
FlitZip: Effective Packet Compression for NoC in
MultiProcessor System-on-Chip

Dipika Deb , Rohith M.K., and John Jose

Abstract—Applications running on Network on Chip (NoC) based multicore systems demand increased on-chip network bandwidth

that can cater to the need for intensive communication among the cores and caches. Due to strict area and power budget, the

bandwidth offered by NoC is very limited. Data-intensive and communication-centric applications on encountering a cache miss lead to

a considerable burden on the underlying network for transferring blocks from multiple cache hierarchies to the requesting core as

packets. This increases the packet transmission latency, thereby slowing down the system performance. Also, NoC being the highest

component of power consumption after the cores, an increase in packets increases the dynamic power consumption of NoC. The

article proposes FlitZip that addresses the problem by reducing on-chip traffic through compressing network packets. Hence, the

compressed packet requires less bandwidth during its transfer, reducing the network’s power consumption. Experimental analysis

shows that FlitZip achieves a better compression ratio of 52 percent, reduces packet latency and bandwidth utilization by 19.28 and 27

percent, respectively. It also reduces the area and power consumption of the de/compression units by 53.33 and 62.3 percent,

respectively, compared to the state-of-the-art packet compression technique, NoD.

Index Terms—Network on chip, packet, delta compression, multicore processor, router

Ç

1 INTRODUCTION

WITH the increase in transistor count, MultiProcessor
System-on-Chip (MPSoC) provides higher perfor-

mance than a uniprocessor system [1]. In MPSoCs, Network
on Chip (NoC) provides a scalable interconnect as com-
pared to the traditional bus-based interconnect [2]. How-
ever, network bandwidth and power consumed by NoC [3],
[4], [5], [6] have become a major concern in designing
MPSoCs as NoC accounts for around 28 percent of tile-
power in Intel Teraflop chip [4] and 36 percent in MIT RAW
chip [3]. Hence along with the application’s performance,
the power consumed by NoC to route request (cache miss)
and reply (cache block) packets can no longer be left as a
secondary metric for designing a high-performance system.
Packet compression [7], [8], [9], [10], [11], [12] provides an
alternative to reduce network power by exploiting data
redundancy within NoC packets, thereby shrinking its size.
Reduction in packet size reduces a) network traffic, b) wast-
age of link bandwidth, and c) dynamic power consumption
in NoC.

Packet compression can be lossless [7], [8], [9], [9], [10],
[11], [12] or lossy [13], [14], [15], [16]. Lossy technique aims
to attain a higher compression ratio without the need for

exactness. Thus, packets before compression and packets
after decompression may not be the same. Such techniques
are generally faster than lossless techniques and are used in
error-tolerant applications like image processing, voice rec-
ognition, etc. On the other hand, the lossless technique aims
for exactness. Such techniques are used for applications
where data loss may change the application execution path.
Thus, packets received after decompression are the same as
that of the original packet.

Though packet compression is beneficial for enhanced
NoC performance, the overhead and latency of compressor
and decompressor units add to the average memory access
time. This demands for a simple and lightweight compres-
sion technique like delta compression [7], [17], [18], [19], [20].
Delta compression is used due to its simplicity, less hard-
ware overhead, power efficiency, and lower de/compres-
sion latency. It uses the fact that the relative deviation
between data values in a cache block varies a little. Hence, a
part of the cache block (X bytes) can be represented as a com-
mon base of P bytes and rest of the block is represented as an
array of differences: {D1, D2, D3, ..., Dn} where n ¼ X=P , from
the base. It has been applied on caches [18], [21], [22], [23],
[24], NoC packets [7], [11] andDRAM [19], [20], [25].

Compression for cache and DRAM increases the space
utility, while packet compression in NoC reduces band-
width utilization, network congestion, and dynamic power
consumption. However, cache and DRAM block compres-
sion come with extra overhead for space management dur-
ing block writes and replacements. Also, a compressed
block must be decompressed for every access, thereby add-
ing extra latency for each access. In NoC, packet compres-
sion is applied on end-to-end, i.e., at Network Interface (NI)
only. Caches and DRAM are unaware of any underlying
packet compression and functions as a conventional system.

� Dipika Deb and John Jose are with the Department of Computer Science
and Engineering, Indian Institute of Technology Guwahati, Guwahati,
Assam 781039, India. E-mail: {d.dipika, john.jose}@iitg.ac.in.

� Rohith M.K. is with the Department of Electronics and Communication
Engineering, R. V. College of Engineering, Bangalore 560059, India.
E-mail: rohithmk97@gmail.com.

Manuscript received 28 May 2020; revised 31 May 2021; accepted 7 June 2021.
Date of publication 17 June 2021; date of current version 2 July 2021.
(Corresponding author: Dipika Deb.)
Recommended for acceptance by R. Ge.
Digital Object Identifier no. 10.1109/TPDS.2021.3090315

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 1, JANUARY 2022 117

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on February 25,2022 at 11:13:47 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0832-9615
https://orcid.org/0000-0002-0832-9615
https://orcid.org/0000-0002-0832-9615
https://orcid.org/0000-0002-0832-9615
https://orcid.org/0000-0002-0832-9615
https://orcid.org/0000-0002-0314-8778
https://orcid.org/0000-0002-0314-8778
https://orcid.org/0000-0002-0314-8778
https://orcid.org/0000-0002-0314-8778
https://orcid.org/0000-0002-0314-8778
mailto:d.dipika@iitg.ac.in
mailto:john.jose@iitg.ac.in
mailto:rohithmk97@gmail.com

Very few works have explored NoC packet compression [8],
[9], [10] out of which only NoD [7] and DISCO [11], [12] uses
delta compression on NoC packets.

Fig. 1 shows eleven combinations of de/compressor
modules used in existing delta compression in NoC [7],
[11], [12]: B16D8, B16D4, B16D2, B16D1, B8D4; . . . , B4D1. The
term BxDy means that the packet is compressed with a base
of size x bytes and Di of y bytes. Since a 64 byte packet can
be represented as four 16 byte chunks or eight 8 byte chunks
or sixteen 4 byte chunks, the base in these cases are of size 16
bytes (B16), 8 bytes (B8) and 4 bytes (B4), respectively. For a
particular base say B8, the size of D can be represented using
1 byte (B8D1), 2 bytes (B8D2) or 4 bytes (B8D4).

We study the existing delta packet compression techni-
ques [7], [11] in general and uncover a few of its limitations
here. 1) The size of base (4 � B � 16) and D (1 � D � 8) are
always represented in bytes. Hence, existing techniques can
never compress a packet with a smaller base (< 4 bytes) or
D (< 1 byte). Consider a 64 byte packet with data consisting
of repeated 0xFF values. The compressed packet would
contain a base and Di is 0, which is minimally represented
in a byte. But 0 can be represented in less than a byte, which
is not possible in the existing techniques. 2) The de/com-
pressor units are bulky and are not area and power efficient.
3) The metadata of a compressed packet is represented
using an encoding table containing all combinations of (B,
D), encoding bits and priority bits. The size of the table is
250 bytes.1 4) The base of the compressed packet is
appended in the body flits. Hence if B16 is used for com-
pression, the minimum packet size is 16 bytes plus Ds. 5)
Also, only the encoding scheme of a compressed packet is
stored in the head flit. But a head flit has around 50 percent
unused bits as shown in Fig. 3. Thus, the remaining bits are
underutilized.

The paper proposes a novel and lightweight lossless
packet compression technique, FlitZip, that compresses
packets at flit-level granularity. It exploits the fact that pack-
ets across a wider range may not show any data pattern,
thereby making it incompressible. However, if the same
packet is divided into smaller parts and the data pattern is
individually observed, each part may be compressible at dif-
ferent compression ratios. Thus, the same packet may
become compressible part-wise. FlitZip views each flit as a
set of one byte chunks where each chunk are compressed in
a compact form as a difference (di) from an optimal base. The
base and encoding of a compressed packet are stored in the
head flit’s unused portion, which helps achieve a higher
compression ratio. Unlike existing delta compression techni-
ques [7], [11], [12], FlitZip is made power and area efficient

by using a single de/compressor of fixed base size of one
byte, thereby avoidingmultiple de/compressormodules.

