
A Novel Energy Efficient Source Routing for Mesh NoCs

Meril Rani John, Reenu James, John Jose, Elizabeth Isaac, Jobin K. Antony
Rajagiri School of Engineering and Technology, Kochi, Kerala, India

(merilrani, reenujms)@gmail.com, (johnj, elizabeth, jobinantony)@rajagiritech.ac.in

Abstract—Network on Chip (NoC) is the upcoming intercon-
nection framework for multi-core processors. In chip-multicore
processors, the performance of the underlying communication
network is determined by the efficiency of the routing logic
used in NoC routers. Distributed routing and source routing
are the two main classification of routing techniques. For
routers employing static routing policies, distributed routing
leads to redundant computations in each router and increases
complexity of routers. We analyse the existing state-of-art
source routing technique and propose a novel alternative that
makes routing process simpler and faster. Our proposed design
reduces the number of bits needed to encode the route in the
packet header, reduces the router pipeline latency and hence
allows the network to be operated at a frequency approximately
two times faster than the existing design.

Keywords-route string; route pre-computation; route extrac-
tion; routing latency

I. INTRODUCTION

As VLSI technology improves, the number of
processing cores that can be integrated on a single chip has
increased [1]. Generally, a shared bus system facilitates inter-
core communication in a multi-core processor system. This
bus-based interconnection cannot scale with the increase in
the number of cores. Network on Chip (NoC) has been
widely employed instead of traditional bus-based on-chip
interconnects for such many core systems. In NoC, trans-
mission of inter-core messages is in the form of packets.
Packets are further subdivided into sequence of flow control
units called flits. Flit is the basic unit of data transfer between
a pair of routers [2].

NoC consists of an array of routers connected by well
structured links as shown in Figure 1. The figure represents
the interaction of a processing core with a router in a 2D-
mesh topology. A Network Interface Controller (NIC) is
associated with each core that connects it to the network.
Each NoC router is connected to four of its neighbours
along the North, East, South and West directions. These
links carry data packets from one router to another [3],
[4]. Typically each processing core consists of an out-
of-order superscalar processor, a private L1 cache and a
shared distributed L2 cache bank. NoC traffic is initiated
during cache misses, coherence transactions and inter-core
synchronization messages.

Packets are forwarded from source router to destination
router based on the routing logic embedded in the NoC

Figure 1. Processing core- router interaction in a 2D-mesh topology.

router. Based on when and where routing decisions are
made, there are two types of routing; distributed routing
and source routing [1]. In distributed routing, the destination
address of the packet is embedded in the packet header. By
using this, each intermediate router determines the direction
of the next hop for the packet. Thus the path taken by a
packet towards destination is computed collectively by a
set of intermediate routers. To facilitate this, each router
contains a computing logic that compares its address with
the address of the destination of the incoming packet [5].

In source routing, the information about the whole
path from the source to the destination is pre-computed and
meaningfully encoded in the packet header. This encoded
value is used in every intermediate router to compute the
corresponding output directions [6].

Figure 2 shows a conventional NoC router with
Virtual Channels (VCs) in the input ports. These VCs consist
of buffers to accommodate incoming packets from four
different directions as well as the local core. The routing
unit determines the output port as well as the VC for the
next downstream router for each packet. The VC allocator
arbitrates amongst all packets requesting access to the same
VCs. In switch allocator, arbitration amongst all packets
requesting access to the same crossbar output is carried
out. These winning packets traverse through the crossbar
and reach their respective output ports. If there is more
than one packet requesting for the same output port, only
one packet makes the forward movement (based on switch
allocation) while others remain in the VC buffers until they
get a productive port in the subsequent clock cycles [5].

2014 Fourth International Conference on Advances in Computing and Communications

978-1-4799-4363-0/14 $31.00 © 2014 IEEE

DOI 10.1109/ICACC.2014.36

125

Figure 2. Conventional input buffered router.

In this paper, we propose a novel source routing
technique for 2D-mesh NoCs. The rest of the paper is
organised as follows. A brief description of the distributed
XY routing is covered in Section II. In Section III, we
explain the motivation for the proposed work. An energy
efficient source routing technique is proposed in Section IV.
Implementation details and experimental results are given in
Section V and we conclude our work in Section VI.

