
Opportunistic Caching in NoC: Exploring
Ways to Reduce Miss Penalty

Abhijit Das , Student Member, IEEE, Abhishek Kumar ,

John Jose ,Member, IEEE, and Maurizio Palesi , Senior Member, IEEE

Abstract—Due to limited on-chip caching, data-driven applications with large memory footprint encounter frequent cache misses.

Such applications suffer from recurring miss penalty when they re-reference recently evicted cache blocks. To meet the worst-case

performance requirements, Network-on-Chip (NoC) routers are provisioned with input port buffers. However, recent studies reveal that

these buffers remain underutilised except during network congestion. Trace buffers are Design-for-Debug (DfD) hardware employed in

NoC routers for post-silicon debug and validation. Nevertheless, they become non-functional once a design goes into production and

remain in the routers left unused. In this article, we exploit the underutilised NoC router buffers and the unused trace buffers to store

recently evicted cache blocks. While these blocks are stored in the buffers, future re-reference to these blocks can be replied from the

NoC router. Such an opportunistic caching of evicted blocks in NoC routers significantly reduce the miss penalty. Experimental analysis

shows that the proposed architectures can achieve up to 21 percent (16 percent on average) reduction in miss penalty and 19 percent

(14 percent on average) improvement in overall system performance. While we have a negligible area and leakage power overhead of

2.58 and 3.94 percent, respectively, dynamic power reduces by 6.12 percent due to the improvement in performance.

Index Terms—Network-on-Chip (NoC), miss penalty, cache coherence, virtual channel (VC), embedded trace buffer (ETB)

Ç

1 INTRODUCTION

IN THE era of data-driven applications, the demand for infor-
mation processing is increasing exponentially. 2015 Interna-

tional Technology Roadmap for Semiconductors (ITRS)
report predicts that the increasing demand for information
processingwill drive a 30-fold increase in the number of proc-
essing cores by 2030 [1]. It is indeed visible in the industry, for
example, with Intel Xeon Phi Processors featuring 64-72 cores
in their Tiled Chip Multi-Processors (TCMPs) [2]. With the
increasing cores in TCMPs, scalable Network-on-Chip (NoC)
communication plays a very significant role in data access
latency. However, for standard applications, the average
packet injection rate is only around 5 percent in NoC based
TCMPs [3], [4], [5]. Low packet injection directly translates
into poor utilisation of available NoC resources. While
TCMPs continue to scale, proposing policies to improve NoC
resource utilisation is a necessary step forward. Improving
NoC resource utilisation can reduce data access latency and
positively impact overall system performance [6].

Due to the increasing core counts, limited on-chip area and
associated cost, most of the modern TCMPs have only two

levels of on-chip caching [7], [8], [9]. They usually have pri-
vate, write-back L1 caches and a shared and distributed,
write-back L2 cache. When an L1 cache miss occurs, the
requested cache block is fetched from the corresponding L2
cache bank. A cachemiss in L2 requires the block to be fetched
from off-chip memory. The entire communication is packet
based and is done through the underlying NoC. The time
required to replace an existing block in L1 with an incoming,
requested cache block is called miss penalty. Since L1 caches
are small and frequently accessed, an L1 cache miss almost
always evicts a valid cache block. Based on whether an
evicted, valid block is clean or dirty (modified), it is either dis-
carded or sent to the L2 cache bank for write-back. However,
due to temporal and/or spatial locality, if a recently evicted
block from L1 cache is re-referenced, it needs to be fetched
again. The re-referenced block is fetched from the correspond-
ing L2 cache bank. Since L2 is distributed, the corresponding
L2 cache bank can be located anywhere, in the nearest, to the
farthest core. In the worst case, when the re-referenced block
is not present in the L2 cache bank (L2miss), it is fetched from
off-chip memory. Increasing the L1 cache size may delay the
block eviction and avoid cache miss penalty up to an extent.
However, it is not feasible, as increasing the cache size may
impact its hit time and affect instruction pipeline. Increasing
the cache size is also not feasible due to the on-chip area and
associated cost constraints. In any way, experiencing cache
miss penalties on re-reference of recently evicted blocks is
inevitable. Frequent cache miss penalties severely hamper
application execution time and degrade overall system
performance.

Packet basedNoCuse routers to establish on-chip commu-
nication between the available cores in a TCMP.ModernNoC
based TCMPs employ input buffered routers for scalable on-
chip bandwidth [10], [11]. Packets on their way from source to

� Abhijit Das and John Jose are with the Department of Computer Science
and Engineering, Indian Institute of Technology Guwahati, Assam
781039, India. E-mail: {abhijit.das, johnjose}@iitg.ac.in.

� Abhishek Kumar is with the Oracle Inc., Bengaluru 560029, India.
E-mail: abhishek18a@iitg.ac.in.

� Maurizio Palesi is with the Department of Electrical, Electronics and
Computer Engineering, University of Catania, 95124 Catania, Italy.
E-mail: maurizio.palesi@dieei.unict.it.

Manuscript received 15 Aug. 2020; revised 6Mar. 2021; accepted 21 Mar. 2021.
Date of publication 31 Mar. 2021; date of current version 17 May 2021.
(Corresponding author: Abhijit Das.)
Recommended for acceptance by Lizhong Chen and Zhonghai Lu.
Digital Object Identifier no. 10.1109/TC.2021.3069968

892 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

0018-9340 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on June 14,2021 at 17:38:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8912-9657
https://orcid.org/0000-0002-8912-9657
https://orcid.org/0000-0002-8912-9657
https://orcid.org/0000-0002-8912-9657
https://orcid.org/0000-0002-8912-9657
https://orcid.org/0000-0003-2610-0061
https://orcid.org/0000-0003-2610-0061
https://orcid.org/0000-0003-2610-0061
https://orcid.org/0000-0003-2610-0061
https://orcid.org/0000-0003-2610-0061
https://orcid.org/0000-0002-0314-8778
https://orcid.org/0000-0002-0314-8778
https://orcid.org/0000-0002-0314-8778
https://orcid.org/0000-0002-0314-8778
https://orcid.org/0000-0002-0314-8778
https://orcid.org/0000-0003-3129-0664
https://orcid.org/0000-0003-3129-0664
https://orcid.org/0000-0003-3129-0664
https://orcid.org/0000-0003-3129-0664
https://orcid.org/0000-0003-3129-0664
mailto:abhijit.das@iitg.ac.in
mailto:johnjose@iitg.ac.in
mailto:abhishek18a@iitg.ac.in
mailto:maurizio.palesi@dieei.unict.it

destination are temporarily stored in the input port buffers of
NoC routers. Stored packets take part in routing and arbitra-
tion and get forwarded towards destination as soon as they
get the desired output port. However, due to the low packet
injection rate, input port buffers inNoC routers are underutil-
ised. Experimental analysis with standard applications shows
that buffer utilisation of routers is very low, except during
peakNoC congestion (Section 2.2).

Due to the design complexity of NoC based TCMPs,
post-silicon debug is usually practised to validate a
proposed design before going into the production. To aid
post-silicon debug and validation, Design-for-Debug (DfD)
hardware are embedded across various modules and cores
of a TCMP [12]. An important phase of the debug involves
validating the on-chip interaction between different cores.
Trace buffers are DfD hardware embedded in NoC routers to
record their state for post-silicon debug and validation.
However, when a TCMP design goes into production, most
of the DfD hardware become non-functional. Since the
usage of DfD hardware, including trace buffers, is sporadic
and rare after the production, most of them are left unused.

In this work, we exploit the underutilised storage space
available inNoC routers to store evicted L1 cache blocks. If an
evicted L1 cache block is dirty, it is sent to the corresponding
L2 cache bank for write-back. Such blocks enter the local
router1 as packets, gets stored in local input port buffers, and
take part in routing and arbitration to reach their destination
for write-back. We propose to disable the arbitration of such
blocks and keep them stored in the local router buffers for as
long as possible. Since buffer utilisation is low, evicted, dirty
L1 cache blocks can be kept stored in the local routers without
inducing any NoC congestion. If an evicted L1 cache block is
clean, it is discarded and not sent for write-back as the corre-
sponding L2 cache bank has the same copy of the block. We
propose to send such blocks to the local router and keep them
stored in the unused embedded trace buffer. Now, when a
recently evicted L1 cache block is re-referenced, we propose
to arrange a quick reply with the stored block from the local
router. It is possible as the recently evicted cache block might
be present (stored) either in the local input port buffer or the
embedded trace buffer. These optimisations can significantly
reduce the L1 cache miss penalty and improve overall system
performance. In this work, we make the following major
contributions:

� Reply with Stored Dirty Blocks: We identify evicted,
dirty L1 cache blocks when they enter the local
routers to travel for write-back towards their desti-
nation L2 cache bank. We propose to disable arbitra-
tion of such blocks to keep them stored in local input
port buffers. Future re-reference to the stored blocks
are replied by the local router to reduce miss penalty.

� Reply with Stored Clean Blocks: To increase the chances
of local reply, we propose to keep the evicted, clean
L1 cache blocks in the unused, embedded trace
buffer. Local router can reply to the future re-refer-
ences from local input port buffers as well as trace
buffer, which reduces miss penalty even further.

� Forward/Drop of Stored Blocks: We propose two tech-
niques to forward dirty L1 cache blocks stored in the
local input port buffers. A time-triggered technique
based on a certain time threshold, and a message-
triggered technique based on a request from L2. We
also propose a technique to drop clean L1 cache
blocks stored in trace buffer and inform L2.

� Maintain Cache Coherence: To preserve the states of
evicted L1 cache blocks, we propose a new coherence
message. Since the L2 cache is shared, we make sure
that the proposed optimisations of the local store
and reply do not violate the cache coherence.