The key contributions of the paper are as follows.

(1) We propose FlitZip that identifies data patterns
within a flit and compresses each packet on a per-flit
basis, thereby achieving a higher compression ratio.

(2) By using a constant base of size 1 byte (B1), FlitZip
significantly reduces the size of the subtractor units
and avoids multiple de/compression modules for
different base sizes. The hardware optimization pro-
vides significant savings in area and power.

(3) FlitZip utilizes the unused portion of the head flit to
store the compressed packet’s metadata.

(4) We perform extensive experiments with 397 work-
loads from multithreaded (PARSEC 3.0 [26]) and
multiprogrammed (SPEC CPU2006 [27]) bench-
marks to validate our claims.

Experimentally we have found that in 8x8 NoC, FlitZip
achieves an average packet compression ratio of 0.52,
reduces packet transmission latency by 19.28 percent, and
increases weighted speedup by 12 percent as compared to
the baseline (without any compression). The rest of the
paper is organized as follows. The literature survey related
to NoC packet compression is discussed in the next section.
The motivation behind this work is presented in Section 3.
Section 4 presents the proposed technique, FlitZip followed
by experimental analysis in Section 5. Section 6 presents the
hardware aspect of FlitZip and we finally conclude the
paper in Section 7.

2 BACKGROUND AND RELATED WORK

Architecture Used: Fig. 2a shows a 16-core NoC based MPSoC
where the cores are organized as tiles, and each tile consists
of an OoO core, a private L1 cache, and a part of shared
(inclusive) L2 (L2 is used as the Last Level Cache) cache
called as a bank. A cache block is statically mapped to a
bank called the block’s home-bank based on its bank-index
bits [28], [29], [30], [31], [32]. Each tile is connected to NoC
which is arranged as 2D mesh topology using Network
Interface (NI). NI consists of an inject and eject queue that is
used to transfer cache blocks to and from the processor. A
miss in L1 cache generates a request packet destined to the
home-bank of the block. It travels through the underlying
NoC and the home-bank forwards cache block (reply
packet) to the requesting core.

A NoC consists of routers and links, and the request,
reply packets constitute NoC traffic. A request packet is rep-
resented using one head flit, and reply packets are further
divided into multiple flits as head, body, and tail; with each

Fig. 1. Compressor unit in existing delta compression in NoC.
Fig. 2. (a) A 16-core NoC based MPSoC organized as 4x4 2D Mesh.
(b) Router architecture. P: Processor/Core; NI: Network Interface.

1. Encoding table stores base (max 16 bytes), D (max 8 bytes), encod-
ing (4bits) and priority (4bits) at each tile.

118 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 1, JANUARY 2022

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on February 25,2022 at 11:13:47 UTC from IEEE Xplore. Restrictions apply.

flit equivalent to the link bandwidth. The packet’s control
information is contained in the head flit, and the cache block
contents in the body flit and tail flit. Fig. 2b shows the router
architecture that consists of input port buffers known as Vir-
tual Channels (VC) [33], [34], Route Computation (RC) unit,
VC allocator (VA), and Switch allocator (SA). RC deter-
mines the output port that a packet takes in the current
router to reach its destination. VA determines the VC num-
ber in the downstream router. SA resolves port contention
and assigns output port through which flits travel out of a
router and link carries flit from one router to another.

Related Work: J. Zhan et al. [7] proposed NoD that uses
delta compression and has multiple de/compression mod-
ules that execute all combinations of (Base, D) to achieve a
better packet compression ratio. USBR[9] primarily aims at
datasets whose variance is low such that the significant bit
changes less frequently and hence becomes a use case to
reduce network packets. Das et al. [8] proposed ZeroCompr
that reduces packet size by encoding consecutive zeroes in
the head flit. Frequent Pattern Compression (FPC) [10] uses
an encoding table to compress an incoming packet against
the patterns stored in the table. The table contains eight fre-
quently occurring patterns and it is shared among all the
NIs. Wang et al. proposed DISCO router [11], [12], where an
incoming packet is selectively compressed at the routers
using delta compression [7], [18]. The selection criteria are
based on the packet idle time stored in the internal buffers
of a router. The selected packets then undergo compression
using delta compression (BDI or NoD) or FPC.

Boyapati et al. introduced a lossy compression, Approx-
NoC [13] that approximates frequently occurring data values
to reduce the network load for error-tolerant applications.
Chen et al. [14] also proposed an approximate communication
framework that reduces packet size by approximating data
values within network packets. Raparti et al. proposed DAP-
PER [35] that uses approximate-computing for GPUGPU
architectures. It trades-off computation accuracy for energy
savings and uses an overlay circuit prepared dynamically
betweenMemory Controllers (MCs) for a timewindow. Chen
et al. proposed DEC-NoC [16] that considers that the NoC is
prone to error. Hence, packets are retransmitted to mitigate

the errors. To reduce power consumption, the author reduces
the amount of error correction and checking during packet
transmission. However, FlitZip considers that the NoC is
error-free and requires no retransmission of packets.

3 MOTIVATION

We analyse delta compression in NoC [7], [11], [12] and
have three motivational observations for proposing FlitZip.

1. Unused Bits in the Head Flit: Since each flit is equal to the
link bandwidth, the head flit contains control information
required by the home-bank to fetch data blocks during a
cache miss. The fields are packet number (ID), source tile
(Src) that generates the cache miss, destination tile (Dest):
the home-bank of the block, flit type (FT): head/body/tail,
VC number where the incoming flit is stored, Message Type
(MT): REQ/REP/coherence packets and missed block
address (MEM-ADDR). Hence, few bits from the head flit
remain unused. Fig. 3 shows the structure of a head flit in a
64 core NoC framework with 128-bits link bandwidth. The
system uses 4GB main memory with a packet size of 64B.

Out of the total 128 bits in the head flit, 75 bits from the
LSB is unused (unused bits in the head flit changes if any of
the fields increases or decreases). NoD uses only 4 bits from
the unused portion to store the encoding information of a
compressed packet, and the remaining unused portion is
not utilized. Using the unused portion efficiently to store
more metadata information (apart from the encoding) may
help achieve a better compression ratio than NoD. This
serves as the first motivation in proposing FlitZip.

2. Simultaneous (Parallel) Computation in Existing Delta
Compression Techniques is Costly: As shown in Fig. 1, existing
delta compression techniques [7], [11], [12], [18] has differ-
ent compressor modules. All these modules are executed
simultaneously on an incoming packet to determine
whether a packet is compressible or not. Fig. 4 shows a rep-
resentative example of simultaneous computation in B8D4
and B4D1 modules. We assume the packet size as 16 bytes,
and each flit is of 4 bytes. From the figure, we can observe
that only the last 4 bits from the LSB differ in each flit. As
shown in Fig. 4(i), in B8D4 module, the base is B8 and the

Fig. 3. Content of Head flit for 8x8 NoC framework with link bandwidth of 128 bits, packet size of 64B and main memory size of 4GB.

Fig. 4. Representative example showing simultaneous execution in compression modules B8D4 and B4D1 in existing delta compression techniques.

DEB ET AL.: FLITZIP: EFFECTIVE PACKET COMPRESSION FOR NOC IN MULTIPROCESSOR SYSTEM-ON-CHIP 119

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on February 25,2022 at 11:13:47 UTC from IEEE Xplore. Restrictions apply.

packet is divided into chunks of 8 bytes, i.e., C1 and C2.
Since NoD uses the first chunk (C1) as base, Di is calculated
by subtracting each chunk from the base: D1 is 0 and D2 is
200000002. Hence, with B8D4, the compressed packet size
does not reduce the level to save a flit as D2 cannot be repre-
sented in 4 bytes, making the packet incompressible. Simi-
larly, computation for B4D1 is shown in Fig. 4(ii). Out of all
combinations of (B, D), the packet is compressible only with
B4D1with two flits saving.