II. DISTRIBUTED XY ROUTING

XY routing is the most common static routing
algorithm used in mesh NoCs due to its simplicity and
deadlock free design [1]. It routes packets first in X-direction
(or horizontal direction) until it reaches the same column as
the destination and then in Y-direction (or vertical direction)
until it reaches the destination. The packet will take atmost
one 90°turn on its path to destination. The path consists of
zero or more number of X-hops followed by zero or more
number of Y-hops.

We have already mentioned that in distributed routing,
route computation [RC] is done at each intermediate router
by comparing the destination address of the packet with
the address of the current router. At the time of packet
generation, the packet is not aware of the path it must take
to reach the destination. In each intermediate router, the next
output port is computed by applying the XY routing method.

We will now illustrate distributed XY routing with
the help of an example. Consider a 4x4 mesh network as
shown in Figure 3. A packet is generated from router S and
is destined to router D. Based on the destination address
present in the packet header, the next downstream router
is computed as per XY routing at router S. In this case,
the East direction is selected as the output and the packet
is forwarded to the East neighbour of router S. The route
computation is repeated at every intermediate router until the
packet reaches router D. In this example, the packet takes
three hops towards East and then two hops towards North

Figure 3. Distributed XY routing.

to reach its destination router. Then the packet is forwarded
to the local core.

III. MOTIVATION

For a static routing like XY routing, the presence of
route computation logic at each router increases the router
complexity. This increases the router pipeline latency and
decreases the operating frequency of the router. In an NoC
with mesh topology and static routing like XY routing, the
routing decision (output port taken) is same whether it is
computed at the source or at the intermediate routers. A com-
putation intensive distributed XY routing can be replaced
with a light logic source routing. Using source routing,
the path information can be efficiently encoded in a packet
header with a few number of bits. Since the packet entering a
router contains the pre-computed decision about the output
port, the router design is significantly simplified. Such an
implementation will be simpler and faster as compared to
distributed algorithms.

Considering the simplicity of routing logic, a source
routed XY routing is implemented in [7]. They consider a 2
bit encoding for four different directions. In a 4x4 network,
a packet can take a maximum of six hops to reach its
destination. Hence a 12 bit pre-computed path is encoded in
the packet header at the time of source routing. If we apply
this policy in 6x6 and 8x8 networks, we need a maximum
of 20 and 28 bits respectively to encode the path.

We carefully study the existing source routing
design [7] and observe that we could encode the route
with fewer number of bits in the packet header. Reducing
the number of bits in packet header improves the energy
efficiency of the system. Rather than encoding each hop
by a 2 bit vector, we encode a minimal route string. The
next section elaborates on our proposed source routing
technique. We experimentally prove using Verilog synthesis
that the proposed source routing technique has a potential
of reducing the router pipeline latency as compared to the
state-of-art designs.

126

IV. THE PROPOSED SOURCE ROUTING

In the proposed source routing, route computation
is done only at the router which generates the packet.
The entire path information needed for the packet to reach
the destination is determined and encoded efficiently in
the packet header as a route string at the time of packet
generation. The downstream routers extract the required
output port from the route string that is already computed
at the source. Since computation of path is done only once,
it reduces the latency of the route extraction[RE] logic.

Figure 4. Route string format in the Existing Source Routing [7].

Figure 5. Route string format in the Proposed Source Routing.

Figure 4 shows the route string format in the existing
source routing (ESR) [7]. Here each element (A/B/C/D/E/F)
represents a pair of bits indicating the next output hop
direction. The encoding in ESR is as follows: 00-North, 01-
East, 10-South, 11-West. We propose a novel encoding for
the route string which consists of three sections, namely
Control Vector (3-bits), X-hops (2-bits) and Y-hops (2-bits)
as shown in Figure 5.

Figure 6. Quadrant routing and Control Vector logic.

