1] and Tile64 [2] are
prototype chips with 64 and 80 processor cores, respectively,
interconnected using mesh NoCs. 

Energy-efficient on-chip communication is achieved by
eliminating router buffers [3] and using deflection routing

Fig. 1  (a) A 4 × 4 mesh NoC system, (b) Bufferless deflection router architecture using PDN, (c) Connections between permuters of PDN in FaFNoC Router
with faulty north port (R1) and faulty east port (R2), (d) Demonstration of path traversed by flit from source (src) to destination (dst) in a 4 × 4 mesh NoC
using Maze routing and proposed work
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mechanism to forward packets between various processing cores
[4]. In deflection routing, packets are split into smaller units called
flits (flow control units) which are routed independently by
keeping destination address in the flit header. In conventional
deflection routers, incoming flits stay in the router for two cycles
before they are forwarded to neighbouring routers through inter-
router links [4, 5]. Major functional units of a two-stage pipelined
deflection router are given in Fig. 1b. Here A, B and C are the
pipeline latches. The first stage in the router pipeline (between A
and B) comprises of ejection of locally destined flits and injection
of newly generated flits into the network. A permutation deflection
network (PDN) [5] at the second stage of the router pipeline
(between B and C) effectively assigns output ports to all the flits in
B. Flits hop from one router to the next until they reach their
destination router where they are ejected from the network. Some
of these hops are productive, i.e. the flit advances one more step
closer to its destination. Some of the hops are termed as deflections
since the flit moves further away from its destination. Proper
livelock mechanisms ensure that these flits get productive ports in
subsequent routers so that they finally reach their destinations.
Higher deflection rates lead to increased flit latency and dynamic
power dissipation due to unproductive movement of flits through
the NoC links. Some of the sophisticated deflection routers use a
small number of side buffers to store misrouted flits and hence
minimise deflections [6–8].

NoC designs need to meet tough latency and throughput targets,
under stringent area and power budgets. Unfortunately, as critical
dimensions shrink, the reliability of the chip degrades as well.
Permanent faults caused by physical damages such as
manufacturing defects and device wear-out may cause the entire
chip to fail. Electromigration is an operational stress-induced
mechanism which causes material deformations and loss of
connections in a circuit. According to the ITRS 2009 Interconnect
Report [9], the main cause of on-chip metal interconnect reliability
loss in current and future CMOS technologies are electromigration.
Unpredictable causes like power grid fluctuations and particle hits
may cause transient faults in chips which require complex methods
for error detection and correction. As the sole medium of
communication in multicore chips, the NoC should be designed to
tolerate transient and permanent failure of components and provide
reliable communication between healthy nodes inside the chip [10].

The occurrence of faults in a router's internal functional blocks
or inter-router links hinders the transit of flits through
predetermined paths obtained during port allocation phase. In order
to tolerate faults and facilitate flit movement, routers use additional
hardware and adaptive algorithms to redirect flits through fault-free
paths. The inherent path diversity of mesh topology allows most of
the routers to be accessible through multiple paths from any other
router in the network. In this work, we focus on tolerating
permanent faults occurring in the links/ports of a 2D mesh NoC
using deflection routers. We propose a simple and energy efficient
fault-tolerant logic unit (FTLU) connected to the output of the
PDN that is used for port allocation. The FTLU reallocates healthy
output ports to flits which have been allotted faulty output ports by
the PDN. Our algorithm promises guaranteed delivery of flits from
a faulty router to the destination provided a path exists between the
two. It also exploits the path diversity of mesh topology to ensure
that the majority of the flits reach the destination through minimal
paths. Experimental results show that our method has superior
performance and energy efficiency compared to the state-of-the-art
fault-tolerant techniques [11, 12] with 38% higher throughput, 16
and 20% reduction in hop count and link power, respectively, with
uniform traffic conditions and 30% link fault rate.

The organisation of the remaining of the paper is as follows. In
Section 2, we discuss some of the earlier works related to fault-
tolerant routing in mesh NoCs and the motivation behind this work.
Section 3 describes how a faulty router is modelled in our
simulator and in Section 4, we explain the proposed router
architecture and how fault tolerance is achieved using this
technique. The experimental analysis is discussed in Sections 5 and
6 and we conclude the paper in Section 7.

2 Related work and motivation

Several routing techniques have been proposed so far for diagnosis
and tolerance of permanent faults in 2D NoC systems. Fault-
tolerant routing techniques are broadly classified as centralised or
distributed. Most of the centralised methods [13–15] use central
controllers for propagating fault information to all routers whereas,
in distributed methods [13, 16–18], fault tolerance is achieved by
local decision making at each router. A big drawback of centralised
methods is that the controllers may become faulty, which may
cause the entire chip to fail. Deflection routers mostly follow a
distributed approach by depending on local or neighbour's fault
information for taking routing decisions. Permanent link failures
can occur in any random location in the network. One of the major
goals of fault-tolerant routing methods is to achieve 100% fault
coverage, i.e. to achieve guaranteed delivery of a packet to its
destination if a path exists between the faulty router and the
destination, regardless of the number and location of faults [12].
Some of the earlier works [19] restrict the number of faulty links/
regions which can be gracefully tolerated by the system. Some
others offer moderate fault coverage and place strict limitations on
tolerable fault patterns within the network with increasing fault rate
[13, 15, 17, 20]. Maze routing [12], uDirec [14] and Ariadne [18]
algorithms claim 100% fault coverage whereas uLBDR [13] and
Face routing [21] can tolerate fairly high fault rates.