Though simultaneous computation may help to achieve
the best compression ratio, multiple modules that include
several subtractors, buffers, etc., are a challenge for the area
and energy-efficient design. To calculate Di, the bit-width of
the subtractors in the de/compressor units are equal to the
base size (in bytes), which varies between 16 bytes to 4 bytes
and the number of such module is equal to n where n ¼
Block size
Base size . This serves as the second motivation in proposing
a lightweight de/compression modules in FlitZip.

3. Existing Delta Compressions Cannot Reduce Redundancy
in Packets Effectively: As the size of (B, D) is in bytes, it enfor-
ces to represent even the smallest value for D in a byte.
Moreover, the first chunk of a packet is used as a base for
compression. Hence, if the first chunk varies widely from
rest of the chunks, existing delta compression techniques
cannot compress the packet. We call this as intra-packet data
pattern. This restricts packet compression as explained
using Fig. 5. If the base used is either B8 (0x80818283A
47642BB) or B4 (0x80818283), the packet is incompressible.
Hence, the packet is incompressible using any combination
of (B, D).

3.1 Need for a New Compression Technique

In Fig. 5, we can observe that data within flit 1, flit 3, and flit
4 shows low deviations. Hence, if the content of each flit is
divided as 1 byte chunks, the variations among the chunks
are very less. The chunks of flit 1 (80, 81, 82, 83) differs by 2
bits only while the chunks of flit 3 (FF , FF , FF , FF) and flit
4 (00, 00, 00, 00) are all the same. On the other hand, the
chunks of flit 2 (A4, 76, 42, BB) differ by 8 bits. Since exist-
ing technique searches for intra-packet data patterns,
despite having such regular patterns within the flits, the
packet is incompressible. This serves as the third motivation
behind proposing FlitZip, where data patterns are observed

within each flit separately. We call it as intra-flit data
patterns.

Fig. 6 shows the intra-flit data pattern (marked with dif-
ferent colors) in PARSEC [26] and SPEC CPU2006 [27]
benchmarks. 100 percent Comp (blue) indicates that the
data within a flit is the same. High Comp (grey), Medium
Comp (yellow) and Low Comp (green) indicate that the
intra-flit differences (di) can be represented using
1 � di � 2 bits, 3 � di � 4 bits, and 5 � di � 6 bits, respec-
tively. Uncompressed (red) are those flits whose intra-flit
difference varies widely (di � 7). Hence, the lesser bits
required to represent di, higher is the compression ratio.
From the figure, we can observe that 21 percent flits are
uncompressible and 52.2 percent of the flits has same value.
Also, 3.2, 4.36 and 5.05 percent of the flits fall in the category
of High, Medium, and Low Comp, respectively. Fig. 7
shows the intra-packet data pattern observed for different
bases in NoD for PARSEC and SPEC 2006. From the figure,
we can observe that 57.22 percent of the flits are not com-
pressible while 10.43, 21.09 and 6.28 percent of the packets
are compressible with B4, B8 and B16, respectively. Among
these packets, only 4.98 percent of them contain only zeroes,
which are compressed by the Zero module. It is also used
by ZeroCompr [8] for packet compression.

Rationale: Fig. 6 shows the relevance and suitability of
compression in flit level granularity as compared to the
existing techniques. Thus, in the existing delta compression
techniques, there may arise fewer intra-packet data pat-
terns, making it incompressible. However, the same packet
may have intra-flit data patterns which is exploitted by Flit-
Zip for packet compression.

4 PROPOSED TECHNIQUE: FLITZIP

Fig. 8 shows an abstract view of each tile when FlitZip is
incorporated. Unlike state-of-the-art techniques [7], [11],

Fig. 5. Example showing delta compression is unable to compress.

Fig. 6. Data patterns observed within each flits (intra-flit patterns) that becomes the use case for FlitZip in PARSEC and SPEC CPU 2006 bench-
mark. Each flit is divided into 1 byte chunks and the data among the chunks are used to determine the compressibility rates.

Fig. 7. Data patterns observed within packets (intra-packet patterns) that
is used by existing techniques [7], [11], [12] for packet compression.
B4Dx, B8Dy and B16Dz are used where x=1/2, y=1/2/4; z=1/2/4/8.

120 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 1, JANUARY 2022

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on February 25,2022 at 11:13:47 UTC from IEEE Xplore. Restrictions apply.

[12], only a single compressor and decompressor module is
added in the NI of each tile. As shown in the figure, when-
ever a packet is buffered in the eject queue, FlitZip searches
for intra-flit data patterns. Upon finding a pattern, each flit is
represented as a set of differences, di from an optimal base,
B. If the size of di is less than a byte, the flit is compressible.
Thus, the proposed technique performs flit wise compres-
sion, as the name suggests FlitZip. To indicate whether a flit
is compressed or not, a three bit encoding, E is used. In Fli-
Zip, only the di’s of each flit is copied to the compressed
packet, and for an uncompressed flit, the original flit content
is added together to constitute the compressed packet. The
base and encoding of each flit forms the metadata that is
used by the decompressor to regenerate the original packet.
To achieve a highly compressed packet, the metadata of
each flit is stored in the head flit’s unused portion. Hence, if
the compressed packet consists of fewer flits than the origi-
nal packet, FlitZip compresses it. Since packets are trans-
ferred on a flit-by-flit basis, a compressed packet is flitisized
conventionally before injecting into the network.

Similarly, whenever a packet is ejected out of the net-
work and stored in the inject queue, the head flit is investi-
gated. From the head flit, the metadata of each flit is
retrieved. For compressed flits, the base is added with the
differences to regenerate the original flit which are reorgan-
ized to form the original packet. To the best of our knowl-
edge, this is the first work that focuses on packet
compression within flit level granularity. Throughout the
paper, FlitZip uses di to represent intra-flit differences,
while the existing delta compression techniques use D to
represent the differences. Sections 4.1 and 4.2 explains the
compression and decompression of FlitZip in details.

4.1 Compressor

Fig. 9 shows the compressor module in FlitZip. Initially, the
compressor statically determines the original flit bound-
aries, which are multiples of the link bandwidth. Each flit is
then divided into 1 byte chunks (C1 . . . Cn) and the Base is
calculated as an average of the smallest (Csmall) and largest
(Clarge) chunk value. This is because the largest and smallest
value bounds the chunks. Hence, the range of data values
within a flit is determined with a priority encoder that takes
Csmall and Clarge as input and outputs the encoding bits
(001-111). Section 4.3 explains the encoding in details.

If the largest and smallest chunk is the same, it indicates
that the intra-flit data pattern is the same and thus 100 per-
cent compressible (encoding ¼ 000). For other cases, differ-
ences (di) are calculated by subtracting the Base from each
chunk. If di can be represented with a maximum of 6 bits,
the flit is compressible. This is determined using Equa-
tion (1); otherwise, the flit is uncompressible. A total of n
subtractors are used for this purpose that takes the chunks
and either Base or 0 as inputs to calculate the differences, di

ðdi ¼ Base� CÞ. Since di can be either positive or negative,
an extra bit is used to indicate the sign as shown in Equa-
tion (2). When compression is possible (encoding ¼ 001 to
110), one of the inputs to the subtractors (SB1, . . . , SBn) is
always the Base. However, when compression is not possi-
ble (encoding = 111), the multiplexer sends all zeroes
instead of the Base. This is done such that the chunks
remain the same for an uncompressed flit. To select either
Base or 0, the select line of MUX is determined using the
output of the priority encoder. The signal is high when the
priority encoder output is within 001 to 110 and for output
111, the signal is low. A small combinational circuit (shown
as a blue rectangle near the MUX) is used to convert the
encoder output into a select line.

maxdi ¼ maxfjdi1j; jdi2j; . . .; jdinjg;n ¼ flit size

1byte
: (1)

sizeofðmaxdiÞ ¼ dlog
2
ðmaxdiÞe þ 1: (2)

ComPS ¼ Chunks� fðmaxðjdi1jÞ þ 1Þ þ . . .þ
ðmaxðjdiF jÞ þ 1Þg;

F ¼ number of flits;Chunks ¼ n:

(3)

Also, to represent di in a minimum number of bits, a Bit-
Stripmodule is used that strips off the extra bits from each of
the di’s. Therefore, the priority encoder output is also
required to enable or disable the Bit-Strip module. It is
enabledwhen the signal is high (001-110) and disabledwhen
it is low (111). When the module is disabled, no bits are
stripped from the chunks, thereby avoiding flit compression.
The compressor finally outputs a Base, Encoding bits, and an
array of differences, di’s for a compressed flit and original

Fig. 8. Abstract view of the compressor and decompressor in a tile.