2 BACKGROUND

Conceptual view of an NoC based TCMP is shown in Fig. 1
for reference as we explain the necessary background.

2.1 L1 Cache Miss Penalty

Since L1 caches are small, a cache miss is likely to occur
against a requested block. On an L1 cache miss, the requested
block is fetched from the next level of memory (L2 cache). In
NoCbased TCMPs, the L2 cache is usually divided intomulti-
ple banks and distributed across all the cores, as shown in
Fig. 1. Hence, the requested block needs to be fetched from
the corresponding L2 cache bank, which can be anywhere, in
the nearest, to the farthest core. If the requested block is not
present in the L2 cache bank (L2 miss), it is fetched from the
next level of memory. Latest NoC based TCMPs like Intel
Xeon Phi Processor (2016) [7], Princeton Piton Processor
(2015) [8], MIT Scorpio Processor (2014) [9] and others, use
only two levels of on-chip caching. In these systems, L2 serves
as the last level cache (LLC), and a cache miss in L2 requires
the block to be fetched from off-chip memory. Hence, in the

Fig. 1. Conceptual view of an NoC-based TCMP.

1. Local router connects a tile (core) to the underlying NoC.

DAS ETAL.: OPPORTUNISTIC CACHING IN NOC: EXPLORINGWAYS TO REDUCE MISS PENALTY 893

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on June 14,2021 at 17:38:11 UTC from IEEE Xplore. Restrictions apply.

worst case, L1 cache miss on a requested block requires the
block to be fetched from the off-chip memory, which is very
time expensive. The time required to replace an existing block
in L1 with an incoming cache block is called L1 cache miss
penalty. In NoC based TCMPs, L1 cache miss penalty (MPL1)
can be given as

MPL1 ¼ tRequest
L1�LLC þ TAccess

LLC þ tReply
LLC�L1; (1)

where

TAccess
LLC ¼

THit
LLC if LLC Hit

TMiss
LLC þ MPLLC if LLC Miss

8
<

:
; (2)

here, Tj
i is the time taken by module i to complete a task j

whereas, tki�j is the time taken by message k to travel from
module i to module j through the underlying NoC. For
example, TAccess

LLC is the time taken by an LLC bank to access
a cache block whereas, tRequest

L1�LLC is the time taken by a cache
miss request to travel from L1 cache to the LLC bank.

As given in Equation (1), L1 cache miss penalty is domi-
nated by on-chip transfer time (tki�j). In the worst case of an
LLC miss, the dominance of transfer time is even more since
the miss request and reply travels to and from the memory
controller (MC). The corresponding MC can be located in
any of the corner routers (refer Fig. 1). During on-chip con-
gestion, the transfer time can get longer due to unknown
router delay along the way. Hence, the underlying NoC
plays an important role in L1 cache miss penalty.

2.2 VC Availability

NoC based systems employ routers, which have three
design alternatives: input buffered, minimally buffered and
bufferless; each with different pros and cons. To meet the
worst case performance bandwidth, modern TCMPs prefer
input buffered NoC routers [10], [11]. Input buffers are fur-
ther divided into virtual channels (VCs) for deadlock-free
routing and better utilisation [13]. As shown in Fig. 1, pack-
ets entering through different input ports (east, south, west,
north and local) get temporarily stored in the available VCs
and take part in routing and arbitration decisions. VC avail-
ability in NoC based TCMPs can be given as

VC Availabilityn ¼ Cycles when n VCs are Free

Total Execution Cycles
: (3)

Fig. 2 shows the VC availability in local input port of NoC
routers for a set of standard multi-programmed benchmarks
(SPEC CPU2006 [14]). As the average injection rate of these
benchmarks is only around 5 percent, except during peak

NoC congestion, at least one VC is always free (� 95 percent).
A similar observation is expected for standardmulti-threaded
benchmarks (PARSEC 3.0 [15]) where the average injection
rate is even lower. The observation in Fig. 2 is in sync with the
conclusions in the available literature [3], [4], [5].

NoC based TCMPs use input buffered routers for worst
case bandwidth, but buffers (VCs) remain underutilised.

2.3 Embedded Trace Buffer

Pre-silicon validation is a standard practice in the process of
any hardware system design. It involves theory-based for-
mal verification of the design for functional correctness and
simulation-based verification of the RTL description [16].
However, increasing core counts and the need for an
efficient and scalable communication increase the design
complexity of NoC based TCMPs. For such systems, theory-
based formal verification suffers from state space explosion
problem. Furthermore, simulation-based verification is very
slow. Hence, exhaustively exploring the entire design space
of a TCMP is not feasible in a time-bound pre-silicon valida-
tion. Thus, post-silicon debug and validation is necessary.

Post-silicon debug and validation beginswhen the first few
silicon prototypes of the proposed design are available. Lon-
ger tests are run on actual hardware (prototype) in native
speed for thorough validation. Hence, post-silicon validation
can expose functional bugs that might have been missed dur-
ing pre-silicon validation. Key to an effective post-silicon
debug and validation lies in the observability and controlla-
bility of internal signals when the tests are run. To facilitate
debug and validation, Design-for-Debug (DfD) hardware are
embedded across various modules and cores of a TCMP [12].
DfD hardware can trace internal signals, dump contents of
registers and memory, patch microcode and firmware, create
user-defined triggers and interrupts, etc. An important phase
of debugging NoC based TCMPs is to validate the on-chip
interaction betweendifferent cores.Trace buffers are DfD hard-
ware embedded in NoC routers to record their state for post-
silicon debug and validation. Trace buffer and embedded
trace buffer (ETB) are used interchangeably throughout the
text, thus should not be confused with. Trace buffers periodi-
cally take snapshot of the NoC router and stores it as a com-
pressed trace in a circular memory storage, as shown in Fig. 1.
Size of trace buffers typically varies between 2KB-8KB in dif-
ferent modules and can roughly store 10K–30K lines of com-
pressed trace. After successful debug and validation, the
silicon prototype goes for mass production. Thereafter, most
of the DfD hardware including trace buffers become non-
functional. Since the usage of DfD hardware is sporadic and
rare after the production, most of them are left unused. Even
though the DfD hardware are power-gated, their area foot-
print remains in the routers (chip)without any benefit.

Trace buffers facilitate post-silicon debug and validation
of NoC routers, but they are left unused after production.

3 MOTIVATION

Since L1 caches are small and frequently accessed, an L1
cache miss almost always evicts a valid block. However,

Fig. 2. VC availability in local input port.

894 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on June 14,2021 at 17:38:11 UTC from IEEE Xplore. Restrictions apply.

due to temporal locality, a recently evicted L1 cache block
may be re-referenced. Since a cache block contains multiple
words, even for spatial locality, a recently evicted L1 cache
block may be re-referenced. The duration from the eviction
of an L1 cache block to the request of the same block in
future, by the same core is called re-reference time. Re-refer-
ence time (RT) in NoC based TCMPs can be given as

RTj
i ¼ jRequestðBj

iÞjTy � jEvictionðBj
iÞjTx ; (4)

where at time Tx, cache block i was evicted from core j
and in the future at time Ty, block i is requested again by
the same core j.

Fig. 3 shows the average re-reference time for different
SPEC CPU2006 [14] and PARSEC 3.0 [15] benchmarks. For
example, in a 64-core NoC based TCMP running a multi-pro-
grammed benchmark astar, an evicted L1 cache block is re-ref-
erenced within an average time of 6,532 cycles. Across all
benchmarks, on average, within a small interval of around
12,000 cycles, an evicted L1 cache block is re-referenced. This
interval indirectly indicates how frequently an NoC based
TCMP suffers from L1 cache miss penalty due to unfortunate
block evictions.

In this work, we explore ways to reduce L1 cache miss pen-
alty in NoC based TCMPs. Evicted, clean L1 cache blocks are
discarded, whereas dirty L1 cache blocks are sent over the
NoC to the corresponding L2 cache bank for write-back. To
reach their destination for write-back, evicted, dirty L1 cache
blocks enter the local router through the local input port as
packets. They temporarily get stored in the available VCs and
take part in routing and arbitration decisions to get the desired
output port. In this work, we propose to disable the arbitration
of such evicted, dirty L1 cache blocks while they are stored in
the local VCs. Without taking part in the arbitration, these
evicted, dirty blocks can not get the desired output port and
leave the local router. From the observation in Fig. 2, we know
that local input port VCs remain underutilised (free) most of
the time. Hence, we can keep the evicted, dirty L1 cache blocks
stored in the local router for as long as possible without creat-
ing injection suppression for other packets. During the time an
evicted, dirty L1 cache block is locally stored, a re-reference
request for the same block by the same core can be locally
replied. We propose to generate direct reply from the local
router if a requested block is present in the local VCs. From
Equation (1) and Section 2.1, we know that L1 cache miss pen-
alty involves on-chip travel and may also suffer from NoC
communication delay. Local reply to L1 cache miss requests
from the NoC routers can avoid the on-chip travel altogether
and get significant reduction inmiss penalty.