Routing algorithms should necessarily guarantee deadlock and
livelock freedom of flits [22]. In input buffered routers, fault
resilient routing algorithms are based either on turn-model [16, 23]
or on virtual channels [24]. In mesh NoCs, buffer-less deflection
routers have an equal number of input and output ports, hence all
flits entering the router are sent out at the end of a router pipeline
[4, 25]. Due to this, deflection routers are inherently free from
deadlock problem [11, 12, 26]. Some of the recently proposed
fault-tolerant routing algorithms like FaFNoC [11] and Maze
routing [12] use the golden and silver flit mechanisms used in
conventional CHIPPER [5] and MinBD [6] for livelock avoidance.

FTDR is a deflection routing method which achieves fault
tolerance by updating routing tables periodically so that flits bypass
faulty links in their path [10]. Routing tables increase the router
area significantly and hence nullify the inherent advantage of
buffer-less deflection routers which is to reduce chip power and
area. FaFNoC [11] is a recent fault tolerant deflection routing
technique which uses a modified form of the PDN mentioned in
CHIPPER [5]. As shown in the examples of Fig. 1c, the
interconnections between the four permuter blocks (P1, P2, P3, P4)
inside the PDN are adaptively enabled or disabled such that faulty
output ports are not allocated to flits. The flit header is extended
with additional bits to transmit information about faulty links
between routers. Maze routing [12] is yet another fault resilient
method that promises 100% fault coverage and guaranteed packet
delivery on various topologies and deflection router architectures.
It is a variant of face routing algorithm used in wireless ad-hoc
networks, which randomly allocates output ports for flits whose
productive ports are faulty [21]. Maze routing also requires flit
header extension for carrying information regarding guaranteed flit
delivery and unreachable nodes in the network. Since FaFNoC and
Maze routing use PDN-based deflection router architecture that we
use in our proposed work, we use these methods for comparison
with our results. We conduct an experimental analysis of FaFNoC
and Maze routing methods on an 8 × 8 mesh NoC and observe a
few factors which are limiting them in attaining a better
performance. In the proposed work, we address these issues by a
superior FTLU.

Structural inefficiency: In the FaFNoC router, a fault handler block
disables some of the connections between permuter blocks P1, P2
and P3, P4 in the PDN so that flits do not move to faulty output
ports during port allocation. In router R1 of Fig. 1c, the north link
is faulty and the connection between P1 and P3 (shown as dashed
line) in the PDN is disrupted so that north output is not available
for port allocation. A limitation of this technique is that a flit from
the east input port of P1 will be prohibited from taking up the south
output port connected to P3 if it is the flit's preferred output port.
Such a flit is compelled to choose either the east or west output
port, which results in deflection of the flit in an unproductive
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direction. Similarly, in router R2 of Fig. 1c, where the east link is
faulty, the link between P1 and P4 is disconnected. Due to this,
north input flits are prohibited from moving to the west output port.
In FaFNoC, flits dynamically switch between XY and YX routing
in order to choose output ports with lesser traffic congestion. This
increases the possibility of flits taking more turns (e.g. from north
to east or west) compared to static XY algorithm. The defective
inter-permuter connection between input and output ports in the
PDN of faulty routers does not support these turns, hence
deflection rate of flits increases. From our evaluations on 8 × 8
mesh, we find that under low traffic injection rates (<0.1 flits/
cycle/core) and 10% faulty links, 22% of overall flit deflections is
due to this structural inefficiency of the PDN explained above.
Algorithmic inefficiency: We implement Maze routing algorithm on
an NoC with deflection routers that uses a PDN for output port
allocation. In each router, the preferred output port for each input
flit is computed. Maze routing algorithm identifies the flits whose
desired output ports are faulty and allots them at random to other
healthy output ports either towards the right (clockwise direction)
or the left (anti-clockwise direction) of its desired port. To achieve
livelock freedom, the chosen direction is stored in the flit header
and this direction rule is followed by the flit in all subsequent
routers through which it traverses. Fig. 1d shows a possible path of
a flit from the source(src) to the destination(dst) using Maze
routing. From src, a flit traverses along the x-direction towards dst
and reaches router r1. From r1, the preferred output for the flit is in
the east which is assumed to be faulty (shown as a black dotted
line). So the flit randomly chooses a fault-free output port either to
the left (north port) or to the right (south port) of the east port with
equal probability. The solid red line in Fig. 1d shows the path
followed by a flit which deflects through the south port of r1 to
router r3. In all subsequent hops, this flit chooses the healthy port
to the right of the line joining the current router to the destination
router. Accordingly, the flit reaches its destination in eight hops. In
our evaluation of Maze routing technique, we find that 34% of flits
which deflect due to faulty output ports traverse non-minimal paths
to reach their destinations on account of this random selection of
direction. These additional deflections increase network activity
factor and consume dynamic power. Larger network sizes and
higher fault rates result in increased flit latency and throughput
degradation. In order to overcome this algorithmic inefficiency, we
propose a routing algorithm that explores shortest available paths
in the presence of faulty links and delivers the flit from src to dst in
four hops (shown as a blue dotted path in Fig. 1d).
Area overhead: Fault-tolerant router designs should adhere to strict
area and power budgets. We choose FaFNoC and Maze routing
techniques for comparison with our work as these routers do not
employ routing tables and hence occupy very less chip area. In
Maze routing, information such as Manhattan distance between
current router and destination, the direction of deflection (left or
right) and co-ordinates of the current node are coded in a flit's
header using additional bits. In an 8 × 8 mesh NoC, flit header
extension increases the flit channel width by 10%. In FaFNoC, hop
count and fault status of a flit are also transmitted in the header
which increases the channel width by 8%. Widening of flit
channels leads to an almost quadratic increase in the router area
[27]. The proposed method reduces this area and wiring overhead
by minimising the fault information transmitted in the flit header.