Fig. 9. Internal structure of compressor in FlitZip [A cache block consists
of m number of flits and each flit is of size n bytes.]

DEB ET AL.: FLITZIP: EFFECTIVE PACKET COMPRESSION FOR NOC IN MULTIPROCESSOR SYSTEM-ON-CHIP 121

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on February 25,2022 at 11:13:47 UTC from IEEE Xplore. Restrictions apply.

data values for an uncompressed flit. Equation (3) deter-
mines the size of a compressed packet (ComPS).

4.2 Decompression

Fig. 10 shows the decompressor that consists of a MUX and
n-subtractors. Since the head flit reaches the destination first,
the decompressor decodes the metadata. The base and
encoding of each flit are extracted to determine the flit
boundaries. Using Equation (4), the boundary of each flit is
obtained in the compressed packet. Flits with encoding 000
are regenerated by copying the base by the number of
chunks. For other cases, the module takes di1, . . . , din from
the incoming flit and the MUX sends either base (for encod-
ing 001 to 110) or 0’s (for encoding 111, the flits are uncom-
pressed) as inputs. Hence, the select line of the MUX is
determined from the encoding bits. The size of each di is
obtained from the encoding bits and is sign-extended to 1
byte values. Example: For a flit of size 4B (Chunks ¼ 4), if flit
1 has an encoding of 011, each di is of 3 bits. Thus, flit 1 con-
sists of first 12 bits ð3� Chunks� 1Þwhere bits [0,1,2] corre-
sponds to di1, [3,4,5] corresponds to di2 and so on in the
compressed packet. The subtractors take the sign-extended
di’s and the base as inputs and finally output the original flit,
which is reorganized to generate the original packet. Since in
FlitZip packet received after decompression is the same as
that of the original packet, it is classified as a lossless com-
pression technique. Compression and decompression of net-
work packets using FlitZip are explained using Fig. 11.

flit boundaryi ¼ Encoding bits� Chunks� i;

i ¼ flit number; 1 � i � packet size

link bandwidth
:

(4)

4.3 Encoding Table

Table 1 shows the encoding table present at the NI of each
tile. The table consists of eight entries where each entry is a
2-tuple: < di-bits, encoding bits> . Encoding bits store the
size of di of each compressed flit that is used by the decom-
pressor to determine the flit boundaries in a compressed
packet. Three encoding bits can sufficiently represent a total
of 23 encodings, out of which 111 and 000 have a special
meaning. 111 indicates that the flit is uncompressed, and
000 means that the flit chunks are the same. Rest combina-
tion indicates various encodings used for different di-bits.
For example: if di requires 5 bits for a compressed flit, the
encoding is 101.

4.4 Metadata Storage in Head Flit

Another property of FlitZip is that it reduces the packet size
further by storing the metadata of a compressed packet in
the corresponding head flit’s unused location. As shown in
Fig. 3, for 128 bit link bandwidth, 75 bits from the head flit
is unused. For a 64B packet (4 body flits), each flit requires a
metadata of 11 bits (Base ¼ 8 bits, Encoding ¼ 3 bits).
Hence, a total of 44 ð11 � 4Þ bits from the head flit with bit
location [74:31] is used to store all the flits’ metadata.
Bits [74:64] contain the encoding bits and base of flit 1 out of
which bits [74:72] are the encoding bits, and the next 8 bit is
the base. Similarly, bits ranging from [63:53], [52:42] and
[41:31] contains the metadata for flit 2, 3 and 4, respectively.

Fig. 10. Internal structure of decompressor where n is flit size in bytes.

Fig. 11. Example of FlitZip compression (left half) and decompression (right half). The uncompressed packet size and flit size is 16 bytes and 4 bytes.

TABLE 1
Encoding Table Used at each NI in FlitZip

Number of bits for
di

Encoding
bits

Compressed-flit size
(in bits)

�7 111 -No-
6 110 (6+1)*16 = 112
5 101 (5+1)*16 = 96
4 100 (4+1)*16 = 80
3 011 (3+1)*16 = 64
2 010 (2+1)*16 = 48
1 001 (1+1)*16 = 32
0 000 0 (All Same; including

zeroes)

The third column is not a part of the encoding table and the compressed flit size
is calculated using the original flit size and link bandwidth as 16 bytes each.

122 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 1, JANUARY 2022

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on February 25,2022 at 11:13:47 UTC from IEEE Xplore. Restrictions apply.

4.5 Illustrative Example of FlitZip De/Compression

Fig. 11 shows the working methodology of FlitZip. The left
half of the figure shows the same flit as in Fig. 5 that NoD
could not compress. Flit 1 has four chunks: C1 ¼ 80,
C2 ¼ 81, C3 ¼ 82 and C4 ¼ 83 out of which Csmall is 0x80
and Clarge is 0x83. Therefore, base B1 is 0x81 (10000001) and
di requires 3 bits (2þ1 sign bit). Thus, flit 1 is compressible
and the encoding is 011. Flit 2 is not compressible as di
requires 8 bits. Therefore, the encoding for flit 2 is 111. For
flits 3 and 4, each flit has same data values. These flits are
not transmitted and the (encoding, base) used for flit 3, 4 is
(000, 11111111) and (000, 00000000), respectively. Fig. 11 B
shows the content of the compressed packet using FlitZip
where diij is the jth difference of flit i. The encoding and
base of each compressed flit is stored in the head flit as
shown in Fig. 11 C. Thus, FlitZip compresses the packet in
Fig. 5 by 50 percent which NoD is unable to compress.

The right half of Fig. 11, shows FlitZip decompression.
From the head flit of Fig. 11 D, the metadata of the com-
pressed packet is extracted. Bits [74, 73, 72] is 011 which
means that the number of bits used for di in flit 1 is 3. Thus,
flit 1 is of 12 bits ð3� Chunks� 1Þ. As shown in Fig. 11 E, in
the compressed packet the flit ranges from [0:11]. The base
extracted from the head flit is added with di1i to generate the
original flit. For flit 2, bits [65:63] from the head flit is 111.
Hence the flit boundary is [12:43] (original flit size is 32
bits). On the other hand, for flit 3 and 4, the encoding bits
are 000. Both the flits are regenerated by copying the bases
by the number of chunks. The decompressed flit is shown
in Fig. 11 F which is same as that of Fig. 11 A. Thus, FlitZip
is a lossless compression that can effectively reconstruct the
original packet from a compressed packet.

Advantage of FlitZip. Unlike the existing delta compres-
sion techniques [7], [11], [12], FlitZip avoids the requirement
of multiple de/compression units with varying bases. This
addresses the second problem of simultaneous computa-
tion, as mentioned in Section 3. Also, FlitZip can compress
all packets that NoD and DISCO can, in addition to that, Flit-
Zip compresses some extra packets that NoD cannot. Hence,
it can compress more packets than the existing techniques,
as shown in Fig. 12. The figure is the same as that of Fig. 4
where existing delta compression techniques compresses
the packet using B4D1 with the same compression ratio of
50 percent. Experimentally, we found that FlitZip can com-
press an extra 27 percent of packets compared to the exist-
ing techniques across all the benchmarks.

