Hardware Trojan Mitigation for Securing On-chip
Networks from Dead Flit Attacks

Mohammad Humam Khan*, Ruchika Gupta*T, Vedika J. Kulkarni*, John Jose*, Sukumar Nandi*
*Department of Computer Science and Engineering, Indian Institute of Technology Guwahati, India
TDepartment of Computer Science and Engineering, Chandigarh University, India

Abstract—With the advancements in VLSI technology, Tiled
Chip Multicore Processors (TCMP) with packet switched
Network-on-Chip (NoC) have emerged as the backbone of the
modern data intensive parallel multi-core systems. Tight time-
to-market and cost constraints have forced chip manufacturers
to use third-party IPs in sophisticated TCMP designs. This
dependence over third party IPs has instigated security vulner-
abilities in inter-tile communication that cannot be detected at
manufacturing and testing phases. This includes possibility of
having malicious circuits like Hardware Trojans (HT). NoC is the
likely target of HT insertion due to its significance and positional
advantage from system and communication standpoints. Recent
research shows that HTs can manipulate control fields of NoC
packets and leads to dead flit attacks that has the potential to
disrupt the on-chip communication resulting in application level
stalling. In this paper, we propose run time detection of such
dead flit attacks by analyzing packet movement behaviours. We
also propose a cost effective mitigation mechanism by re-routing
the packets around the HT infected router. Our experimental
study with real benchmarks on 8x8 mesh TCMP evaluates the
effectiveness of the proposed solution.

Index Terms—Network-On-Chips, Hardware Trojans, Packet
Flow Analysis, Dead Flit Attack, Run-time Mitigation

I. INTRODUCTION

The continuous effort towards scaling the transistor technol-
ogy to lower dimensions enabled the semiconductor industry
to densely pack them in a given chip area. Over the years,
this led to the emergence of powerful processors. Due to the
limitations on performance scaling capability of the unicore
processors, hardware architects introduced multicore proces-
sors where multiple cores run in lower frequencies and provide
higher throughput with enhanced system performance. Tiled
Chip Multi-core Processor (TCMP) is a class of System-on-
Chip (SoC) designed for data intensive parallel systems. The
multiple tiles hosted on a chip communicate with each other
with the help of an interconnection network called Network-
on-Chip (NoC) [1]. In a TCMP, each tile consists of an out
of order processing core, private L1 cache and a slice of
L2 cache (or bank). The L2 cache is equally shared among
all the tiles. Modern TCMPs like Intel Xeon Phi and AMD
Ryzen Threadripper have similar architectures [2]. For each L1
cache miss that gets transmitted as a request packet through
underlying NoC, the requested block is fetched from its home-
bank (or remote L2 tile) as reply packets.

These days TCMP systems have become more complex and
in order to meet the demands and time-to-market constraints,

978-1-6654-9005-4/22/$31.00 ©2022 IEEE

TCMP manufacturers have started turning towards outsourcing
parts of the design [3]. These practises expose the design to
various security issues including possibility of having mali-
cious circuits like Hardware Trojans (HT). HTs can alter the
system behavior to deploy attacks such as information leakage,
unauthorized access, functional errors, and delay-of-service
[4]. NoC is the plausible candidate of HT insertion due to
its exposure to overall system and communication. Moreover,
during inter-tile communication, messages are routed through
NoC routers, making NoC an apt choice for employing HT.
A detailed classification of HTs based on various aspects
including its insertion, effect on system, activation period,
location of HT and more are explored [5]. HTs can cause
eavesdropping or sniffing attacks to steal information from
TCMP via NoC [6] [7] [8]. Spoofing and data integrity attacks
can corrupts the data travelling through NoC to produce live
locks and application stalling [9] [10]. Recent works on HT
impacts on packet header attacks [11] [12] do not provide any
mitigation approach to handle those HTs.
This paper makes following contributions:
1) We analyse the impact of dead flit attacks caused by the
modification of flit type field of NoC packets by HTs.
2) We develop a mechanism that detects the presence of
such dead flits at run time.
3) We propose a cost-effective mitigation strategy for by-
passing such HT routers by re-routing the NoC traffic.
4) We quantitatively evaluate the performance of our tech-
niques and prove that the suggested technique is effec-
tive in restoring system performance.

II. DEAD FLIT ATTACK IN NoC-BASED-TCMP

Recent studies show the impact of HT attacks on modifica-
tions of control fields of NoC packets [11] [12]. Fig. 1 shows
an instance of the dead flit attack in a 4x4 mesh TCMP. As
per the threat model [12], the HT is a tiny circuit accessing
the input buffers of a router. When a head flit enters the
infected router, before routing operation is performed the flit
type field is modified from head to body. In normal scenario,
after the head flit gets buffered in its assigned VC, the routing
unit extracts the destination ID and computes the output port
and subsequently the OP field present in the control buffer is
updated to facilitate wormhole routing. A body flit gets the
same output port and VCID of preceding head flit. In this
case the VCID and OP field are not updated as the head flit is
never processed. The HT modified body flit stays in the router

Dead Flits

Fig. 1. Dead Flit Attack instance in a 4x4 mesh TCMP

waiting for a valid VCID and OP. Hence the body flit occupies
the buffer indefinitely making itself a dead flit. Presence of
dead flits cause congestion and delay in flit movements around
the HT infected router.