3 Faulty-router model
In our simulations of NoCs with faulty routers and links, we use a
coarse grain model which effectively represents faults in
bidirectional flit channels as well as component failures inside
routers. A fault in either of the input or output channels of a router
is represented by disabling both input and output channels in that
direction. This ensures that an equal number of active input and
output ports are there for a router which is essential for deflection
routing [4]. A failure in any of the datapath elements of a router is
effectively modelled by converging it to a fault in a specific input–
output port. The link corresponding to this port is then disabled by
setting appropriate ports of the two routers at its ends as faulty.
Failures occurring in crucial functional units of a router are fatal to

router operation. Such routers are fully disconnected from the
network by disabling all its input–output ports. Four fault flags (1
bit each) are used in each router to represent the functional
correctness of output ports in north, south, east and west directions.
The fault flag corresponding to a faulty input–output port of a
router is set. At the same time, the fault flag of the corresponding
input–output port of the adjacent router is also set. Fault flags
corresponding to healthy ports of routers are reset. The functional
blocks used for port re-allocation read the status of the fault flags
for activating their circuits (to be explained in the next section).

The values of fault flags are set or reset during fault diagnosis
phase. Diagnosis of faults is beyond the scope of this paper and it
is assumed that the flags are updated using online test methods or
during system reboot.

4 Router architecture
In this work, we propose a fault-tolerant deflection router
architecture with a two-stage pipeline. The input stage (stage 1) of
the pipeline consists of functional blocks for route computation,
ejection and injection of flits. The output stage (stage 2) extends
from registers B to C. Fig. 2 depicts the output stage of a router
having four bidirectional ports in a mesh NoC. It consists of a PDN
whose four output lines are connected to the FTLU. Latches (L1,
L2, L3, L4) are placed between each pair of output lines of the
FTLU. In order to facilitate fault tolerance, we adopt the method of
reallocating healthy output ports to flits which are allocated to
faulty ports by the PDN. The proposed architecture enables two
types of displacements of a flit from a faulty to a healthy port: (i) in
an orthogonal direction using FTLU and (ii) in the geometrically
opposite direction using a latch. Either of these two displacements
or a combination of both may be used for reallocation such that all
flits reside in healthy ports of register C at the end of the router
pipeline. The following subsections explain these mechanisms in
detail.

4.1 Permutation deflection network

At the end of the input stage, four flits that are ready for output port
allocation are available in a pipeline register B as shown in Fig. 2.
These are either flits in transit through the router or newly injected
flits from the local processing core. The PDN reads these four flits
and maps them to the four output lines in north, south, east and
west directions using four permuter blocks P1, P2, P3 and P4 as
per the logic used in CHIPPER, respectively [5]. Each permuter
block has two input and two output ports. At each of these blocks,
the flit with higher priority is allotted to an output port of its choice
and the flit with lower priority is allotted to the remaining output
port. In this paper, higher priority is assigned to the flit with lesser
number of hops to its destination.

4.2 Fault-tolerant logic unit

The FTLU consists of two sections which are placed in parallel in
the router pipeline. The upper section consists of two permuter
blocks viz. P5 and P6. P5 connects flits from north and south
output lines of the PDN to east and west output lines of the FTLU.
Similarly, P6 maps flit from east and west outputs of PDN to north
and south outputs of the FTLU. In the lower section of FTLU, two
swapping blocks viz. SWAP1 and SWAP2 are provided. In SWAP1
block, a flit in the faulty north or south port of PDN is swapped
with a flit in the healthy east or west port. Similarly, SWAP2
interchanges flit between faulty east or west ports and healthy
north or south ports. In each router, four fault flags NF, SF, EF and
WF represent the healthiness of the output ports in the north, south,
east and west directions, respectively. The flag bit corresponding to
a faulty output port will be set. Port allocation by the PDN is done
on the basis of computed route of a flit and it does not consider the
fault status of the router's output ports. As a result, some flits may
be assigned to the faulty ports at the output of PDN. The FTLU
reallocates such flits to healthy ports in an orthogonal direction
with respect to the faulty port. In a router with four output ports,
the north and south ports are orthogonal to the east and west ports.
Algorithm 1 (see Fig. 3) describes the steps followed in the FTLU.
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Entry of flits into the FTLU is restricted by multiplexers that are
controlled by fault flags as shown in Fig. 2. If a flit is present at a
faulty output of the PDN, the corresponding fault flag is 1 and this
gates the flit into one of the two sections of the FTLU (line
numbers 4–14 in Algorithm 1).