5 EXPERIMENTAL ANALYSIS

For experimental purposes, we use gem5 [36] a cycle-accu-
rate full system simulator with ruby memory module and
GARNET [37] in gem5 to model the NoC. The baseline

configuration used is mentioned in Table 2 without packet
compression. We simulate different multicore system (2x2,
4x4 and 8x8) and have performed extensive analysis using
13 multithreaded PARSEC [26] benchmarks and 384 work-
load mixes for 64 cores from SPEC 2006 benchmarks [27].
For performance metrics, we have used flit count, weighted
speedup [38], compression ratio, packet latency, bandwidth
utilization and packet queuing latency. We analyze the sen-
sitivity of FlitZip to various parameters: network size, base
size, block size and NoC bandwidth. Among state-of-the-art
delta compression techniques, we have compared FlitZip
with NoD initially. We have also compared FlitZip with
other packet compression techniques: ZeroCompr [8], FPC
[10] and DISCO [11] in Section 5.2.

Workload Characterization: We have classified the bench-
marks of SPEC CPU 2006 suite into three categories (B1, B2
and B3) based on Misses Per Kilo Instructions (MPKI) from
L1 cache. B1 (MPKI < 0.25) contains gromacs, sjeng, bwaves,
hmmer, calculix, gobmk, cactusADM, namd, sphinx and h264ref.
B2 (0:25 � MPKI < 0:5) consists of astar, specrand, mcf, milc,
omnetpp and gamess, and B3 (MPKI � 0:5) consists of bench-
marks bzip2, lbm, leslie3d, soplex, GemsFDTD, perlbench,
xalancbmk and libquantum. Since SPEC is a multiprog-
rammed benchmark, a single benchmark runs on a single
core. Hence, we create a workload mix combining bench-
marks from various categories (B1, B2 and B3) to exten-
sively evaluate the system performance.

Table 3 shows 16 different workload mixes (M1, ..., M16)
generated by mixing B1, B2 and B3 in different ratios. The
benchmarks in each workload mixes are mapped to 64 cores
in 24 different ways as shown in Fig. 13. For example, in the
first mapping, the first benchmark is mapped to core [0-15],
the second benchmark is mapped to core [16-31], the third
benchmark is mapped from core [32-47], and the fourth
benchmark is mapped from core [48-63]. Hence, a total of
384 different workloads for 64 core and 128 for 16 core are
created to evaluate the effectiveness of FlitZip. The work-
loads are fast forwarded for 10 billion instructions, warm up
for next 1 billion instructions and then executes for next 2 bil-
lion instructions for collecting the statistics. The results plot-
ted for each Mi is the geometric mean of 24 different ways

Fig. 12. FlitZip can compress all packets that existing technique does.

TABLE 2
Simulation Parameters

Processor 4/16/64, x86 cores OoO superscalar
Processor frequency 3 GHz
NoC operating
frequency

1GHz

L1 I & D cache/core 32KB, 4-way associative, 64B block
L2 cache (shared) 1MB, 8-way associative, 64B block
DRAM configuration DDR3, 4GB, 64-bits channel, 2 ranks/channel, 8

banks/rank
L1 and L2 cache
access time

2, 10 cycles

DRAM access time 100 cycles
Coherence MESI CMP directory protocol
NoC topology 8x8 2D mesh with XY routing

1 cycle - link delay, 2 cycle-router delay
NoC Link Bandwidth 128 bits (= flit size)
Packet size 1-flit request and 4-flit reply
Number of VCs/
router

5, buffer-depth = 4

DEB ET AL.: FLITZIP: EFFECTIVE PACKET COMPRESSION FOR NOC IN MULTIPROCESSOR SYSTEM-ON-CHIP 123

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on February 25,2022 at 11:13:47 UTC from IEEE Xplore. Restrictions apply.

of workload mapping. For PARSEC benchmarks, we have
used blackscholes (black), body, canneal, dedup, facesim, ferret,
fluidanimate (fluid), freqmine, rtview, streamcluster (stream),
swaptions (swap), vips and x264. In PARSEC, each core runs a
separate thread of the same benchmark.

5.1 Performance Evaluation for 8x8 NoC

Compression Ratio (CR): CR is measured as the ratio of com-
pressed flits to uncompressed flits in the network. The
higher the compression ratio, the better is the technique.
Fig. 14 shows the compression ratio achieved by FlitZip and
NoD. On average (geometric mean), FlitZip achieves a com-
pression ratio of 0.52, whereas the compression ratio for
NoD is 0.30 only. Kindly note that the packet count in both
the technique remains the same. It only reduces the number
of flits within a packet, thereby reducing the packet size.
Fig. 15 shows the normalized flit count after applying Flit-
Zip compression. From the figure, we can observe that Flit-
Zip effectively reduces flit count in the network by 42.53
percent whereas NoD reduces the flit count by 16 percent as
compared to the baseline. FlitZip achieves higher compres-
sion ratio than NoD as shown in the figure with the high-
est/lowest compression ratio of 0.59/0.44 in x264/fluid for
PARSEC benchmark, and 0.52/0.19 in M3/M14/M16 for
SPEC CPU 2006 workload mixes. x264 is a multimedia
application where adjacent frames of the application are
very much alike. When the frames are transferred across the
network as packets, the similarity among the adjacent
frames made it possible to achieve a higher compression
ratio among all the PARSEC benchmarks. vips is also a
multimedia application and achieves a fairly higher

compression ratio than the other benchmarks. Since FlitZip
stores the base of compressed flits in the unused location of
the head flit, the packets are highly compressed as com-
pared to NoD.

Bandwidth Utilization (BU): BU is the average number of
flits passing through a link per cycle. Fig. 16 shows a com-
parison of normalized bandwidth utilization in NoD and
FlitZip w.r.t. baseline. On average, FlitZip and NoD reduce
the bandwidth utilization by 27 and 12.5 percent, respec-
tively, to transfer flits across the tiles. In NoC, on-chip band-
width is an essential component used for carrying flits from
one router to the other. An increase in the compression ratio
of network packets reduces the number of flits transferred
between the tiles. Thus, the usage of on-chip bandwidth
also reduces. Among the PARSEC and SPEC 2006 bench-
marks, x264 (50 percent) and M3/M14 (41 percent) work-
load mixes have the lowest bandwidth utilization rate,
respectively. Workload mixes M3 and M14 consists of B3
benchmark mixes (c.f. Table 3) which is a combination of
lbm-libquantum-soplex-GemsFDTD-bzip2-xalancbmk bench-
marks. Since these combinations achieve a higher compres-
sion ratio than NoD, it helps in compressing packets
efficiently, thereby generating less flit count.

Weighted Speedup (WS): Since we use a multicore system,
weighted speedup gives a better view of the throughput

achieved by the system. It is calculated asWS ¼ PP�1
i¼0

IPCshared
i

IPCalone
i

where IPCshared
i is the Instructions Per Cycle (IPC) of core i

shared with other (P-1) applications running on aMPSoC of P
cores and IPCalone

i is the IPC of core i running alone in a
MPSoC of P cores. As shown in Fig. 17, FlitZip provides a

TABLE 3
Workload Mixes Created From SPEC 2006 Benchmark

M1, M2, M3 B1 (all), B2 (all), B3 (all)

M4 , M5 0.75B1 - 0.25B2, 0.75B1 - 0.25B3
M6, M7 0.75B2 - 0.25B3, 0.75B3 - 0.25B2
M8, M9 0.75B3 - 0.25B1, 0.75B2 - 0.25 B1

M10, M11 0.5B1 - 0.5B2, 0.5B1 - 0.5B3
M12 0.5B2 - 0.5B3

M13, 0.25B1 - 0.5B2 - 0.25B3
M14, 0.25B1 - 0.5B3 - 0.25B2
M15 0.25B2 - 0.5B1 - 0.25B3

M16 Random combination

xBi - yBj constitutes a mix where x% of Bi and y% of Bj are used where 1 � i,j
�3. B1: (MPKI � 0.25), B2: (0.25�MPKI < 0.5) and B3: (MPKI� 0.5).

Fig. 13. 24 different ways of mapping SPEC 2006 benchmarks to each
core in 8x8 NoC based MPSoC. Different colors indicate a separate
benchmark application running on a core fromB1, B2, and B3 categories.

Fig. 14. Compression ratio in PARSEC and SPEC CPU 2006 bench-
mark in 8x8 NoC.

Fig. 15. Normalized flit count with respect to baseline (=1) in PARSEC
and SPEC 2006 benchmark in 8x8 NoC.