Unlike dirty blocks, clean blocks are discarded after evic-
tion from L1 cache since a write-back is not necessary. How-
ever, the number of clean blocks evicted from L1 cache is
much more than the number of dirty blocks. From the obser-
vation in Fig. 3, we are aware that an evicted L1 cache block
(clean or dirty) is re-referenced within a small interval of
around 12,000 cycles. Hence, to improve the chances of local
reply, we propose to bring evicted, clean L1 cache blocks to
the local routers and keep them stored in local VCs. But, the
underutilised local VCs are already employed to store evicted,
dirty L1 cache blocks. Making the evicted, clean and dirty
blocks compete against each other for a place in the local VCs
kill the purpose of local store. From the conclusion in Sec-
tion 2.3, we know that a DfD storage infrastructure called
trace buffer, embedded in NoC routers is left unused. In this
work, we re-purpose the unused trace buffer in NoC routers
to store evicted, clean L1 cache blocks; which are normally
discarded. Until a block is stored in the trace buffer, a re-refer-
ence to the same block by the same core can be serviced from
the local router. With the evicted, dirty blocks stored in local
VCs and the evicted, clean blocks now stored in the trace
buffer, our chances of local reply increasemany-fold. Our pro-
posed optimisations to generate immediate local reply from
NoC routers can significantly reduce L1 cache miss penalty,
thereby improving overall system performance.

Store evicted L1 cache blocks in underutilised NoC router
buffers (VCs) and unused trace buffers (ETBs). Upon re-
reference, generate direct reply from the local routers.

4 OPPORTUNISTIC CACHING IN NOC

A conceptual view of the router microarchitecture that
implements our proposed optimisations is given in Fig. 4.
We consider two-level on-chip caching with MOESI distrib-
uted directory coherence protocol. Keeping Fig. 4 and
MOESI protocol as reference, we explain the working of our
proposed architecture in the following sub-sections.

In MOESI distributed directory coherence based cache
organisation, a cache block can be inModified (M): Possi-
bly different from memory and only copy, Owned (O):
Possibly different from memory and possibly shared,
Exclusive (E): Same as memory and only copy, Shared (S):
Same as memory/owner and possibly shared, or Invalid
(I): Invalid copy state. Exclusive (E) state can be consid-
ered as a subset of Owned (O) state. Our discussion
includes the following coherence messages from the
protocol. GETS/ GETX: Read/Write request, DATA-
GETS/DATA-GETX: Shared/Exclusive data, PUTS/
PUTO/PUTM: Write-back request for Shared/Owned/
Modified data, ACK-PUTS/ACK-PUTO/ACK-PUTM:
Acknowledgement for PUTS/PUTO/PUTMwrite-back,
DATA-PUTS/DATA-PUTO/DATA-PUTM: Shared/
Owned/Modified data for write-back, UNBLOCK: Inti-
mation for DATA-PUTS drop.

4.1 Block Store in Router Buffers

A valid block evicted from L1 cache can be either clean
(shared) or dirty (owned/modified). Clean blocks are

Fig. 3. Re-reference time of evicted L1 cache blocks.

DAS ETAL.: OPPORTUNISTIC CACHING IN NOC: EXPLORINGWAYS TO REDUCE MISS PENALTY 895

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on June 14,2021 at 17:38:11 UTC from IEEE Xplore. Restrictions apply.

discarded and dirty blocks are sent for write-back. For
evicted, dirty blocks, a PUTO/PUTM write-back request is
initiated from L1 cache controller (L1 CTLR) to the corre-
sponding L2 cache bank. As shown in Fig. 6a, such requests
travel through the underlying NoC and reach their destina-
tion (). After receiving a request, the corresponding L2
cache bank controller (L2 CTLR) replies with an acknowl-
edgement (ACK-PUTO/ACK-PUTM) to receive the evicted,
dirty block for write-back (). As soon as L1 CTLR receives
an acknowledgement, the evicted block is sent towards the L2
cache bank as a DATA-PUTO/DATA-PUTM message ().
All the data and control messages enter the local NoC router
as packets, gets stored in the available VCs and take part in
routing and arbitration decisions to reach their destination.
For our optimisations, all the evicted L1 cache blocks (both
clean and dirty) are marked with a 1-bit flag (Evicted) in their
packet header for identification, as shown in Fig. 5.

Our first optimisation targets DATA-PUTO/DATA-
PUTMwrite-back data messages on their way to the destina-
tion. When any new packet enters the local router and gets
buffered in the VC for routing and arbitration, Evicted flag is
checked by the additional Local Store/Reply, Forward & Drop
(LSR-FD) unit as shown in Fig. 4. If the Evicted flag is SET, we
know that the corresponding packet is actually an evicted,
dirty cache block (DATA-PUTO/DATA-PUTM), which is on
its way to the L2 cache bank for write-back. Even though the
Evicted flag is set for both clean and dirty blocks, the identified
block in the router can not be clean as they are dropped after
eviction. We consider two-stage NoC routers (stage-1: RC,
stage-2: VA and SA) where LSR-FD unit works in stage-1 in
parallel with the Route Compute (RC) unit. While a check is
performed by the LSR-FD unit to identify an evicted block
(packet), route for the packet is also computed in parallel by
the RC unit. If the Evicted flag is found SET for a packet
(DATA-PUTO/DATA-PUTM) in stage-1, LSR-FD unit dis-
ables stage-2, i.e., VC and switch arbitration for the packet.
Without arbitration, such packets can not leave the local
router, as shown in Fig. 6b. This way, we keep all the evicted,
dirty L1 cache blocks stored in the input port VCs of local
router for as long as possible (explained in Section 4.4). Since

VCs are underutilised due to low packet injection rate, keep-
ing the evicted, dirty L1 cache blocks stored in local routers
do not usually create any injection suppression. Both L1 and
L2 caches are unaware of the proposed optimisation. For L1
CTLR, the evicted, dirty block is on its way or already reached
the corresponding L2 cache bank for write-back. On the other
side, since L2 CTLR already sent an acknowledgement to
receive the block, it believes that the block is on its way.

4.2 Block Store in Trace Buffers

If an evicted L1 cache block is clean (shared), it is simply
discarded since a write-back is not necessary. As shown in
Fig. 7a, L1 CTLR initiates a PUTS write-back request
towards the corresponding L2 cache bank (). Upon
receiving the request, L2 CTLR sends an acknowledgement

Fig. 4. Conceptual view of the proposed router microarchitecture. All the additional units and links are shown in red. Evicted L1 cache blocks enter the
NoC as packets and get divided into multiple smaller units called flits (H, B0, B1, T). Based on whether a block is clean or dirty, the corresponding flits
get stored in either the trace buffer or the local VCs.

Fig. 5. Modified message/packet header.

Fig. 6. Eviction of a dirty L1 cache block.

Fig. 7. Eviction of a clean L1 cache block.

896 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on June 14,2021 at 17:38:11 UTC from IEEE Xplore. Restrictions apply.

(ACK-PUTS) to the L1 cache (). The acknowledgement
from L2 CTLR serves as the permission to discard the
evicted, clean block (DATA-PUTS) in the L1 cache. Accord-
ingly, L1 CTLR drops the evicted block () and intimate
the L2 cache bank with an UNBLOCK message (). After
receiving the UNBLOCK message, L2 CTLR removes the L1
cache entry from the corresponding sharer list of that block.

Algorithm 1.Working of LSR-FD Unit

Input: Status of embedded trace buffer (ETB) and local virtual
channels (VCs), modifiedmessage/packet header

Output: Local store or reply, block forward and drop
Notation:

1 m: Number of trace buffer entries (ETB)
2 n: Number of virtual channels (VC)
3 ti: Time threshold of VCi j 0 � i < n
4 Pnew

local: Packet entered through local input port
5 Pstored

ETBi
: Packet stored in ETBi j 0 � i < m

6 Pj
VCi

: Packet in VCi j 0 � i < n, j 2 fnew; storedg
7 if Pnew

local½Clean� ¼¼ SET then
8 /* Local store of DATA-PUTS [4.2] */
9 Enqueue ETBi to store Pnew

local

10 Increment i for next store
11 else
12 if Pnew

VCi
½Evicted� ¼¼ SET then

13 /* Local store of DATA-PUT(O/M) [4.1] */
14 ti ¼ 64 _ 128 _ : : : _ 1024
15 Disable VA and SA for Pnew

VCi

16 else if Pnew
VCi

½Miss� ¼¼ SET then
17 /* Local reply of GET(S/X) [4.3] */
18 for 8ETBj j ETBj 6¼ NULL do
19 if Pstored

ETBj
½Addr� ¼¼ Pnew

VCi
½Addr� then

20 Dequeue ETBj to send Pstored
ETBj

21 Deallocate VCi to drop Pnew
VCi

22 for 8VCk j tk > 0 do
23 if Pstored

VCk
½Addr� ¼¼ Pnew

VCi
½Addr� then

24 tk ¼ 0
25 Pstored

VCk
½Src� ¼ Pnew

VCi
½Dest�

26 Pstored
VCk

½Dest� ¼ Pnew
VCi

½Src�
27 Enable VA and SA for Pstored

VCk

28 Deallocate VCi to drop Pnew
VCi

29 /* Defensive Vacate of DATA-PUT(O/M) [4.4] */
30 for 8VCi j VCi 6¼ NULL do
31 if 9VCi j Pstored

VCi
½Evicted� ¼¼ SET then

32 ti ¼ 0
33 Pstored

VCi
½Evicted� ¼ RESET

34 Enable VA and SA for Pstored
VCi

35 /* TT-BF of DATA-PUT(O/M) [4.4.1] */
36 for 8VCi j ti > 0 do
37 ti ¼ ti � 1
38 if ti ¼¼ 0 then
39 Pstored