A flit at a faulty port of the PDN either passes through the
permuter section or the swapping section for port reallocation. The
permuters P5 and P6 in the upper section are activated for port
reallocation only if any one of their output ports are empty (line
numbers 19–24 in Algorithm 1). Four 1 bit flags, NE, SE, EE and
WE represent whether the output ports in north, south, east and
west directions, respectively, are empty or not. To avoid livelock
problem, it is necessary to reallocate a flit to an output port other
than in its input direction. Based on this restriction, a flit may try to
reallocate to an orthogonal port in the FTLU, but the desirable port
maybe occupied by another flit from the PDN. For energy-efficient

reallocation in the FTLU, flits from faulty ports are given higher
priority to occupy fruitful ports. By activating a swapping block,
such flits are swapped with the flits that reside in their productive
ports (line numbers 25 and 26 in Algorithm 1). The flits from the
healthy ports of the PDN are available to the swapping blocks at
registers x1, x2, x3 and x4 and flits from faulty ports are available
at y1, y2, y3 and y4. The individual outputs of the permuter section
and swapping section of the FTLU are merged into four output
lines using demultiplexers. In a fault-free router whose four input–
output ports are healthy, flits from the output of PDN bypass the
FTLU and move to their respective output ports through the
demultiplexers (line numbers 27 and 28 in Algorithm 1).

In a mesh NoC, the routers at the corners and edges have two
and three pairs of input–output ports, respectively. In order to
maintain simplicity, we use homogeneous router architecture
throughout the NoC, i.e. the architectures of the corner and edge

Fig. 2  Output stage of the proposed router architecture
 

Fig. 3  Algorithm 1: FTLU
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routers are similar to that of the central routers. Route computation
of input flits using XY and YX methods is in such a way that the
forbidden output ports of edge and corner routers are not allocated
by the PDN. In the FTLU also, the output ports in the forbidden
directions are treated as faulty by setting the corresponding fault
flag. For example, in the router at the top right corner of the mesh,
north and east output ports are set as faulty (NF = 1, EF = 1).
Similarly, for a router at the left edge of the mesh, the west output
is set as faulty (WF = 1). The total area and power consumed by the
NoC can be reduced by using customised architectures for routers
at the edges and corners.

4.3 Port reallocation using latches

A latch is used to transfer flits from one port to another when it is
enabled. We use the term ‘latch’ to refer to a circuit that performs
this function. Edge triggered flip-flops or level triggered latches
could be suitably used for implementing it in hardware. In the
proposed method, we use a latch to reallocate a flit from a faulty
port to a healthy port in the geometrically opposite direction. In a
router with four input–output ports, the two pairs of geometrically
opposite ports are east and west, north and south. When a flit
deflects to a direction which is geometrically opposite to its
productive port, the distance to its destination increases. Hence,
this kind of port reallocation is done at the final stage of the router
pipeline to reallocate flits that remain in faulty ports at the output
of FTLU. As shown in Fig. 2, latches L1 and L2 are connected
between north and south output lines of the router whereas L3 and
L4 are connected between east and west output lines. As a result of
swapping operation in the FTLU, a flit from a healthy port is
transferred to a faulty port in its orthogonal direction. A latch from
the faulty port is enabled to transfer this flit to a healthy port in the
geometrically opposite direction.

We explain the proposed port reallocation mechanism in routers
with at most three faulty output ports using examples.

Routers with one faulty port: In Fig. 4a, we assume that the
north port of a router is faulty (NF = 1). At the output of PDN, the
north, south and east ports are occupied by flits. The flit from the
north port is directed to the permuter P5 in the FTLU by MUX1.
P5 allocates this flit to the west output port which is vacant (line
numbers 5 and 6 in Algorithm 1). The flits in the south and east
output ports of PDN bypass the FTLU through registers x2 and x3,
respectively, and move to the pipeline register C via demultiplexers
(DeMUX4 and DeMUX1, respectively).

A special case of a router with one faulty port is shown in
Fig. 4b. Here, flits occupy the north (NF = 1), east and west output

ports of PDN and south port is empty. We assume that the flit in the
north port entered the router through the south input port. This flit
is restricted from tracing back through the south port due to reasons
which are explained in Section 4.6. Therefore, east or west ports
are the only suitable locations for reallocating this flit. Assuming
that the north flit prefers the west port which is non-empty, the
swapping circuit (SWAP1) in the FTLU is activated to interchange
flits between north (in register y1) and west ports (in register x3)
(line number 25 in Algorithm 1). After swapping, outputs of the
FTLU are available in registers y1, x3 and x4. The flit in y1 is
joined to the north output line by DeMUX3 and then reallocated to
the healthy south port by enabling latch L1.

Routers with two faulty ports: In Fig. 4c, the north and west
ports of a router are faulty (NF = 1, WF = 1). Here, a maximum of
two flits enter the router through the south and east ports. After
port allocation by the PDN, each flit occupies one among the four
output ports of the PDN. The different situations that may arise are
categorised here.