Fig. 16. Normalized bandwidth utilization with respect to baseline (=1) in
PARSEC and SPEC 2006 benchmark in 8x8 NoC.

124 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 1, JANUARY 2022

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on February 25,2022 at 11:13:47 UTC from IEEE Xplore. Restrictions apply.

better trade-off between performance (speedup) and band-
width utilization as it provides 12 percent performance
improvement with a 39.87 percent reduction in flit count com-
pared to the baseline. Also, when compared with NoD, the
weighted speedup of FlitZip increases by 8.35 percent. The
primary goal of FlitZip is to reduce redundancieswithin pack-
ets such that the request and reply packets are transmitted
faster to the requesting tile. Since FlitZip achieves a higher
compression ratio than NoD, a packet takes less time to reach
the core. It results in faster instruction execution, thereby
increasing the system throughput. Among the PARSEC and
SPEC 2006, x264, and the mixM11/M3/M14 are the major per-
formance gainers as compared to the baseline andNoD.

Average Packet Latency (PL): Fig. 18 shows that FlitZip
reduces packet latency in PARSEC and SPEC CPU 2006
mixes by 13.57 and 14.4 percent, respectively. Since FlitZip
reduces network traffic, the time taken by a packet to reach
the requesting tile decreases. Hence, on average, FlitZip
reduces the packet latency by 19.28 percent as compared to
the baseline, whereas, NoD reduces packet latency by 11
percent, only.

Average Packet Queuing Latency (PQL): Packet queuing
latency is the average amount of time when the flits of a
packet are queued in the internal buffers of a router, i.e.,

Virtual Channel (VC) during its transmission from a source
tile to a destination tile. Fig. 19 shows that FlitZip reduces
the queuing latency by an average of 13.3 and 7.15 percent
(geometric mean) compared to baseline and NoD, respec-
tively. Since FlitZip efficiently reduces the flit count within
a packet, the queuing time of the packet reduces.

5.2 Sensitivity Analysis

5.2.1 Change in Network Size

Table 4 shows the performance of FlitZip as compared to
NoD and baseline with varying network size between 4
cores (2x2 NoC) to 64 cores (8x8 NoC). Each entry is in the
form of A% (B%/C%) where A% is the geometric mean
over all the workloads and B%, C% is the highest and lowest
respective values. We can observe that on average FlitZip
performs better across different NoC sizes as compared to
NoD and baseline. It is also observed that the performance
of 8x8 NoC is better than 4x4, which is better than 2x2. This
is because the bigger the network diameter, the larger is the
time taken by a flit to reach its destination (as end to end
hop count increases). Also, the number of applications run-
ning in 8x8 NoC is 4 times more than that of a 4x4 NoC,
which generates more traffic to the network. As network
size increases beyond 8x8, the main memory supported by
the system reduces as discussed next.

5.2.2 Change in Block Size, Link Bandwidth and

Memory Size

Table 5 shows the sensitivity of FlitZip for various packet sizes
when the NoC link bandwidth is 128 bits and 256 bits, respec-
tively. From the table,we can observe that for 128 bit link band-
width, FlitZip can support up to a maximum of 96 byte block
size (6 body flits) only. However, for 256 link bandwidth, no

Fig. 17. Normalized weighted Speedup with respect to baseline (=1) in
PARSEC and SPEC 2006 benchmark in 8x8 NoC.

Fig. 18. Normalized Packet Latency with respect to baseline (=1) in
PARSEC and SPEC 2006 benchmark in 8x8 NoC.

Fig. 19. Normalized Packet Queuing Latency with respect to baseline
(=1) in PARSEC and SPEC CPU 2006 benchmark in 8x8 NoC.

TABLE 4
Sensitivity Analysis of FlitZip With Varying Network Size Normalized With Respect to Baseline and NoD

WS PL BU

2x2 NoC (4 cores : 64 SPEC workloads + 13 PARSEC benchmarks)

NoD 5.88%(20.45%/0.66%) 8.65%(18.2%/9.62%) 12.9%(25%/1.5%)
Baseline 9.86%(45.54% / 0.01%) 13.21%(27.4% / 10%) 21%(39.1% / 11.2%)

4x4 NoC (16 cores:128 SPEC workloads + 13 PARSEC benchmarks)

NoD 7.08%(25%/1.01%) 10%(20%/12%) 15.2%(34.5%/1.18%)
Baseline 11.05%(49.76% / 0.086%) 15.76%(31.3% / 10.2%) 22.5%(45.8% / 11.27%)

8x8 NoC (64 cores : 384 SPEC workloads + 13 PARSEC benchmarks)

NoD 8.35%(28.03%/1.12%) 9.46%(21.82%/11.78%) 16.56%(48.02%/1.52%)
Baseline 12%(54.56%/0.1%) 19.28%(38.8%/14.4%) 27%(50%/13.6%)

WS: Weighted Speedup, PL: Packet Latency, BU: Bandwidth Utilization.

DEB ET AL.: FLITZIP: EFFECTIVE PACKET COMPRESSION FOR NOC IN MULTIPROCESSOR SYSTEM-ON-CHIP 125

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on February 25,2022 at 11:13:47 UTC from IEEE Xplore. Restrictions apply.

such issue arises. Thus, FlitZip can compress a packet if it con-
tains amaximumof ðUnused BitsÞ=11 number of flits.

Also, it might seem that the head flit may not be sufficient
enough to store the metadata when either the address space
increases or the main memory size increases. Since FlitZip is
applied on NoC packets and NoC communication occurs
while accessing the Last Level Cache (LLC), all addresses
generated for LLC accesses are physical addresses2 and not
virtual. Thus, the virtual address generated by the CPU is
translated into a physical address that depends on the main
memory size. In the case of 64B cache block size and 128 bit
link bandwidth, FlitZip requires 44 bits (11 bits per flit) for
metadata, and a total of 21 bits is used for various fields such
as Flit Type, Source, Destination, etc. as shown in Fig. 3.
Hence, 63 bits (128-21-44 = 63) are left for the MEM-ADDR
field, thereby supporting a main memory size of 263 (8 Exa-
bytes) which is sufficient for present-day architecture.

However, if we anticipate the growth in main memory
size beyond 8 Exabytes in the future, the extra memory sup-
port can be provided by not sending the redundant block
offset bits in the MEM-ADDR field. Since data requested by
a CPU is transferred from the LLC in block-level granular-
ity, only the index and tag bits are required to fetch a block.
This makes the offset bits in the MEM-ADDR redundant.
Also, for fixed address space, the set index potion decreases
with the increase in the block size. Thus, if the block bits are
not sent as a part of MEM-ADDR, the head flit’s unused
portion increases. Example: For a 64B block size, if the 6 off-
set bits are not sent as a part of MEM-ADDR, the maximum
memory supported is 269 (263 � 26 = 512 Exabytes). Also,
when the network size increases beyond 8x8, it can be
accommodated by FlitZip using a few bits from the MEM-
ADDR field. In such a case, the supported main memory for
128 bit link bandwidth and network size of 16x16 and 32x32
is 32 Exabytes and 2 Exabytes, respectively.

5.2.3 Change in Base Size

Fig. 20 shows the normalized count of packets that FlitZip
can compress when the base size is varied between 1 byte to
8 bytes for de/compression. From the figure, we can

observe that FlitZip can compress maximum packets across
all the benchmarks when the base size is 1 byte. Since inte-
ger/floating-point data are in multiples of bytes, consider-
ing the lower byte granularity helps FlitZip find the
maximum patterns within a flit. On the other hand, NoD
uses varying bases whose size is in multiple of bytes. The
benefit of using constant base size is to avoid multiple de/
compressor modules. The figure also indicates that the
probability of finding patterns on a larger base size
(>1byte) is less than that of 1 byte, which helps FlitZip
achieve a higher packet compression ratio than NoD.