VCi
½Evicted� ¼ RESET

40 Enable VA and SA for Pstored
VCi

41 /* MT-BF of DATA-PUT(O/M) [4.4.2] */
42 if Pnew

VCi
½Forward� ¼¼ SET then

43 for 8VCj j tj > 0 do
44 if Pstored

VCj
½Addr� ¼¼ Pnew

VCi
½Addr� then

45 tj ¼ 0
46 Pstored

VCj
½Evicted� ¼ RESET

47 Enable VA and SA for Pstored
VCj

48 Deallocate VCi to drop Pnew
VCi

Our second optimisation targets clean L1 cache blocks
that are discarded after eviction (DATA-PUTS). Since clean
blocks are more frequently evicted, we propose to keep
them stored to increase our chances of local reply (explained
in Section 4.3). As shown in Fig. 7b, instead of dropping
DATA-PUTS, we redirect the message towards NoC ().
We also prohibit the transfer of UNBLOCK message
towards the L2 cache bank. Since an acknowledgement is
already sent, L2 CTLR believes that the corresponding block
is discarded, and the UNBLOCK message is on the way.
Now, the challenge is to accommodate the evicted, clean L1
cache blocks in local routers, which are normally discarded.
Though we advocate that modern NoC based TCMPs use
input buffered routers and buffers (VCs) are underutilised,
but VCs are limited. With the first optimisation in Sec-
tion 4.1, underutilised VCs are already employed to store
evicted, dirty L1 cache blocks when they enter the local
router to travel for write-back. Making the clean blocks
compete with dirty blocks for the limited VCs available in
local input port defeats the purpose of accommodating
more blocks. Thus, we consider storing the evicted, clean L1
cache blocks in the unused embedded trace buffer (ETB) of
local routers. To facilitate the optimisation, all the evicted,
clean L1 cache blocks are marked with a 1-bit flag (Clean) in
their packet header as shown in Fig. 5. When a new packet
enters the local router, a 1:2 DEMUX (D) checks the Clean
flag and if found SET, routes the packet towards the ETB
(refer Fig. 4). These packets are actually evicted, clean L1
cache blocks sent to NoC by our optimisation to be locally
stored. We have re-purposed the ETB with the help of LSR-
FD unit to accommodate such incoming packets. The
detailed working of LSR-FD unit is presented in Algo-
rithm 1. All the evicted, clean L1 cache blocks are now
stored in the local routers to facilitate local reply when a
possibility appears.

4.3 Block Reply From Routers

On a cache miss, the L1 CTLR issues a GETS/GETX request
to the corresponding L2 cache bank (), as shown in
Fig. 8a. Based on the received request, L2 CTLR replies with
the block either in shared (DATA-GETS) or exclusive
(DATA-GETX) state (). Since the L2 cache is distributed,
based on the location of the corresponding L2 cache bank
and the underlying NoC congestion, reply takes an indefi-
nite time to reach L1 cache. In the worst case of an L2 cache
miss, the reply message can take even longer time.

Our next optimisation identifies GETS/GETX messages
and attempts local reply with the stored DATA-PUTS/
DATA-PUTO/DATA-PUTM messages from NoC routers
(), as shown in Fig. 8b. All the data request messages
(GETS and GETX) are marked with a 1-bit flag (Miss) in
their packet header, as shown in Fig. 5. When a new packet
enters the local router with its Miss flag SET, LSR-FD unit
attempts to generate a local reply if possible. These packets
are actually GETS/GETX request messages carrying the
address of a requested cache block. LSR-FD unit compares
the requested address with the addresses of the stored cache
blocks in trace buffer. One of the entries may have the
requested block since the stored blocks are evicted from the
same L1 cache in the recent past. If a match is found, we can

DAS ETAL.: OPPORTUNISTIC CACHING IN NOC: EXPLORINGWAYS TO REDUCE MISS PENALTY 897

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on June 14,2021 at 17:38:11 UTC from IEEE Xplore. Restrictions apply.

generate a local reply to the cache miss request with a stored
DATA-PUTS message (), as shown in Fig. 8b. The
matched block (packet) is forwarded from the trace buffer
to the local output port (refer Fig. 4). A 2:1 MUX (M) checks
the Clean flag and if found SET, knows that the packet has
come from the trace buffer. Such packets are given priority
to take the local output port for destination.

If the requested address is not found in the trace buffer,
LSR-FD unit compares it with the addresses of all the stored
blocks in the non-empty VCs. A match is possible since the
stored blocks in local input port VCs are recently evicted,
dirty L1 cache blocks. If a match is found, we can generate a
local reply to the cache miss request with a stored DATA-
PUTO/DATA-PUTMmessage (), as shown in Fig. 8b. LSR-
FD unit swaps the source and destination of the matched
block (packet) with the request packet (GETS/GETX) and
drop the GETS/GETX packet as given in Algorithm 1. The
new destination of the matched block (packet) is the same L1
cache from where it was evicted. The stored packet is now
enabled for VC and switch arbitration, which were disabled
earlier to keep it stored in the local router. Since the destina-
tion (L1 cache) is connected to the very same local router,
such packets get ejected through the local output port. Avoid-
ing on-chip travel (also off-chip travel in case of an L2 cache
miss) to fetch a requested block (DATA-GETS/DATA-GETX)
significantly reduces L1 cache miss penalty. In realisation, the
proposed optimisations satisfy a GETS/GETX request with a
matching DATA-PUTS/DATA-PUTO/DATA-PUTM mes-
sage stored in the local router (in VCs or in embedded trace
buffer (ETB)).

4.4 Block Forward and Drop From Routers

As we store evicted L1 cache blocks in the underutilised
VCs and unused ETB of the local NoC routers, we face two
key challenges. First, at a time during NoC congestion
(when the packet injection rate is high), keeping the VCs
occupied with stored blocks may create VC unavailability
for incoming packets. Second, an evicted block that is now
stored in the local router may be requested by others in the
L2 cache bank resulting in the delay of their execution. Since
our work is all about opportunistic caching, we take all the
necessary steps to make sure that the proposed local store
and reply does not hamper the usual NoC communication.

If a new packet can not be injected into the local router
due to VC unavailability, we employ a Defensive Vacate
approach to identify one of the VCs to be vacated where an
evicted L1 cache block is stored. When all the VCs are full,

Defensive Vacate dictates that if any one of the VCs contains
a stored block, that VC needs to be vacated. When multiple
VCs have stored blocks, the oldest of them is vacated. Defen-
sive Vacate is given in lines 29-34 of Algorithm 1. The identi-
fied VC contains an evicted, dirty L1 cache block since clean
blocks are stored in the ETB. To vacate the identified VC,
we must forward the stored, dirty block towards its destina-
tion for write-back. LSR-FD unit simply enables the VC and
switch arbitration for the stored block, which were disabled
when we kept it stored in the VC. This action ensures that
the corresponding VC will be free in subsequent cycles and
hence make room for new injection. NoC congestion can
create scenarios like hotspots and Head-of-Line (HoL)
blocking. In such cases, vacating all the VCs instead of just
one, having stored blocks may revive the network. How-
ever, run-time detection of scenarios like HoL blocking is
difficult [17]. Nevertheless, Defensive Vacate can be modified
accordingly when such a direction is explored.

Even in the absence of injection pressure, the status of a
stored block (both clean and dirty) may be expected in the
L2 cache bank by other requesters to continue their execu-
tion. Since L2 CTLR is expecting a reply (UNBLOCK/
DATA-PUTO/DATA-PUTM), it makes all the requester
wait for the status. Trace buffer accommodates evicted,
clean L1 blocks in a small circular queue (refer Fig. 4) and
hence such blocks do not stay stored for very long. When
the trace buffer is full, the oldest clean block is replaced by
an incoming block. When the oldest clean block is replaced
(dropped), an UNBLOCK message is sent to the corre-
sponding L2 cache bank for necessary action (explained in
Section 4.5). To make sure that the wait for evicted, dirty
blocks in the corresponding L2 cache bank is not too long,
we propose the following two techniques.

4.4.1 Time-Triggered Block Forward (TT-BF)

An evicted, dirty L1 cache block is stored in the local router
until a certain time threshold which is decided based on the
re-reference time of evicted blocks (refer Fig. 3). We add a
threshold counter (ti) correspond to eachVCof the local input
port, as shown in Fig. 4.When a counter reaches the threshold,
the stored block (packet) in the corresponding VC is enabled
for VC and switch arbitration. This action triggers forwarding
of the stored, dirty block towards its destination for write-
back. Till the time a block is locally stored, access requests for
the block by others is delayed by a time equal to the threshold
in the corresponding L2 cache bank.

4.4.2 Message-Triggered Block Forward (MT-BF)

An evicted, dirty L1 cache block is stored in the local router
until it is requested by someone in the corresponding L2 cache
bank. In such a case, we make L2 CTLR resend an acknowl-
edgement (ACK-PUTO/ACK-PUTM) for the requested
block. Such acknowledgements are marked with a 1-bit flag
(Forward) in their packet header, as shown in Fig. 5. An
acknowledgement was already sent, and the L2 CTLR is now
waiting for the block for write-back. We send the second
acknowledgement to inform that the block is requested by
someone. When the second acknowledgement arrives at the
destination router (local router of the stored block), the
corresponding stored block is enabled for VC and switch

Fig. 8. L1 cache miss on a requested block.

898 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on June 14,2021 at 17:38:11 UTC from IEEE Xplore. Restrictions apply.

arbitration. LSR-FD unit takes the decision when it finds the
Forward flag SET for an incoming packet, as given in lines 41-
48 of Algorithm 1. Then, the second acknowledgement
reaches L1 CTLR,where it is simply ignored.