Case 1: The two flits are at north and south output ports of PDN.
Since the north port is faulty (NF = 1), MUX1 is enabled and the
flit is passed to permuter P5 in the FTLU. As shown in Fig. 4c, P5
reallocates this flit to the east port which is healthy and vacant (EF 
= 0, EE = 1). The flit at the south port bypasses the FTLU through
register x2 and moves to its position in pipeline register C.
Case 2: The two flits are at east and west output lines of PDN.
Here, MUX4 is enabled since fault flag of the west port is high
(WF = 1). The flit passes through MUX4 and the permuter P6 in
the FTLU reallocates it to the south port which is healthy and
vacant.
Case 3: One flit is at the north and the other flit is at west output
line of PDN. Permuter P5 reassigns the north flit to the east port
which is healthy and empty. Similarly, the west flit is reassigned to
the south port through permuter P6. After reallocation, these flits
are moved to the south and east positions in pipeline register C.

Routers with three faulty ports: When three pairs of input–output
ports in a router are faulty, one flit needs to be routed through the
single healthy port. The constraint placed on port reallocation is
overridden in this special case. At the output of PDN, if the flit
occupies a faulty port, it is re-allocated to the single healthy port
either by the FTLU or latches. Fig. 4d shows a router where all
three ports except the west port are faulty. A flit at the north output
of PDN is reassigned to the west port by permuter P5 in the FTLU.

Fig. 4  Reallocation of output ports in routers with
(a) One faulty port (north) using permuter (P5), (b) One faulty port (north) using swap circuit (SW1) and latch (L1), (c) Two faulty ports (north and west), (d) Three faulty ports
(north, south and east)
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4.4 Disconnected routers

When all the four output ports in a router are faulty, no flit enters or
leaves the router and injection of new flits from the local core is
also throttled. Such routers are apparently disconnected from rest
of the network. We propose a scheme to eliminate flits that are
destined to disconnected routers in the network. A flit qualifies for
elimination if it fails in its attempt to enter the destination router
through all the four input ports due to a fault. The flit header is
extended by a four-bit field called Expiry field (EX field). Each bit
in the EX field represents an attempt to reach destination router
through the north, south, east and west ports, respectively. Initially,
the four bits are reset to zero. If a flit reaches a router at one hop
distance from the destination and gets deflected to an unproductive
direction due to a faulty port, the corresponding bit of EX field is
set as 1. When the four bits in EX field of a flit are set, it is ready
for elimination. A functional block called ‘Kill Block’ in each
router examines the EX field of all input flits and erases the
qualified flits from the input buffer. Since Kill block can be placed
as a parallel block in the input stage of the router pipeline, it does
not introduce additional delay in the router's critical path. However,
an extension of flit header by four bits increases the width of flit
channels which increases the dynamic power dissipation across the
links. During simulations, we consider cases of routers having up
to three faulty ports only. So the EX field is not appended to the flit
header while evaluating the proposed fault-tolerant technique.

4.5 Fault loop bit (FLB)

In deflection routing, each flit is routed independently. For this,
every flit contains a few extra bits (called header) that carry its
source and destination addresses. In the proposed method, the flit
header is extended by an additional bit called the fault loop bit
(FLB). Productive output ports of a flit in a router are computed by
referring to the value of FLB in the flit header. The values 0 and 1
for FLB represent the XY and YX route computation methods,
respectively. In the following section, we explain how FLB is
toggled during port reallocation to prevent livelock.

4.6 Livelock problem

In a deflection router, a flit maybe reallocated to an unproductive
port due to a fault in its productive direction. If a single
deterministic method (e.g. XY routing) is used for route
computation in every router, the flit maybe routed back to the same
fault location repeatedly. This results in livelock, a problem which
should be completely eliminated by the routing algorithm. The
proposed technique ensures livelock freedom for mesh NoCs with
all types of fault patterns except those with gateway routers
explained in Section 4.6.2. For this, we impose two constraints
during port reallocation:

i. Disallowing the reallocation of flits to output ports in the same
direction as their input ports.

ii. Adaptive switching between XY and YX routing methods to
change the direction of traversal of the flit after port
reallocation.

The first constraint says that a flit is not allowed to back trace to
its input direction after port reallocation. For example, a flit which
entered the router through the east input port will not be assigned
to the east output port during port reallocation by the FTLU or
latches. Such flits may choose one of the two remaining ports that
are eligible for reallocation. In a router with three faulty ports, a flit
entering through the single healthy port is exempted from this
restriction. Initial route computation of a flit is based on XY
routing, i.e. the default value of FLB is 0. On obtaining a faulty
port at the output of PDN, the flit passes through FTLU or latch for
reallocation to a healthy port. After reallocation, if the flit is
assigned to a port in the horizontal direction (east or west) of the
mesh, its FLB value is set to 1. Accordingly, productive ports for
this flit are computed using YX method in the next router, which
implies that the flit makes a vertical hop to a router in the adjacent
row. FLB of a flit traversing through a port in the vertical direction

(north or south) of the mesh will be reset to 0. Hence, XY method
is used for route computation in the next router, which moves the
flit to a router in the next column. Whenever a flit bypasses the
port reallocation stage in a router, its FLB is reset to the default
value, i.e. 0 irrespective of the port to which it is allocated.