5.2.4 Comparison of FlitZip With Other Techniques

We have also implemented ZeroCompr [8], FPC [10] and
DISCO [11] in 8x8 NoC for evaluating the performance of
FlitZip. Fig. 21 shows the average performance of FlitZip
with respect to the existing techniques. It can be observed
from the figure that FlitZip, on average, performs better than
all the techniques. This is well explained because only 4.98
percent of all packets contains only zeroes averaged across
all the benchmarks. Hence, ZeroCompr compresses only a
small number of packets inspite of having different patterns
within a packet (Fig. 6). On the other hand, in FPC, the encod-
ing table has a restricted count of eight patterns only. Also,
packet de/compression in FPC requires indexing into the
encoding and decoding table, which is time consuming (5
cycles). This degrades the performance of FPC as compared
to FlitZip. DISCO router with NoD/BDI compression for
NoC packets, on the other hand, performs better than Zero-
Compr and FPC, but the performance degrades as compared
to FlitZip. This is because DISCO router selectively com-
presses packets that experience a larger waiting time in the
router’s internal buffers. So it avoids compressing those
packets with the least waiting time even if the packet content
has a well-defined pattern. Though the selection criteria are
advantageous in avoiding the extra de/compression latency
for the compressed packets, the count of compressed packets
is limited compared to FlitZip.

6 HARDWARE AND POWER ANALYSIS

We have also implemented FlitZip in hardware using 45nm
technology. The de/compressor units have been tested for
power, area, and timing estimations by Verilog post-synthe-
sis simulation, and we synthesize the Verilog implementa-
tion in Synopsys Design Compiler for both FlitZip and
NoD. Also, DSENT [39] is used to analyze the dynamic
power consumption of NoC at 45nm technology.

6.1 Timing Aspects of FlitZip De/Compressors

In FlitZip, a compressor circuit requires two cycles and a
decompressor circuit requires one cycle. Since the head flit is
the first to reach the requesting tile, the body flits can be
decompressed as soon as they arrive at the network interface
of the requesting tile. In zero-network load, consecutive flits
arrive at a router after every cycle, and the router requires two
additional cycles to process it, thereby requiring a total of
three cycles per body flit (1 cycle-link traversal and 2 cycle-
processing at the local router). Hence, the decompression
latency for all body flits is hidden by the flits’ queuing latency
except for the last flit. The last flit requires one cycle to

TABLE 5
Sensitivity Analysis With Varying Block Size and NoC Link

Bandwidth

Link bandwidth Block/packet size #Flits Metadata bits

128 bits (16B), 75 unused bits 16 B 1 11
32 B 2 22
48 B 3 33
64 B 4 44
80 B 5 55
96 B 6 66

256 bits (32B), 203 unused bits 32 B 1 11
64 B 2 22
96 B 3 33
128 B 4 44
256 B 8 88
512 B 16 176

2. LLC is always Physically Indexed and Physically Tagged in all
types of caches i.e., PIPT or VIPT.

126 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 1, JANUARY 2022

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on February 25,2022 at 11:13:47 UTC from IEEE Xplore. Restrictions apply.

decompress, thereby reducing the decompression latency to a
single clock cycle with a single decompression circuit. The
number of compressors that FlitZip can use is a design choice
that depends on whether it is used for a low-power or a low-
latency system. A single compressor can be used for a low
power systemwhere the flits are compressed serially one after
another. In such a scenario, compression may require more
cycles. On the other hand, for a systemwith low latency, mul-
tiple compressors can be used that can compress all the flits in
parallel [18]. In our experiment, we have used four compres-
sors to compress a four flit packet, in parallel.

6.2 Power and Area Aspects of FlitZip De/
Compressors

FlitZip does not change the router microarchitecture and it
is similar to that of Fig. 2b. The de/compressor units are
added to the NI. Since FlitZip uses a single static base size
of 1 byte, it avoids multiple compression modules, unlike
NoD. The chunks, Ci and base being of equal size (1 byte),
FlitZip avoids extra bit padding for computing the differen-
ces, dii. In addition to these, the size of the base and differ-
ence (di) is 1B each. Hence, the bit-width of the subtractor
units reduces from 16B to 1B in FlitZip. The power required
for sign-extending, i.e., fan-in AND and OR gates, is also
avoided in the FlitZip compressor as the chunks and base
are of equal size, unlike NoD. It greatly reduces the size and
dynamic power consumption of the de/compressor unit,
thereby making compression and decompression energy
efficient. Also, the encoding table at each tile requires 48
bits (6 bits*8 = 6B) which is nearly 97.6 percent less storage
than the encoding table used in NoD per tile.

The de/compressor unit in FlitZip, being an additional
component added in the NI, requires an extra power of
13:75mW while NoD requires 36:48mW of power con-
sumption. Hence, FlitZip reduces power by 62.3 percent as

compared to NoD. Also, the combined area of the de/com-
pressor module in FlitZip and NoD is 0:0028mm2 and
0:006mm2, respectively. Thus the area of the de/compres-
sor module in FlitZip is also reduced by 53.33 percent than
that of NoD. The reduction in area and power consumption
in FlitZip is obtained because NoD uses multiple de/com-
pression modules for various (Base, D) sizes executed in
parallel on a packet, and each module consumes additional
power, which is completely avoided in FlitZip. Moreover,
efficient reduction in the flit count resulted in carrying
fewer flits in the NoC. Hence, FlitZip reduces the dynamic
power consumption in the network by 16.68 percent as com-
pared to NoD. The de/compression circuit in FlitZip being
very simple and power efficient, FlitZip can become a better
packet compression technique for NoC.

7 CONCLUSION

Present-day application generates large volume of data that
demands large on-chip caches and network bandwidth.
Rather than increasing the cache size or network band-
width, squeezing data together may help satisfy modern-
day applications’ needs. FlitZip proposed in the paper com-
presses NoC packets on per flit basis more efficiently than
the state-of-the-art techniques. It utilizes the unused bits of
the head flit to store the bases of each compressed flit,
thereby providing better compression of 52 percent. It is
also efficient in terms of power consumption, thereby
reducing the power consumption of de/compressor units
by 62.3 percent with reduced bandwidth utilization of 27
percent across all the workloads.

REFERENCES

[1] W. J. Dally and B. Towles, “Route packets, not wires: On-chip
interconnection networks,” in Proc. 38th Des. Automat. Conf., 2001,
pp. 684–689.

Fig. 21. Performance of FlitZip compared to ZeroCompr, FPC and DISCO normalized to baseline in 8x8 NoC.

Fig. 20. Sensitivity analysis of FlitZip with respect to different base sizes: 1B, 2B, 4B and 8B for 8x8 NoC [Packet size: 64 bytes and flit size: 16 bytes.]

DEB ET AL.: FLITZIP: EFFECTIVE PACKET COMPRESSION FOR NOC IN MULTIPROCESSOR SYSTEM-ON-CHIP 127

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on February 25,2022 at 11:13:47 UTC from IEEE Xplore. Restrictions apply.

[2] L. Benini and G. De Micheli, “Networks on chips: A new SoC
paradigm,” Computer, vol. 35, no. 1, pp. 70–78, 2002.

[3] M. B. Taylor, W. Lee, S. Amarasinghe, and A. Agarwal, “Scalar
operand networks: On-chip interconnect for ILP in partitioned
architectures,” in Proc. 9th Int. Symp. High-Perform. Comput.
Archit., 2003, pp. 341–353.

[4] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-
GHz mesh interconnect for a teraflops processor,” IEEE Micro,
vol. 27, no. 5, pp. 51–61, Sep./Oct. 2007.

[5] M. Buckler, W. Burleson, and G. Sadowski, “Low-power net-
works-on-chip: Progress and remaining challenges,” in Proc. Int.
Symp. Low Power Electron. Des., 2013, pp. 132–134.

[6] A. BenAchballah, S. BenOthman, and S. BenSaoud, “Problems
and challenges of emerging technology networksonChip: A
review,”Microprocessors Microsystems, vol. 53, pp. 1–20, 2017.

[7] J. Zhan,M. Poremba, Y. Xu, andY. Xie, “NoD: Leveraging delta com-
pression for end-to-endmemory access inNoCbasedmulticores,” in
Proc. 19th Asia South Pacific Des. Automat. Conf., 2014, pp. 586–591.