4.5 Cache Coherence

As the shared L2 cache is involved in the proposed optimi-
sations, we have to make sure that cache coherency is main-
tained throughout. After sending an acknowledgement
(ACK-PUTO/ACK-PUTM), the L2 CTLR waits for the cor-
responding DATA-PUTO/DATA-PUTM message to initi-
ate write-back. Since the evicted, dirty L1 cache block is
coming for write-back, it must be the only copy in the entire
system. Therefore, as long as evicted, dirty L1 cache blocks
are stored in local routers, no special action is needed to
maintain coherence in the system. A write-back is not neces-
sary for evicted, clean L1 cache blocks. Hence, after sending
an acknowledgement (ACK-PUTS), the L2 CTLR waits for
an UNBLOCK message to remove the corresponding entry
from the sharer list. While the L2 CTLR waits for the incom-
ing UNBLOCK message, new requests for the correspond-
ing clean block may be serviced. A new request for shared
access (GETS) to the block is granted, while a request for
exclusive access (GETX) is put on wait. Though multiple
copies of the block may exist in the system, all of them are
clean, and hence the cache block is coherent. Thus, no spe-
cial action is needed for coherence when an evicted, clean
L1 cache block is kept stored in the local router.

When we attempt a local reply of GETS/GETX message
with the stored DATA-PUTS/DATA-PUTO/DATA-PUTM
message, we need to maintain coherence. As shown in
Fig. 9a, when a local reply reaches L1 CTLR (), a special
coherence message CANCEL-PUT is initiated towards the
L2 cache bank (). With that CANCEL-PUT message, L2
CTLR learns that the corresponding UNBLOCK/DATA-
PUTO/DATA-PUTM message will not come. Hence, L2
CTLR rolls back the state of the corresponding block as if
the eviction never happened. This way, we preserve the
state of an evicted L1 cache block to maintain coherence.
However, there can be a scenario where a write request
(GETX) that requires a block with exclusive access is locally
replied by a stored block that has shared access (DATA-
PUTS). In such a scenario, we make sure that the L1 CTLR
take permission from the L2 CTLR before granting the write
request.

When a VC is to be vacated, the corresponding dirty
block stored in that VC is forwarded for write-back, hence
no coherence violation. When an entry in the trace buffer
needs to be deleted, the stored clean block is dropped; but
the corresponding L2 cache bank needs to be intimated to
maintain coherence. Hence, to drop a clean block stored in
the trace buffer, we send the block (DATA-PUTS) back to
the same L1 cache from where it was evicted (), as shown
in Fig. 9b. After receiving the DATA-PUTS message, L1
CTLR drops the block () and generates an UNBLOCK
message for the L2 cache bank (). With the arrival of the
UNBLOCKmessage, L2 CTLR removes the sharer and com-
pletes the process of clean (shared) block eviction.

5 PERFORMANCE ANALYSIS

We consider the following architectures for evaluation:

� Baseline:Without any optimisation.
� DB-TTBF: Store evicted, dirty L1 cache blocks in

local router VCs and use TTBF.
� DB-MTBF: Store evicted, dirty L1 cache blocks in

local router VCs and use MTBF.
� CDB-TTBF: Store evicted, clean as well as dirty L1

cache blocks in local router VCs. Use TTBF for dirty
blocks and drop clean blocks.

� CDB-MTBF: Store evicted, clean as well as dirty L1
cache blocks in local router VCs. Use MTBF for dirty
blocks and drop clean blocks.

� CDB-ETB-TTBF: Store evicted, clean L1 cache blocks
in ETB and dirty blocks in local router VCs. Use
TTBF for dirty blocks and drop clean blocks.

� CDB-ETB-MTBF: Store evicted, clean L1 cache blocks
in ETB and dirty blocks in local router VCs. Use
MTBF for dirty blocks and drop clean blocks.

5.1 Simulation Framework and Workloads

The baseline and proposed architectures are modelled on
event-driven gem5 simulator [18]. Our system configuration
is similar to Intel Xeon Phi Processor 7235 [19] with shared
and distributed L2 cache (LLC). Due to certain limitations in
gem5, we could not model the exact cache configuration of
Intel Xeon Phi Processor 7235. However, our cache configura-
tion is not chosen to give undue advantage to the proposed
optimisations. Rather, it challenges the optimisations with an
L1 cache hit rate of around 90-95 percent for all the bench-
marks we evaluate. Our system configuration is presented in
Table 1 for reference. We modify GARNET [20] module in
gem5 to implement the proposed router microarchitecture.
We modify MOESI_CMP_directory protocol in Ruby inside
gem5 to implement andmaintain cache coherence.

To evaluate and analyse the performance, we consider
multi-programmed as well as multi-threaded applications.
For multi-programmed workloads, we consider SPEC
CPU2006 benchmarks [14] to mimic a modern NoC based
TCMP running multiple applications in parallel. We create
different workload mixes based on the re-reference time of
the benchmarks (refer Fig. 3), as given in Table 2. same is a
homogeneous workload mix that runs 64 copies of the same
benchmark on all the 64 cores (1 � 64: 64). low, med and high
workload mixes are created by grouping benchmarks with

Fig. 9. Messages to maintain cache coherence.

DAS ETAL.: OPPORTUNISTIC CACHING IN NOC: EXPLORINGWAYS TO REDUCE MISS PENALTY 899

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on June 14,2021 at 17:38:11 UTC from IEEE Xplore. Restrictions apply.

low, medium and high re-reference times, respectively.
These mixes run a random combination of 4 different
benchmarks from their groups with 16 copies each (4 � 16:
64). By separately profiling each benchmark, we choose a
smaller representative window of instructions to have a
tractable simulation time. We create a total of 45 workload
mixes (15 homogeneous, i.e., same, and 10 each for low, med
and high) to extensively evaluate the proposed architectures.

For multi-threaded workloads, we consider PARSEC 3.0
benchmarks [15] to mimic a modern NoC based TCMP run-
ning multiple threads of a single application. We identify a
mix of 6 computation-intensive, communication-intensive
and memory-intensive benchmarks, as given in Table 2.
dedup has huge working sets (computation-intensive)
whereas the working set for streamcluster can be varied.
blackscholes has negligible communication whereas ferret is
very communication-intensive. canneal has the most
demanding memory behaviour (memory-intensive) and so
on. These benchmarks are run individually as a 64-thread
workload on all the 64 cores of the TCMP (1 thread/core).
We consider sim-medium input set of PARSEC 3.0 and evalu-
ate the performance on region-of-interest. Altogether, we
have 10 workloads to evaluate and analyse the perfor-
mance, 4 multi-programmed benchmark mix and 6 multi-
threaded benchmarks. For a relative comparison, all the
results are normalised with respect to the baseline
architecture.

5.2 Result Analysis and Discussion

L1 Cache Miss Penalty. It is defined as the number of cycles
required to replace an existing cache block in L1 with an
incoming block. L1 cache miss penalty directly reflects the
effectiveness of the proposed local store and reply optimisa-
tion. Fig. 10 shows the normalised L1 cache miss penalty

with respect to the baseline architecture. With local replies,
the proposed architectures reduce the L1 cache miss penalty
for all the simulated workload mixes. In general, CDB-ETB-
TTBF and CDB-ETB-MTBF architectures perform better
compared to others. With more blocks (both clean and dirty)
locally stored in more space (ETB and VCs), CDB-ETB-TTBF
and CDB-ETB-MTBF has more scope for local reply (hits)
on re-reference. CDB-TTBF and CDB-MTBF architectures
also store both clean and dirty blocks in local NoC routers,
but the storage space is limited to VCs. As a consequence,
blocks are frequently moved in and out of the VCs, which
reduces the chance of local hits. A maximum reduction of
21 percent and an average reduction of 16 percent in L1
cache miss penalty is achieved by our proposed
architectures.

Among the multi-programmed workloads, same and low
are outperforming med and high mixes as they have bench-
marks with low re-reference time of evicted L1 cache blocks
(refer Fig. 3). Whereas the miss penalty reduction in multi-
threaded workloads is relatively less when compared with
the multi-programmed counterparts. It is due to the fre-
quent sharing of data among the participating threads of a
particular workload. Keeping evicted L1 cache blocks stored
in local routers for long increases the miss penalty of other
threads waiting in the corresponding L2 cache bank. In gen-
eral, TTBF architectures (DB-TTBF, CDB-TTBF and CDB-
ETB-TTBF) perform poorly as they keep evicted, dirty
blocks stored for a certain time threshold (t) even if there
are other requesters waiting in the L2 cache bank. On the
other hand, MTBF architectures (DB-MTBF, CDB-MTBF
and CDB-ETB-MTBF) can forward stored blocks as and
when a request is received from the L2 cache bank. For

TABLE 1
Simulation Configuration

Processor 64 OoO x86 cores

L1 Cache 16KB, 4-way, 64B blocks, private, split

L2 Cache (LLC) 128KB�64 cores, 8-way, 64B blocks,
shared

Memory Bank 4; one located at each corner

Cache Coherence MOESI distributed directory

NoC 8�8 2D mesh, 128-bit flit channel
3 Virtual Networks (VNs), VN0, VN1,
VN2
2/4/6 Virtual Channels (VCs) per VN
1-flit depth control VC, 5-flit depth data
VC

Routing 2-stage routers, X-Y dimension-order
routing

Packets 1-flit for control packet, 5-flit for data
packet

Trace Buffer (ETB) 2KB/4KB/8KB per router

Benchmarks SPEC CPU2006 (multi-programmed)
PARSEC 3.0 (multi-threaded)

TABLE 2
Workload Mixes

Fig. 10. L1 cache miss penalty.

900 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on June 14,2021 at 17:38:11 UTC from IEEE Xplore. Restrictions apply.

example, can and fer workloads suffer the most while run-
ning in TTBF architectures as they have the most demand-
ing memory and communication behaviour, respectively.