With the example in Fig. 5a, we illustrate how toggling of FLB
and restricting reverse movement of flits guarantees livelock
freedom of flits in a network with multiple faulty links. A flit
which is destined to router(6, 6) starts from router(3, 0) and
initially follows XY routing. At (3, 2), the east output port is faulty.
By port reallocation using FTLU, the flit is reassigned to the south
output port. Since the flit traverses to (4, 2) through the south port
of (3, 2), FLB of flit remains at the value 0. So, next route
computation at (4, 2) is based on XY routing and the flit hops to
router(4, 3) through the east output port. Again, the flit encounters
a fault in the productive east port at router(5, 3). This flit cannot be
reallocated by the FTLU since the south port of (5, 3) is faulty and
the north port is not allowed. So the flit is reallocated to the west
port by a latch and its FLB is set to 1. This implies that route
computation in router(5, 2) is based on YX routing. Port
reallocation for the flit at router(6, 4) is similar to that in router(3,
2). The path followed by the flit up to its destination router(6, 6) is
shown in red line in Fig. 5a.

4.6.1 Proof of livelock freedom: For establishing livelock
freedom of the proposed fault-tolerant routing technique, we
assume that there exists at least one fault-free path between the
current router and destination router of the flit. We prove that a flit
traversing the network from router (x1, y1) reaches its destination
at router (x2, y2) in a finite number of hops given in the following
steps:

Step 1: The flit starts from (x1, y1) in the horizontal direction
(FLB = 0, XY routing) and encounters a fault in the productive port
(east or west) of an intermediate router (x, y).
Step 2: Since reallocation of the flit to its input direction is
forbidden, only ports in the vertical direction (north or south) are
eligible for reallocating the flit. Moving along one of the vertical
ports, the flit reaches a router (x ± 1, y) with FLB = 0 (line numbers
22–24 or 26 in Algorithm 1).
Step 3: In router (x ± 1, y), the flit tries to obtain a port in the
horizontal direction (XY routing). If the desired port is healthy, the
flit succeeds in traversing horizontally. The co-ordinates of the next
router are (x ± 1, y ± 1) which is nearer to (x2, y2) than (x, y) and
FLB = 0.
Step 4: If the desired port in the horizontal direction is faulty, the
flit is again reallocated to the vertical port other than its input (port
reallocation in the orthogonal direction by FTLU). This places the
flit at router (x ± 2, y) with FLB = 0. Again Step 3 or 4 is repeated
till Step 3 succeeds and the flit reaches a router which lies in the
same column as the destination, i.e. y = y2.
Step 5: Now the flit tries to obtain a port in the vertical direction
(north or south). If it encounters a faulty port in an intermediate
router (x, y2), the FTLU reallocates the flit to the east or west port
(in the orthogonal direction) and FLB = 1. The co-ordinates of the
next router are (x, y2 ± 1).
Step 6: The next route for the flit is computed using YX method. If
the north or south port of the router is healthy, the flit traverses
along the vertical direction to the next router (x ± 1, y2 ± 1) and
FLB = 0. Again Step 3 or 4 is repeated till Step 3 succeeds.
Step 7: If the desired port in the vertical direction is faulty, the flit
is reallocated to a horizontal port other than its input (port
reallocation in the orthogonal direction by FTLU). This places the
flit at router (x, y2 ± 2) with FLB = 1. Again Step 6 or 7 is repeated
till Step 6 succeeds and x = x2 and in Step 3, y = y2. Thus the flit
reaches the destination (x2, y2).

In general, if a flit is deviated from its productive path due to a
faulty port, it is again guided towards its productive direction by
adaptive switching between XY and YX routing methods. Since
the flit is not allowed to back trace in its input direction after port
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reallocation, it will progress towards the destination and reach
there in a finite number of hops.

4.6.2 Fault patterns with gateway routers: The livelock
avoidance mechanism using a single additional bit (FLB) in the flit
header works well with fault locations that are spatially distributed
in the mesh network like the one shown in Fig. 5a. However,
certain fault patterns partition the mesh NoC into two or more non-
overlapped regions. A gateway router is a router that acts as a
single common connection point of such regions in the NoC. A flit
from one region can reach its destination in another region only by
traversing through the gateway router. Figs. 5b–d depict fault
patterns that divide the network into two regions, R1 and R2 which
are connected through a gateway router, G (shown as a red square).
In Fig. 5b, a flit from router(5, 5) which is at a two-hop distance
from its destination router(5,3) has to be routed through the
gateway router(3, 7) due to the fault pattern. In router(4,7), a flit
may roam around in an endless loop (shown as a blue line) due to
its southward path which does not connect to its destination.
Fig. 5c shows how a flit moving south towards destination gets
stuck in an infinite loop in region R2 as it cannot trace back
through the gateway router to region R1. In Fig. 5d, region R2 is
surrounded by region R1 due to the complex fault pattern. To
ensure livelock freedom in such cases, additional bits are required
in the flit header to trace back from one region to the gateway
router so that a flit can reach its destination located in another
region. Our random fault generator shows that at 30% fault rate,
the probability of formation of fault patterns consisting of a
gateway router is only 0.000001. Considering the overhead
incurred, the proposed method does not implement livelock safety
measures for such fault patterns.

5 Experimental method
We evaluate our proposed technique by comparing various
performance parameters with FaFNoC and Maze routing methods
explained in Section 2. Experiments are conducted in three phases,
i.e. simulations, dynamic power analysis and hardware synthesis.