[8] R. Das et al., “Performance and power optimization through data
compression in network-on-chip architectures,” in Proc. IEEE 14th
Int. Symp. High Perform. Comput. Archit., 2008, pp. 215–225.

[9] S. Ogg and B. Al-Hashimi , “Improved data compression for serial
interconnected network on chip through unused significant bit
removal,” in Proc. 19th Int. Conf. VLSI Des. held jointly with 5th Int.
Conf. Embedded Syst. Des., 2006, p. 5.

[10] P. Zhou et al., “Frequent value compression in packet-based NoC
architectures,” in Proc. Asia South Pacific Des. Automat. Conf., 2009,
p. 13–18.

[11] Y. Wang, Y. Han, J. Zhou, H. Li, and X. Li, “DISCO: A low over-
head in-network data compressor for energy-efficient chip multi-
processors,” in Proc. Des. Automat. Conf., 2016, pp. 1–6.

[12] Y. Wang, H. Li, Y. Han, and X. Li, “A low overhead in-network
data compressor for the memory hierarchy of chip multiproc-
essors,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.
37, no. 6, pp. 1265–1277, Jun. 2018.

[13] R. Boyapati, J. Huang, P. Majumder, K. H. Yum, and E. J. Kim,
“APPROX-NoC: A data approximation framework for network-
on-chip architectures,” in Proc. 44th Annu. Int. Symp. Comput.
Architecture, 2017, pp. 666–677.

[14] Y. Chen and A. Louri, “An approximate communication frame-
work for network-on-chips,” IEEE Trans. Parallel Distrib. Syst., vol.
31, no. 6, pp. 1434–1446, Jun. 2020.

[15] M. F. Reza and P. Ampadu, “Approximate communication strate-
gies for energy-efficient and high performanceNoC: Opportunities
and challenges,” in Proc. Great Lakes Symp. VLSI, 2019, pp. 399–404.

[16] Y. Chen, M. F. Reza, and A. Louri, “DEC-NoC: An approximate
framework based on dynamic error control with applications to
energy-efficient NoCs,” in Proc. IEEE 36th Int. Conf. Comput. Des.,
2018, pp. 480–487.

[17] Y. Zhang et al., “Improving restore performance for in-line backup
system combining deduplication and delta compression,” IEEE
Trans. Parallel Distrib. Syst., vol. 31, no. 10, pp. 2302–2314, Oct. 2020.

[18] G. Pekhimenko, V. Seshadri, O. Mutlu, M. A. Kozuch, P. B. Gib-
bons, and T. C. Mowry, “Base-delta-immediate compression:
Practical data compression for on-chip caches,” in Proc. 21st Int.
Conf. Parallel Archit. Compilation Techn., 2012, pp. 377–388.

[19] A. Shafiee, M. Taassori, R. Balasubramonian, and A. Davis,
“MemZip: Exploring unconventional benefits from memory
compression,” in Proc. 20th Int. Symp. High Perform. Comput.
Archit., 2014, pp. 638–649.

[20] R. Kanakagiri, B. Panda, and M. Mutyam, “MBZip: Multiblock
data compression,” ACM Trans. Archit. Code Optim., vol. 14, no. 4,
pp. 42:1–42:29, 2017.

[21] S. Mittal and J. S. Vetter, “A survey of architectural approaches for
data compression in cache and main memory systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 5, pp. 1524–1536, May 2016.

[22] A. R. Alameldeen and D. A. Wood, “Adaptive cache compression
for high-performance processors,” in Proc. 31st Annu. Int. Symp.
Comput. Archit., 2004, p. 212.

[23] S. Baek, H. G. Lee, C. Nicopoulos, J. Lee, and J. Kim, “Size-aware
cache management for compressed cache architectures,” IEEE
Trans. Comput., vol. 64, no. 8, pp. 2337–2352, Aug. 2015.

[24] A. Ghasemazar, P. Nair, and M. Lis, “Thesaurus: Efficient cache
compression via dynamic clustering,” in Proc. 25th Int. Conf.
Archit. Support Program. Lang. Oper. Syst., 2020, p. 527–540.

[25] G. Pekhimenko et al., “Linearly compressed pages: A low-com-
plexity, low-latency main memory compression framework,” in
Proc. 46th IEEE/ACM Int. Symp. Microarchit., 2013, p. 172–184.

[26] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. disser-
tation, Princeton University, Princeton, NJ, USA, Jan. 2011.

[27] J. L. Henning, “SPEC CPU2006 benchmark descriptions,”
SIGARCH Comput. Archit. News, vol. 34, pp. 1–17, 2006.

[28] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-uniform
cache structure for wire-delay dominated on-chip caches,”
SIGARCHComput. Archit. News, vol. 30, no. 5, pp. 211–222, 2002.

[29] J. Lira, C. Molina, and A. Gonzalez, “HK-NUCA: Boosting data
searches in dynamic non-uniform cache architectures for chip
multiprocessors,” in Proc. IEEE Int. Symp. Parallel Distrib. Process.,
2011, pp. 419–430.

[30] S. R. Vangal et al.“An 80-tile sub-100-W teraFLOPS processor in
65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 29–41,
Jan. 2008.

[31] S. Bell et al., “TILE64 - Processor: A 64-Core SoC with mesh inter-
connect,” in Proc. Int. Solid-State Circuits Conf. - Dig. Tech. Papers,
2008, pp. 88–598.

[32] A. Sodani et al., “Knights landing: Second-generation Intel Xeon
Phi product,” IEEEMicro, vol. 36, no. 2, pp. 34–46,Mar./Apr. 2016.

[33] W. Dally, “Virtual-channel flow control,” Trans. Parallel Distrib.
Syst., vol. 3, no. 2, pp. 194–205, 1992.

[34] Y. J. Yoon, N. Concer, M. Petracca, and L. Carloni, “Virtual chan-
nels vs. multiple physical networks: A comparative analysis,” in
Proc. 47th Des. Automat. conf., 2010, pp. 162–165.

[35] V. Y. Raparti and S. Pasricha, “DAPPER: Data aware approximate
NoC for GPGPU architectures,” in Proc. Int. Symp. Networks-on-
Chip, 2018, pp. 1–8.

[36] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archi-
tecture News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[37] N. Agarwal, T. Krishna, L.-S. Peh, and N. Jha, “GARNET: A
Detailed on-chip network model inside a full-system simulator,”
in Proc. Int. Symp. Perform. Anal. Syst. Softw., 2009, pp. 33–42.

[38] Kun Luo, J. Gummaraju, and M. Franklin, “Balancing thoughput
and fairness in SMT processors,” in Proc. Int. Symp. Perform. Anal.
Syst. Softw., 2001, pp. 164–171.

[39] C. Sun et al., “DSENT - A tool connecting emerging photonics with
electronics for opto-electronic networks-on-chip modeling,” in
Proc. Int. Symp. Networks-on-Chip, 2012, pp. 201–210.

Dipika Deb received the BTech degree in Com-
puter Science and Engineering (CSE) from Tez-
pur University, Assam, India, and the MTech
degree in CSE from the Indian Institute of Tech-
nology Guwahati, India. She is currently a
research scholar with the Department of CSE,
Indian Institute of Technology Guwahati, India.
Her research interests include multicore com-
puter architecture, prefetching, packet compres-
sion, network-on-chip, and machine learning.

Rohith M.K. received the BTech degree in Elec-
tronics and Communication Engineering from the
RV College of Engineering, Banaglore, India. He
is currently an ASIC engineer with NVIDIA, Ban-
galore, India. His research interests include multi-
core architecture, on-chip networks, and memory
technologies.

John Jose received the PhD degree in CSE from
the Indian Institute of Technology Madras, India, in
2014, and the MTech degree from the Vellore Insti-
tute of Technology, India. He is currently an assis-
tant professor with the Department of CSE, Indian
Institute of Technology Guwahati, India. His
research interests include on-chip memory and com-
munication aspects of multi/many core processors.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

128 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 1, JANUARY 2022

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on February 25,2022 at 11:13:47 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