Network Stall Time. It is defined as the number of cycles the
processor stalls waiting for a network packet. Network stall
time helps us to understand how storing evicted L1 cache
blocks in local routers impact the NoC communication
latency. We prefer network stall time over Packet Latency/
Network Latency as the former is a more appropriate metric
to evaluate network-related slowdown in NoC based
TCMPs [22]. Fig. 11 shows the normalised network stall time
with respect to the baseline architecture. As expected, across
all the simulated workloads, our proposed architectures sig-
nificantly reduce network stall time. With local reply from
the routers, we avoid both on-chip travel andNoC communi-
cation delay as given in Equation (1). Saving on-chip travel
time indirectly translates into reduced network stall time. A
maximum of 21 percent and an average of 18 percent reduc-
tion in network stall time is achieved by our proposed archi-
tectures. In TTBF architectures, a stored dirty block is
forwarded for write-back only after the time threshold (t)
expires. However, with MTBF architectures, a stored dirty
block is forwarded either after the time threshold (t) expires
or even earlier if a request from the corresponding L2 cache
bank is received. As a result, all theMTBF architectures expe-
rience less network stall time in general.

Usually, network stall time reduction is relatively less
for communication-intensive workloads when compared
to others. Since these workloads frequently inject packets
in the network, evicted blocks can not be stored in the
routers for long. As a consequence, their chances of local
reply reduce. Additionally, frequent store and forward of
evicted blocks increases the network latency for others.
For example, the network stall time reduction in high is
minimum when compared with other multi-programmed
workloads. This is because high workload contains leslie3d
and lbm benchmarks which have very high packet injec-
tion rate. Similarly, being the most communication-inten-
sive multi-threaded workload, fer experience less
reduction in network stall time. Interestingly, bla experi-
ences the lowest reduction in network stall time even
though it has a negligible communication pattern. This is
due to the fact that bla is not able to get the benefit of local
store and reply. Even though the average re-reference
time of bla is one of the lowest (refer Fig. 3), the number
of re-references are low. So, evicted blocks just stay in the
local router for some time and then get forwarded or
dropped. To mitigate the negative effect of occupying
VCs, Dynamically Allocated Multiple Queue (DAMQ)
buffering schemes can be explored [23].

System Speedup. We use Instructions Per Cycle (IPC) to
compare system speedup between baseline and the pro-
posed architectures for multi-programmed workloads
(SPEC CPU2006). Whereas, for multi-threaded workloads
(PARSEC 3.0), we use execution time to compare system
speedup. We prefer execution time for multi-threaded
workloads as they have synchronisation primitives like
locks and barriers, which brings variation in IPC. Fig. 12
shows the normalised system speedup with respect to the
baseline architecture. From the improvements in L1 cache
miss penalty and network stall time, the increase in sys-
tem speedup with the proposed architectures is intuitive.
We achieve a maximum system speedup of 19 percent
and an average system speedup of 14 percent for the pre-
sented workloads. Usage of trace buffers in CDB-ETB-
TTBF and CDB-ETB-MTBF architectures significantly
improves overall system performance with frequent local
replies from the NoC routers.

5.3 Qualitative Comparison With An Existing Work

Jindal et al. [21], [24] proposed to reuse trace buffer embed-
ded in the processor as a victim cache [25] to improve sys-
tem performance. The key idea is to re-purpose the trace
buffer (ETB) as a set-associative cache called VCache to hold
recently evicted blocks of L1 data cache. VCache indirectly
increases the size of L1 data cache as they are mutually
exclusive. A block requested by the processor is simulta-
neously searched in both the L1 data cache and VCache. If
the requested block is not found in L1 data cache but the
VCache, it is brought into the L1 data cache by swapping
out another block into the VCache. The authors learn that in
simultaneous multithreading (SMT), competing threads
may flush cache blocks of each-other from the VCache
resulting in poor performance. Thus, they propose two tech-
niques to partition the VCache among the participating
threads, which promotes cooperation. These two techniques
attempt to increase VCache utilisation and improve perfor-
mance. The concept of VCache and our proposed TTBF/
MTBF architectures are complementary in nature and can
be implemented together. However, there are a few impor-
tant differences between VCache and the proposed TTBF/
MTBF:

� VCache does not differentiate between clean and dirty
cache blocks and flushes them immediately with
incoming blocks. Whereas, TTBF/MTBF segregates
clean and dirty blocks in such a way that dirty blocks
are cached in VCs until a certain time threshold. This
optimisation delays/avoids expensive writes to the L2
cache bank. Hence, TTBF/MTBF indirectly uses VCs

Fig. 11. Network stall time. Fig. 12. System speedup.

DAS ETAL.: OPPORTUNISTIC CACHING IN NOC: EXPLORINGWAYS TO REDUCE MISS PENALTY 901

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on June 14,2021 at 17:38:11 UTC from IEEE Xplore. Restrictions apply.

like a write buffer [26] and ETB like a victim cache to
improve systemperformance.

� VCache does not talk about coherence. Cache blocks
stored in VCache can be either in a shared or exclu-
sive state. Frequent data sharing among different
cores (threads) is more prevalent in multi-threaded
applications. VCache is evaluated only for multi-pro-
grammed applications (SPEC CPU2006), and the dis-
cussion about shared memory and the associated
coherence is not included. Whereas, TTBF/MTBF
provides a detailed discussion about how coherence
is maintained during local store, reply, forward and
drop of evicted L1 cache blocks. TTBF/MTBF also
adds a new coherence message to make sure that the
states of evicted L1 cache blocks are preserved.

� VCache is set-associative where multiple evicted
L1 data cache blocks will map into the same set.
This may result in a frequent flush of stored
blocks from VCache, which hampers performance.
On the other hand, TTBF/MTBF uses VCs and
ETB on NoC routers like a fully-associative cache.
Hence, there are less conflicts and blocks can be
retained longer, which improves chances of local
reply from routers.

� VCache works as an extension of L1 data cache, and
hence it only stores evicted data cache blocks.
Whereas TTBF/MTBF stores all the evicted blocks,
both of data and instruction L1 caches. Additionally,
since TTBF/MTBF use VCs as well as ETB of NoC
routers to store evicted L1 cache blocks, they can
accommodate more evicted blocks simultaneously.

VCache is originally proposed for LEON3 Processor [27]
which can be realised for up to 16 CPU cores. To make a fair
comparison with TTBF/MTBF architectures, we faithfully
model a 64-core equivalent VCache architecture. Fig. 13
shows the overall system performance comparison of
VCache and the proposed TTBF/MTBF architectures.

CDB-ETB-TTBF and CDB-ETB-MTBF performs better than
VCache in almost all the simulated workloads. Simulta-
neously accommodating more evicted L1 cache blocks, fewer
conflicts during block store, and longer retention of stored
blocks are the key factors. However, VCache performs better
thanCDB-ETB-TTBF for can and ferworkloads.With themost
demanding memory and communication behaviour, can and
fer suffers inCDB-ETB-TTBF that keeps evicted, dirty L1 cache
blocks stored for a certain time threshold (t) even if other
requesters are waiting in the corresponding L2 cache bank.
When compared to VCache, an average of 4 and 8 percent
improvement in system speedup is seen for CDB-ETB-TTBF
andCDB-ETB-MTBF, respectively.

6 SENSITIVITY AND OVERHEAD ANALYSIS

6.1 Impact of Number of VCs

Our first optimisation requires evicted, dirty L1 cache
blocks to be stored in VCs of the local input port. Hence, we
explore the impact of the number of VCs/VN in the pro-
posed architectures. For all the results discussed so far, we
have considered 4 VCs/VN (as presented in Table 1). How-
ever, Figs. 14a and 14b shows how varying the number of
VCs/VN impact the overall system performance. We have
given the results of only CDB-ETB-TTBF and CDB-ETB-
MTBF architectures as they have the best performance in
their respective groups (TTBF and MTBF groups). It is
almost trivial that increasing the number of VCs/VN will
improve system performance. However, an interesting
observation is the performance of architectures with only 2
input port VCs/VN (CDB-ETB-TTBF-2VC and CDB-ETB-
MTBF-2VC). The main reason for a performance gain
despite having only 2 VCs/VN in the local input port is the
presence of ETB. A good number of re-references are locally
replied with the stored clean blocks from ETB that contrib-
utes to the improvement in overall system performance.

6.2 Impact of Trace Buffer Size

Our second optimisation requires evicted, clean L1 cache
blocks to be stored in the embedded trace buffer (ETB) of
NoC routers. Hence, we explore the impact of ETB size in
the proposed architectures. For all the results discussed so
far, we have considered size of ETB as 2KB (usually the min-
imum size). However, Figs. 15a and 15b shows how varying
the size of ETB impact the overall system performance.
With our optimisation, ETB in NoC routers can be viewed
as a cache that holds recently evicted, clean L1 cache blocks.

Fig. 13. Comparison with VCache [21] architecture.

Fig. 14. Impact of number of VCs.

902 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on June 14,2021 at 17:38:11 UTC from IEEE Xplore. Restrictions apply.

As we increase the size of the ETB, we get appropriate
improvement in the system performance.

6.3 Impact of Time Threshold

To make sure that the evicted, dirty L1 cache blocks are not
stored for too long and penalise others, we proposed TTBF
that uses a time threshold (t). For all the results discussed
so far with TTBF architectures (DB-TTBF, CDB-TTBF and
CDB-ETB-TTBF), we have considered t as 256 cycles. Intui-
tively, the optimal value of t should be 12,150 cycles, equal
to the average re-reference time of evicted L1 cache blocks
(refer Fig. 3). However, keeping a block stored for such a
long duration delays execution of others who are expecting
the block in the corresponding L2 cache bank. This scenario
is more prevalent in multi-threaded workloads, where a lot
of data sharing happens among the participating cores.
Hence, we perform an empirical study to find the optimal
value of t. We use an incremental approach and begin from
the smallest re-reference time of evicted L1 cache blocks.
Fig. 16 shows that the smallest re-reference time of all the
benchmarks we have considered is under 80 with an aver-
age of 48 cycles. So, we begin with the value of t as 64 cycles
and incrementally change it to 128, 256, 512 cycles and
more. Fig. 17 shows how varying the value of t impact over-
all system performance. Based on the observation in Fig. 17,
we considered t as 256 for our evaluation.