5.1 Simulation framework

We model FaFNoC, Maze routing and our proposed router
architecture using a flit level, cycle accurate simulator, Booksim
[28]. Booksim is an open source NoC simulator which models the
conventional virtual channel router with two cycle latency. We
modify its router pipeline to accurately model the PDN-based
deflection routing mechanism and FTLU as mentioned in Section
4. All simulations are done for 8 × 8 mesh NoC. Faults are
modelled by disabling a fixed number of bidirectional links in the
NoC as mentioned in Section 3. Fault rate is the percentage of
faulty links out of the total links in the mesh network. For an 8 × 8
mesh NoC, there are a total of 112 links and a fault rate of 10%
denotes that ports corresponding to 11 links are disabled. In our
fault model, the disabling of ports does not represent link faults
alone. We consider the fact that whenever there is a failure in a
datapath element inside a router, it is extrapolated to one of the
router's input–output ports. This port is treated as faulty by setting
the corresponding fault flag. In order to get a fair comparison, we
choose the faulty links by a random selection process. However,
we do not consider fault patterns which lead to disconnected
routers or gateway routers in the network.

The performance of the NoC is evaluated using various
synthetic traffic profiles. Traffic is generated by the processor cores
at the rate of 0.1 flits/cycle/core for all simulations. In a fault-free
NoC, flit injection rate is approximately equal to its generation
rate. As the fault rate in the network rises to 30%, there is a
proportionate decrease in the number of fault-free channels in the
router. As a result, flits must wait in the processor's core buffer for
a longer time before getting injected into the network through
vacant channels. Hence, flit injection rate becomes lesser than the
generation rate. A set of 20 simulations are conducted for a
particular fault rate by random choosing of faulty channels.
Average throughput and average hop count are computed from
each set of three distinct fault rates for plotting graphs. Simulations
are also conducted using real application traces. Combinations of
various low, medium and high MPKI applications from SPEC CPU
2006 benchmark suite [29] are run on a multi-core platform,
Multi2Sim [30]. The application mixes (M1–M6) and the %MPKI
in each mix are given in Table 1. The network packets generated by

Fig. 5  Complex fault patterns
(a) Livelock free routing in an 8 × 8 mesh with multiple faults in spatially distributed locations, (b)–(d) Fault pattern dividing the network into two regions R1 and R2 connected to a
gateway router, G
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these benchmark mixes are injected into the booksim model and
network parameters are analysed.

6 Analysis of network level parameters
6.1 Average throughput, hop count and latency for synthetic
traffic patterns

The throughput of a network is the number of flits delivered
successfully per cycle per core and has a maximum value of 1. Hop
count is the total number of productive hops and deflections of a
flit from source to destination. Fig. 6 shows the average throughput
for varying fault rates under uniform, transpose, bit complement
and shuffle traffic patterns for the three fault-tolerant routing
mechanisms. For a fault-free NoC, it is seen that the throughput
value is equal to the network injection rate (which is taken as 0.1
flits/cycle/core). For higher fault rates, the flit injection rate
reduces due to congestion in the network. Since deflection routers
do not buffer any of the flits in transit, the throughput under
various fault rates also decreases in accordance with the injection
rate. Fig. 6 shows that our method meets higher performance for all
synthetic traffic patterns compared to the other two. At 30% fault

rate, it delivers 38 and 13% higher throughput than FaFNoC and
Maze routing, respectively, for uniform traffic. Our method
efficiently utilises the FTLU along with an adaptive route
computation technique to route flits through the shortest fault-free
path. In Maze routing, flits encountering faulty ports are reassigned
to ports in random directions. Due to this, a large number of flits
traverse through longer paths even when shorter paths exist. This
increases the hop count and latency for higher fault rates. Even
though FaFNoC switches between XY and YX routing to avoid
congestion, the lack of adequate structural connectivity at the PDN
results in increased deflections and latency. Hence average hop
count is found to be the highest in FaFNoC compared to Maze
routing and our method as shown in Fig. 7. It also shows the lowest
throughput values for all fault rates. At uniform traffic conditions
and 30% fault rate, hop count for our method is <9% compared to
Maze routing and 16% compared to FaFNoC. 

The latency of a flit is the total number of cycles it takes to
traverse from its source to destination. In Fig. 8a, average flit
latency for an 8 × 8 mesh NoC is shown as a function of flit
injection rate for uniform traffic for various fault rates. For all the
three methods, we observe that the network tends to saturate early

Table 1 Percentage of applications of various network injection intensity in benchmark mixes M1–M6
Benchmark mix M1 M2 M3 M4 M5 M6
% of low MPKI 100 0 0 50 0 50
% of medium MPKI 0 100 0 0 50 50
% of high MPKI 0 0 100 50 50 0

 

Fig. 6  Average throughput versus fault rate under various synthetic traffic patterns in 8 × 8 mesh network
 

Fig. 7  Average hop count versus fault rate under various synthetic traffic patterns in 8 × 8 mesh network
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with increasing fault rate. The proposed method shows 3.8 and
8.7% improvement in network saturation point with respect to
Maze routing for 10 and 30% fault rates, respectively. At 30% fault
rates and injection rate of 0.1, Maze routing and FaFNoC show a
sharp rise in average latency and both networks saturate. From the
graph, it is observed that our routing technique is capable of
tolerating higher fault rates with a gradual increase in latency for
injection rates above 0.1. 