We use quadrant routing logic [8] which uses a
3-bit Control Vector in encoding the relative direction of
the movement of the packet with respect to the source
router to reach its destination. The quadrant routing logic
for generation of Control Vector is explained in Figure 6.
Consider the location of the source router as R and the

Figure 7. Proposed Source Routing.

relative position of the destination router as any one of Di.
For a packet whose destination lies in the first quadrant
D1, we assign the Control Vector as 001. A packet whose
destination is in the same column as the source router,
say D6 we assign the Control Vector as 110. Similarly the
vectors associated with each possible direction is shown in
Figure 6. The packets whose destination is in the same row
or column as the source is given an even vector and others
are assigned an odd vector. After the computation of the
three bit Control Vector, we compute the number of X-hops
and Y-hops needed for the packet to reach the destination
by finding the difference in X and Y co-ordinates of source
and destination routers. Since we use a 4x4 mesh, the X-
hops and Y-hops can be maximum three each, thereby we
can represent each one of them as two bits.

Figure 8. Route Computation (RC) Process (Input is Source Node- S(XS ,
YS) and Destination Node- D(XD , YD); Output is Route String).

Figure 7 shows the propagation of a packet in a
4x4 network using the proposed source routing. Router S
generates the packet and router D is its destination. The

127

source router determines the Control Vector, X-hops and Y-
hops and embed the route string in the packet header as
mentioned above. Each intermediate router now performs
route extraction and determines the next output port. Based
on this path, the packet reads the first direction and moves
towards East. After it reaches the new router, the next di-
rection is read from the route string. This process continues
till the packet reaches the destination. Here the packet takes
three hops towards East and then two hops towards North.
The packet gets forwarded to the local core once it reaches
router D. Thus route computation is avoided in each router
and only route extraction is needed.

The process flow for proposed source routing is shown
in Figures 8 and 9. The route computation in the source
router computes the route string. Each intermediate router
performs the route extraction on the packet from the pre-
determined route string.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The routing logic discussed above are implemented in
Verilog and synthesised in Xilinx ISE 12.2 [10]. The device
chosen for synthesis is Spartan 6. We have modelled a 4x4
mesh NoC using the cycle accurate on-chip interconnection
simulator, Booksim [9]. The router pipeline latency obtained
from Xilinx is used in Booksim to get the average packet
latency in nanoseconds.

Routing Technique Delay in ns
Distributed Routing 6.22

Existing Source Routing 5.155(RC) 2.575(RE)
Proposed Source Routing 1.451(RC) 2.636(RE)

Table I
LATENCY OF VARIOUS ROUTING ALGORITHMS USING VERILOG

SYNTHESIS.

Since distributed XY routing incorporates computation
of the next output port in every hop, it takes high routing
delay for existing source routing. The total delay involved in
both the source routing techniques is less when compared to
distributed XY routing. From the Verilog synthesis results
(Table I), we can see that in existing source routing, the
route computation logic dominates over route extraction
logic and for the proposed logic, route extraction dominates
over route computation. The router pipeline latency is 5.155
ns for existing sourc routing technique and 2.636 ns for the
proposed technique, thereby acheiving a reduction in router
pipeline latency of 48.86%. From the above observations,
we find the maximum network frequency for distributed XY
routing, existing source routing and proposed source routing
as 161 MHz, 194 MHz and 380 MHz respectively. This is
shown in Figure 10. Hence we conclude that by using our
proposed source routing, we can operate the network at a
frequency 1.96 times higher than the ESR design.

START

Is X-hops >0?

Is CV =
0 / 1 / 7 ?

Direction = East Direction = West

X-hops = X-hops - 1

Is Y-hops >0?

Is CV=
1 / 2 / 3 ?

Direction = North Direction = South

Y-hops = Y-hops -1

Reached destination

Forward the packet along
 the direction

STOP

N

Y

NY

N

Y

NY

Figure 9. Route Extraction (RE) Process (Input is Route String and Output
is next hop direction).

Another significant contribution of our PSR logic is
the reduction of the packer header size. The existing source
routing technique needs two bits to represent each hop taken
by the packet. Thus the number of bits used to represent
the path increases linearly with network size as shown in

128

 50

 100

 150

 200

 250

 300

 350

 400

DR ESR PSR

Fr
eq

ue
nc

y
(M

H
z)

Routing Techniques

Figure 10. Comparative analysis of maximum network frequency using
various routing techniques (DR: Distributed XY Routing, ESR: Existing
Source Routing, PSR: Proposed Source Routing).