However, for all the results with MTBF architectures
(DB-MTBF, CDB-MTBF and CDB-ETB-MTBF), we kept t as
16384 cycles; smallest power of 2 which is large enough for
the average re-reference time (12,150 cycles). This is not
optimal rather an intuitive time threshold to increase our
chances of local reply. Now, an evicted, dirty L1 cache block
is forwarded towards destination either after getting a sec-
ond acknowledgement for write-back (refer Section 4.4.2) or
after 16,384 cycles, whichever is earlier. Thus, MTBF archi-
tectures optimise performance by triggering a block for-
ward based on a message as well as a time threshold.

6.4 Storage, Area, and Power Overhead

We use 4 additional bits (Evicted, Clean,Miss and Forward) in
the message/packet header (refer Fig. 5) to facilitate the
working of LSR-FD unit. Our NoC uses 128-bit flit channel
(refer Table 1) and a typical packet header (head flit) is
much smaller (�64 bits). So, we can accommodate the addi-
tional 4 bits in the head flit without any storage overhead.

Since LSR-FD unit works in parallel to the RC unit (refer
Section 4.1), it is not in the critical path of execution. In
Algorithm 1, lines 7-28, 29-34, 35-40 and 41-48 can execute
in parallel to complete the working of LSR-FD unit in time
to avoid the critical path. However, the addition of LSR-FD
unit in NoC routers contributes to the area and power over-
head. As we have 4 VCs/VN and the local input port
requires to have a time threshold counter (ti) for each VC,
we add binary down counters.2 Among the 3 VNs (refer
Table 1), VN2 carries evicted cache blocks. Hence, we add
only four 8-bit binary down counters (1 counter/VC for
VN2) in TTBF architectures to count from 255 down to 0.
Whereas, 14-bit binary down counters are added in MTBF
architectures to count from 16,383 down to 0. As a result,
the addition of these counters also contributes to the area
and power overhead. The MUX-DEMUX pair of M and D
(refer Fig. 4) and the connecting links also contribute to a
negligible area and power overhead. Embedded trace buffer
(ETB) was always present in NoC routers in power-gated
mode. So, ETB does not contribute to the area but only to
the power overhead. We use McPAT [28] at 22nm processor
technology and feed the configuration and output files of
gem5 [18] to get the area, leakage and dynamic power over-
heads. We present the percentage increase/decrease in
overhead for CDB-ETB-TTBF and CDB-ETB-MTBF architec-
tures compared to the baseline in Table 3. While we get neg-
ligible area and leakage power overhead due to the

Fig. 15. Impact of trace buffer size.

Fig. 16. Smallest re-reference time.

Fig. 17. Impact of time threshold. 2. An N-bit binary down counter counts from 2N � 1 to 0.

DAS ETAL.: OPPORTUNISTIC CACHING IN NOC: EXPLORINGWAYS TO REDUCE MISS PENALTY 903

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on June 14,2021 at 17:38:11 UTC from IEEE Xplore. Restrictions apply.

additional circuits, dynamic power is reduced due to the
significant improvements in overall system performance.

During post-silicon debug and validation, ETB is typi-
cally used for functional test. ETB requires to monitor inter-
nal signals in real time for functional bugs. Hence, ETB
operates at full system clock frequency, and there is no
additional delay while using it in our optimisation. How-
ever, even though the usage of ETB post production is very
rare, but it is possible. In such a scenario, during the time
the ETB is used for debug and validation, CDB-ETB-TTBF
and CDB-ETB-MTBF architectures will behave like CDB-
TTBF and CDB-MTBF architectures, respectively.

7 RELATED WORKS

Existing literature explored different possibilities for effi-
cient utilisation of NoC resources. Since our work is about
using NoC as a storage, our discussion is limited to the
related works where NoC is projected in that light. One of
the first works that attempted to change the abstraction of
NoC from communication to storage is by Mizrahi et al.
[29]. They advocated that NoC can be included in the mem-
ory hierarchy by placing a small cache in the routers. Going
forward in the same line, Eisley et al. [30] decoupled cache
from coherence and proposed to keep only the coherence
directories in NoC. Using the stored directories, they
designed a coherence protocol within the NoC routers.
Yanamandra et al. [31] combined the advantages of both
and proposed to keep frequently used cache blocks along
with the coherence directories in NoC routers. There are
other significant works that are focused towards NoC aware
cache and coherence implementations [32], [33], [34]. How-
ever, almost all the proposed works employed additional
storage in NoC routers.

A new direction has gained popularity where the unused
DfD hardware that were added for post-silicon debug and
validation are viewed as a storage. For example, Jindal et al.
[21], [24] have re-purposed DfD hardware for improving
the cache performance by using them as a victim cache. DfD
hardware are also used to store critical information for run-
time verification and system security [35], [36]. Specifically,
in the context of NoC, embedded trace buffers (ETBs) in
routers are used as extended VCs to improve communica-
tion [37], [38]. However, extending VCs might not be benefi-
cial in input buffered NoC routers, where existing VCs are
already underutilised [3], [4], [5] (refer Section 2.2).

Sanchez et al. [6] provided a key insight that NoC is
responsible for 60–75 percent of the miss latency in TCMPs.
They argued that as NoC based TCMPs continue to scale,
considering NoC and memory hierarchy together is the
way forward. In a promising new attempt, Das et al. [39],

[40] recently proposed to exploit underutilised VCs of local
NoC routers to store some evicted cache blocks. They
attempted to reply future references to such blocks from the
local routers and reduce miss penalty. A similar work on
NoC based consumer electronics is also available [41]. How-
ever, none of these works considered all the evicted L1
cache blocks. In this work, we extend [39] to store evicted,
dirty L1 cache blocks in VCs and clean L1 cache blocks in
ETB of local NoC routers. Future references to recently
evicted L1 cache blocks are replied either from the VCs or
the ETB.

8 CONCLUSION

In this work, we explored opportunities to store recently
evicted L1 cache blocks in NoC to reduce cache miss pen-
alty. We identified underutilised input port buffers and
unused embedded trace buffers as potential storage space
in NoC routers. We proposed multiple architectures to store
recently evicted cache blocks in NoC routers and facilitate
direct reply when such blocks are re-referenced. We also
proposed two techniques to forward stored, dirty cache
blocks for write-back and a technique to drop stored, clean
cache blocks. To preserve the state of evicted cache blocks
and maintain coherence, we also propose an additional
coherence message. We experimentally validated that the
proposed architectures have the potential to reduce cache
miss penalty and improve overall system performance.
Since the proposed optimisations are on NoC, they can be
easily integrated into any existing optimisation in the
memory.

REFERENCES

[1] International technology roadmap for semiconductors, 2015.
[Online]. Available: https://www.semiconductors.org/resources/
2015-international-technology- roadmap-for-semiconductors-itrs/

[2] Intel Xeon Phi 72x5 processor family, 2017. [Online]. Available:
https://ark.intel.com/content/www/us/en/ark/products/
series/132784/inte l-xeon-phi-72x5-processor-family.html

[3] N. Barrow-Williams, C. Fensch, and S. Moore, “A communication
characterisation of Splash-2 and Parsec,” in Proc. IEEE Int. Symp.
Workload Characterization, 2009, pp. 86–97.

[4] P. Gratz and S. W. Keckler, “Realistic workload characterization
and analysis for networks-on-chip design,” in Proc. 4th Workshop
Chip Multiprocessor Memory Syst. Interconnects, 2010, pp. 1–10.

[5] R. Hesse, J. Nicholls, and N. E. Jerger, “Fine-grained bandwidth
adaptivity in networks-on-chip using bidirectional channels,” in
Proc. IEEE/ACM Sixth Int. Symp. Netw.-on-Chip, 2012, pp. 132–141.

[6] D. Sanchez, G. Michelogiannakis, andC. Kozyrakis, “An analysis
of on-chip interconnection networks for large-scale chip multi-
processors,” ACM Trans. Archit. Code Optimization, vol. 7, no. 1,
pp. 1–28, 2010.

[7] A. Sodani et al., “Knights landing: Second-generation intel xeon phi
product,” IEEEMicro, vol. 36, no. 2, pp. 34–46,Mar.–Apr. 2016.

[8] J. Balkind et al., “Openpiton: An open source manycore research
framework,” in Proc. Twenty-First Int. Conf. Architectural Support
Program. Lang. Operating Syst., 2016, pp. 217–232.

[9] B. K. Daya et al., “Scorpio: A 36-core research chip demonstrating
snoopy coherence on a scalable mesh NoC with in-network order-
ing,” in Proc. ACM/IEEE 41st Int. Symp. Comput. Archit., 2014,
pp. 25–36.

[10] B. K. Daya, L.-S. Peh, and A. P. Chandrakasan, “Quest for high-
performance bufferless NoCs with single-cycle express paths and
self-learning throttling,” in Proc. 53nd ACM/EDAC/IEEE Des. Auto-
mat. Conf., 2016, pp. 1–6.

[11] G. Michelogiannakis, D. Sanchez, W. J. Dally, and C. Kozyrakis,
“Evaluating bufferless flow control for on-chip networks,” in Proc.
Fourth ACM/IEEE Int. Symp. Netw-on-Chip, 2010, pp. 9–16.