6.2 Average latency and deflection for real applications

Figs. 8b and c show the graphs of average latency and deflections
obtained for benchmark application mixes (M1–M6) for a fault rate
of 10% on flit channels. For real applications, the injection rates
are much lower than that chosen for synthetic traffic simulation.
For a faulty NoC, at very low injection rates, there is lesser
congestion in the network and more than one productive ports may
be eligible for reallocation. The merit of our algorithm lies in its
capability to reallocate ports that result in shortest possible distance
to the flit's destination. We get an average of 37 and 33% lower
latency for our proposed method across all mixes compared to
FaFNoC and Maze routing, respectively. Using our technique, the
majority of the flit hops are productive; hence deflection rates are
considerably lower for all benchmark mixes as seen from the
figure.

6.3 Dynamic link power estimation

Increase in the flit deflection rate leads to increased activity and
dynamic power dissipation across the inter-router links. Hence
power efficiency of such NoCs is proportional to the link activity
factor (LAF) which is derived from the average hop count of flits
through these channels during simulations. LAF is a measure of the
number of packets per cycle per link and is calculated using the
formula

LAF = (h ∗ n)
(c ∗ k)

where h is the average hop count (sum of hop count of all
packets/n); n is the total number of packets injected into the
network throughout the simulation at the rate of 0.1 per cycle per
core; c is the total number of simulation cycles (taken as 100,000);
k is the total number of links (112 for 8 × 8 mesh).

Orion 3.0 tool [31] is used to estimate the dynamic power
dissipated at the inter-router links. For all the three fault-tolerant
routing techniques, the values of LAF corresponding to various
hop count values at various fault rates are computed using the

above formula. The number of active links in the network
decreases with increasing fault rate. Since we calculate LAF as an
average value across all links in the mesh, the total number of links
is taken as k (irrespective of the number of active links). The
calculated value of LAF is given as the input load rate in Orion to
determine the dynamic power. We assume the link length to be 2.5 
μm and a baseline flit width of 128 bits. For 8 × 8 networks,
FaFNoC and Maze routing extend the flit header by 12 and 14 bits,
respectively, whereas our method uses only one additional bit for
FLB.

In Fig. 9, we plot the link power (in mW) obtained from Orion
against varying fault rates for four synthetic traffic functions. From
the graph of uniform traffic function, dynamic power due to our
method is 20% lower than FaFNoC at 30% fault rate. FaFNoC
consumes the highest energy among the three methods. The reason
for the energy efficiency of our technique is the reduction in hop
count by efficient fault-tolerant routing. 

6.4 Hardware synthesis

We implement Verilog models of the three-router architecture and
synthesise using Synopsys design compiler with 65 nm CMOS
library. The values of router pipeline latency, static power, and area
obtained for the three architectures normalised with respect to the
conventional CHIPPER architecture are shown in Table 2. Router
delay is the time taken by a flit to move from its input to the output
port through various functional units. This can be divided into two
stages. The first stage of the three routers has similar functional
units, hence all of them have the same delay for the first stage. The
second stage consists of the PDN and fault-tolerance mechanisms.
The critical path length inside each router and operating frequency
of the network are determined by the complexity of the fault-
tolerant logic. The output stage of CHIPPER does not include any
fault-tolerant logic, so its delay is taken as 1. The FTLU in our
proposed router increases the delay of the second stage by 26%
when compared with CHIPPER. Area and static power consumed
by the control logic of our router are 40 and 35% higher than
CHIPPER, respectively. Maze routing incurs the least area and
power among the three architectures as it uses fewer functional
units for fault tolerance. Even though NoCs using our newly
proposed router operate at a lesser frequency compared to the other
two methods, a significant reduction in dynamic power dissipation
at the inter-router links is achieved by our energy-efficient fault-
tolerant routing mechanism. In an 8 × 8 mesh NoC, both FaFNoC
and Maze routing require 8–10% wider channels to accommodate
the extended flit headers [11, 12]. The channel width increases with
growing network size, resulting in a larger area for the router's
datapath and inter-router links. Our router is advantageous in this

Fig. 8  Simulation results of
(a) Average latency versus injection rate under various fault rates for uniform traffic in 8 × 8 mesh network, (b) Average latency and (c) Deflection for 10% fault rate under various
mixes from SPEC CPU 2006 benchmark applications in 8 × 8 mesh network
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aspect, since our flit header uses only one additional bit for FLB
irrespective of the network size. 

7 Conclusions
In this paper, we analysed the existing state-of-the-art fault-
tolerance mechanism adopted in deflection router-based mesh
NoCs. We propose a novel fault-tolerance technique to improve the
performance and energy efficiency of NoCs at high fault rates. Our
technique consists of an FTLU at the output stage of deflection
routers which reallocates flits from faulty ports to healthy output
ports. We also use adaptive switching between XY and YX routing
algorithms to avoid livelock and route flits to the destination
through the shortest available path. This method offers the
advantage of simple design and smaller link area compared to
similar methods proposed recently. We experimentally show that
our method brings about a substantial reduction in flit hop count
and dynamic link power consumption of NoC compared to the
earlier methods.
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