 5

 10

 15

 20

 25

 30

4x4 5x5 6x6 7x7 8x8

R
ou

te
 S

tr
in

g
(b

its
)

Mesh Size

 ESR
 PSR

Figure 11. Comparative analysis of route string size needed for various
source routing techniques (ESR: Existing Source Routing, PSR: Proposed
Source Routing).

Figure 11. The proposed source routing technique is energy
efficient as it uses lesser number of bits to represent the path.
We can see that, the route string size is constant for our
proposed technique upto 8x8 network. Hence the proposed
technique becomes highly energy efficient as the network
size increases.

Comparative analysis of average packet latency for var-
ious traffics such as uniform, transpose and bit-complement
in 4x4 mesh NoC at pre-saturated load is shown in Figure 12.
The proposed source routing technique reduces the latency
by 51.51%, 50% and 47.83% in Uniform, Transpose and
Bit-complement traffics respectively. We observe that across
all traffic patterns, the proposed source routing technique
gives the minimum average packet latency. Thus we prove
that by using proposed source routing, we could design an
NoC, where packets are routed faster to their respective
destinations.

VI. CONCLUSION

Through this paper we emphasised the use of source
routing in mesh NoCs with static routing policies. An energy
efficient source routing algorithm is implemented and the
results obtained are compared with the existing techniques.
Results showed that router pipeline latency is less for the
proposed design and hence the on-chip network which uses
our routing logic can be operated at a higher frequency. We
hope that our proposed design will be able to reduce the gap
between processor core frequency and network frequency in
future NoCs.

VII. ACKNOWLEDGEMENT

The authors would like to thank the management of Ra-
jagiri School of Engineering and Technology for providing
the infrastructure facilities for carrying out the experiments.

 0

 20

 40

 60

 80

 100

Uniform Transpose Bit-complement

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy
 (

ns
)

Traffic

 DR
 ESR
 PSR

Figure 12. Comparative analysis of average packet latency for various
traffics in 4x4 mesh NoC at pre-saturated load (DR:Distributed XY Routing,
ESR: Existing Source Routing, PSR: Proposed Source Routing).

In addition to this, the authors also like to put a record of
appreciation to Manu Varghese Mathew, P.B. Kevin, Rogen
George and Shashank Gangadharan for the initial help given
in setting up the experimental framework.

REFERENCES

[1] W. Dally and B. Towles Principles and Practices of Inter-
connection Networks USA: Morgan Kaufmann Publishers Inc.,
2003.

[2] W. Dally and B. Towles Route packets, not wires: on-chip inter-
connection networks in proceedings of the Design Automation
Conference, 2001, pp. 684-689.

[3] J. Henkely et al., On-chip networks: A scalable,
communication-centric embedded system design paradigm in
proceedings of the International Conference on VLSI Design,
2004, pp. 845-851.

[4] T. Y. Terry et al., Packetization and Routing Analysis of On-
Chip Multiprocessor Networks,Journal of Systems Architec-
ture, Volume 50, Issue 2, 2004, pp. 81-104.

[5] L. Benini and D. Bertozzi Network-on-chip architectures and
design methods in proceedings of the Computers and Digital
Techniques, 2005, pp. 261-272.

[6] T. Bjerregaard et al., A Survey of Research and Practices of
Network-on-Chip ACM Computing Surveys, Volume 38, Issue
1, 2006, pp. 1-51.

[7] S. Mubeen et al., Designing Efficient Source Routing for Mesh
Topology Network on Chip Platforms in proceedings of the
Euromicro Conference on Digital System Design, 2010, pp.
181-188.

[8] J. Jose et al., DeBAR: Deflection based adaptive router with
minimal buffering in proceedings of the Annual International
Conference on Design, Automation and Test in Europe, 2013,
pp. 1583-1588.

[9] N. Jiang et al., A Detailed and Flexible Cycle-Accurate
Network-on-Chip Simulator in proceedings of the IEEE In-
ternational Symposium on Performance Analysis of Systems
and Software, 2013, pp. 86-96.

[10] www.xilinx.com.

129