TABLE 3
Overhead Compared to the Baseline

Overhead CDB-ETB-TTBF CDB-ETB-MTBF

Area " 2.23% " 2.58%
Static (Leakage) Power " 3.71% " 3.94%
Dynamic Power # 5.06% # 6.12%

904 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on June 14,2021 at 17:38:11 UTC from IEEE Xplore. Restrictions apply.

https://www.semiconductors.org/resources/2015-international-technology- roadmap-for-semiconductors-itrs/
https://www.semiconductors.org/resources/2015-international-technology- roadmap-for-semiconductors-itrs/
https://ark.intel.com/content/www/us/en/ark/products/series/132784/inte l-xeon-phi-72x5-processor-family.html
https://ark.intel.com/content/www/us/en/ark/products/series/132784/inte l-xeon-phi-72x5-processor-family.html

[12] B. Vermeulen, “Design-for-debug to address next-generation soc
debug concerns,” in Proc. IEEE Int. Test Conf., 2007, p. 1.

[13] W. Dally and C. Seitz, “Deadlock-free message routing in multipro-
cessor interconnection networks,” IEEE Trans. Comput., vol. C-36,
no. 5, pp. 547–553,May 1987.

[14] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM
SIGARCH Comput. Archit. News, vol. 34, no. 4, pp. 1–17, 2006.

[15] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in Proc. 17th
Int. Conf. Parallel Architectures Compilation Techniq., 2008, pp. 72–81.

[16] R. Abdel-Khalek and V. Bertacco, “Post-silicon platform for the
functional diagnosis and debug of networks-on-chip,” ACM
Trans. Embedded Comput. Syst., vol. 13, no. 3s, 2014, Art. no. 112.

[17] J. Duato, I. Johnson, J. Flich, F. Naven, P. Garcia, and
T. Nachiondo, “A new scalable and cost-effective congestion
management strategy for lossless multistage interconnection
networks,” in Proc. 11th Int. Symp. High-Perform. Comput. Archit.,
2005, pp. 108–119.

[18] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Comput.
Archit. News, vol. 39, no. 2, pp. 1–7, 2011.

[19] Intel Xeon Phi Processor 7235, 2017. [Online]. Available: https://
ark.intel.com/content/www/us/en/ark/products/128694/
intel-xeon- phi-processor-7235–16gb-1-3-ghz-64-core.html

[20] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “Garnet: A
detailed on-chip network model inside a full-system simulator,”
in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw., 2009, pp. 33–42.

[21] N. Jindal, P. R. Panda, and S. R. Sarangi, “Reusing trace buffers as
victim caches,” IEEE Trans. Very Large Scale Integration Syst., vol.
26, no. 9, pp. 1699–1712, Sep. 2018.

[22] O. Mutlu and T. Moscibroda, “Stall-time fair memory access
scheduling for chip multiprocessors,” in Proc. 40th Annu. IEEE/
ACM Int. Symp. Microarchit., 2007, pp. 146–160.

[23] J. Liu and J. G. Delgado-Frias, “DAMQ self-compacting buffer
schemes for systems with network-on-chip,” in Proc. Int. Conf.
Comput. Des., 2005, pp. 97–103.

[24] N. Jindal, P. R. Panda, and S. R. Sarangi, “Reusing trace buffers to
enhance cache performance,” in Proc. Des., Automat. Test Eur.
Conf. Exhib., 2017, pp. 572–577.

[25] N. P. Jouppi, “Improving direct-mapped cache performance by
the addition of a small fully-associative cache and prefetch buf-
fers,” ACM SIGARCH Comput Archit. News, vol. 18, no. 2SI, pp.
364–373, 1990.

[26] M. A. Mills Jr and L. M. Crudele, “Write buffer,” US Patent
4805098, Feb. 14, 1989.

[27] LEON3 Processor, 2017. [Online]. Available: https://www.
gaisler.com/index.php/products/processors/leon3

[28] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proc. the
42ndAnnu. IEEE/ACM Int. Symp.Microarchit., 2009, pp. 469–480.

[29] H. E. Mizrahi, J.-L. Baer, E. D. Lazowska, and J. Zahorjan,
“Introducing memory into the switch elements of multiprocessor
interconnection networks,” in Proc. 16th Annu. Int. Symp. Comput.
Archit., 1989, pp. 158–166.

[30] N. Eisley, L.-S. Peh, and L. Shang, “In-network cache coherence,”
in Proc. 39th Annu. IEEE/ACM Int. Symp. Microarchit., 2006, pp.
321–332.

[31] A. Yanamandra, M. J. Irwin, V. Narayanan, M. Kandemir, and
S. H. K. Narayanan, “In-network caching for chip multiproc-
essors,” in Proc. Int. Conf. High-Perform. Embedded Architectures
Compilers, 2009, pp. 373–388.

[32] C. Fensch, N. Barrow-Williams, R. D. Mullins, and S. Moore,
“Designing a physical locality aware coherence protocol for chip-
multiprocessors,” IEEE Trans. Comput., vol. 62, no. 5, pp. 914–928,
May 2013.

[33] L. Huang, “Leveraging on-chip networks for efficient prediction
on multicore coherence,” in Proc. Des., Automat. Test Eur. Conf.
Exhib., 2014, pp. 1–4.

[34] W. Shu and N.-F. Tzeng, “NUDA: Non-uniform directory archi-
tecture for scalable chip multiprocessors,” IEEE Trans. Comput.,
vol. 67, no. 5, pp. 740–747, May 2018.

[35] A. Basak, S. Bhunia, and S. Ray, “Exploiting design-for-debug for
flexible soc security architecture,” in Proc. 53nd ACM/EDAC/IEEE
Des. Automat. Conf., 2016, pp. 1–6.

[36] N. Jindal et al., “Dhoom: Reusing design-for-debug hardware for
online monitoring,” in Proc. 56th ACM/IEEE Des. Automat. Conf.,
2019, pp. 1–6.

[37] S. S. Rout, M. Badri, and S. Deb, “Reutilization of trace buffers for
performance enhancement of NoC based MPSoCs,” in Proc. 25th
Asia South Pacific Des. Automat. Conf., 2020, pp. 97–102.

[38] N. Jindal, S. Gupta, D. P. Ravipati, P. R. Panda, and S. R. Sarangi,
“Enhancing network-on-chip performance by reusing trace buf-
fers,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 39, no. 4, pp. 922–935, Apr. 2020.

[39] A. Das, A. Kumar, J. Jose, and M. Palesi, “Exploiting on-chip
routers to store dirty cache blocks in tiled chip multi-processors,”
in Proc. IEEE Comput. Soc. Annu. Symp. VLSI, 2020, pp. 147–152.

[40] A. Das, A. Kumar, and J. Jose, “Reducing off-chip miss penalty by
exploiting underutilised on-chip router buffers,” in Proc. IEEE
38th Int. Conf. Comput. Des., 2020, pp. 230–238.

[41] A. Das, A. Kumar, J. Jose, and M. Palesi, “Revising NoC in
future multi-core based consumer electronics for performance,”
IEEE Consum. Electron. Mag., to be published, doi: 10.1109/
MCE.2021.3062001.

Abhijit Das (Student Member, IEEE) is currently
working toward the PhD degree with the Depart-
ment of Computer Science andEngineering, Indian
Institute of Technology,Guwahati, India. His current
research interests include performance and secu-
rity aware on-chip networks and memory hierarchy
in many-core systems. He was the recipient of the
Best Paper Candidate at ISVLSI 2020. He is cur-
rently a student member of the ACM SIGARCH,
the ACM SIGMICRO, the IEEE TCAA, and the
IEEETCuARCH communities.

Abhishek Kumar received the MTech degree in
computer science and engineering from Indian
Institute of Technology, Guwahati, India, in 2020,
where he secured the first position in the univer-
sity. He is currently with the broad area of
advance computer architecture. He was the
recipient of the Best Paper Candidate at ISVLSI
2020. He was the recipient of the Best Thesis
Award in the university for M Tech thesis. He is a
member of Technical Staff with Oracle Inc., Ben-
galuru, India.

John Jose (Member, IEEE) received the Ph.D.
degree in computer science and engineering from
the Indian Institute of Technology (IIT) Madras,
India, in 2014. He is currently an assistant profes-
sor with the Department of Computer Science and
Engineering, IIT, Guwahati, India. His research
interests include computer architecture, with a spe-
cial focus to performance optimisation related to
on-chip memory and communication aspects of
multi or many-core processors. He is a member of
ACM.

Maurizio Palesi (Senior Member, IEEE) is an
associate professor in computer engineering with
the University of Catania, Italy. His research
focuses on embedded systems with particular
emphasis on single-chip implementations based
on the network-on-chip design paradigm. He was
the guest editor of 20 special issues in top-level
journals, the general chair, and the TPC co-chair
in several international conferences and work-
shops. He is currently an associate editor for 12
international journals. He was the recipient of the

Best Paper Award at the DATE 2011 and the HiPEAC Paper Award
2014. He is member of the HiPEAC.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

DAS ETAL.: OPPORTUNISTIC CACHING IN NOC: EXPLORINGWAYS TO REDUCE MISS PENALTY 905

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on June 14,2021 at 17:38:11 UTC from IEEE Xplore. Restrictions apply.

https://ark.intel.com/content/www/us/en/ark/products/128694/intel-xeon- phi-processor-7235--16gb-1-3-ghz-64-core.html
https://ark.intel.com/content/www/us/en/ark/products/128694/intel-xeon- phi-processor-7235--16gb-1-3-ghz-64-core.html
https://ark.intel.com/content/www/us/en/ark/products/128694/intel-xeon- phi-processor-7235--16gb-1-3-ghz-64-core.html
https://www.gaisler.com/index.php/products/processors/leon3
https://www.gaisler.com/index.php/products/processors/leon3
http://dx.doi.org/10.1109/MCE.2021.3062001
http://dx.doi.org/10.1109/MCE.2021.3062001

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