III. DETECTION AND MITIGATION OF HT ROUTER

We propose an additional security wrapper module to fa-
cilitate detection and mitigation of HTs that create dead flits.
Since the location of the HT in the NoC is unknown, every
router in NoC should contain a Run-Time Mitigation Module
(RTMM) as shown in Fig. 2. The run-time mitigation of HT
consists of 3 phases: (1) Trojan Detection and Localization by
Detection and Localization Unit (DLU); (2) Run-Time caging
of HT node based on traffic congestion around the HT node
by Caging Control Unit (CCU); and (3) Re-Routing of packets
by Packet Re-Routing Unit (PRU) such that it reaches its
destination without passing through HT routers.

A. Phase-1: HT Detection and Localization

HT detection is done by real time statistics collection of
buffer occupancy of flits in routers. Here, we integrate the
circuits to calculate BOP (Buffer Occupancy Period) of current
router, ABO (Average Buffer Occupancy) of a flit across all
routers it traveled and BOAT (Buffer Occupancy Anomaly
Threshold). For smooth functioning of RTMM, we propose
two more fields in the head flit structure to store BOP and
ABO values. These values are used and updated by DLU to
check for anomalous packets.

When a packet reaches a router, the values of BOP and
ABO are extracted from head flit by DLU and the difference
(BOP - ABO) is compared BOAT. anomalous_packet_count
is incremented if the difference is greater than BOAT. These
packets are classified as potentially anomalous packets due to
their higher buffer occupancy in immediate upstream routers
compared to the average buffer occupancy across all routers
they travelled. This anomaly checking procedure is done for
every head flit passing through the router.

To localize the HT node, DLU uses another thresh-
old known as the Congestion Threshold (CT) which pro-
vides a threshold for the number of anomalous packets re-
quired to declare a potentially malicious router as infected
by HT. After each time_epoch (consisting of E cycles),
the DLU compares anomalous_packet_count with CT. If
anomalous_packet_count is larger than CT i.e. a signifi-
cantly large number of packets are identified as potentially

RTMM
\—)
Control Logic (DLU)

ROUTING UNIT —
(RC)

From EAST

From WEST VC ALLOCATOR

PACKET RE-ROUTING
(VA) (<>

UNIT(PRU)

[SWITCH ALLOCATOR
(SA)

v

From NORTH i

—> To EAST

—> To WEST
—> To NORTH
—> To SOUTH

FromsouTH [

From PE > To PE

5X5 Crossbar

Fig. 2. Organization of NoC router integrated with proposed RTMM

anomalous in current time_epoch, the DLU becomes sure
that this particular neighboring router is HT infected and
updates the alert_flag and direction_flag to point towards
the direction of anomaly. Once the router identifies that one
of its neighbors is a suspected HT, it invokes the CCU to take
necessary action and initiate the cage formation to prevent the
packets from passing through the HT router. The working of
DLU, operation of various counters, and its association with
different thresholds is shown in Algorithm 1.

Algorithm 1: Run-Time Detection of Dead Flit Trojan

Data: BOP, ABO, BOAT, CT
Result: Localization of HT Node (if any)

anomalous_packet_count = 0;
if (BOP - ABO) > BOAT then
| anomalous_packet_count +=1
end
// After Every E cycles
if cycle_number % E = 0 then
if anomalous_packet_count > C'T then
alert_flag = 1;
direction_flag = m_dir;
Send MF to Neighboring Routers;
end

anomalous_packet_count = 0
end

In baseline NoC without HT, sometimes high network load
can lead to VCs unavailability creating back-pressure due to
which the packets passing through its neighbors can suffer an
additional delay. This can be detected as anomalous packets
in this region. The proposed detection mechanism ensures the
elimination of these false positives by employing a continuous
two-level packet monitoring with BOAT and CT. We observe
that packets incurring delay due to congestion cannot sustain
through two levels of threshold.

B. Phase-II: Congestion Dependent Caging of HT Node

When a particular router detects the possibility of an HT
in its neighboring router, it raises the appropriate bit in
direction_flag to depict the direction of malicious node with

— | a2 |1 43 |—] aa 45 — 46 [——
| I {0,01,0,10} | {0,10,1,01} I |

I O - el TR 37 38 [—
| {0,00,1,10} I | {0,11,0,01} |

1 | | 27 29 30 |—
| {1,00,1,10} t I | l {1,11,0,00} |

— 1 18 || 19 | =] 20 - 21— 22 —
| | {1,01,0,10} | {1,10,1,00} | |

—_] 10 }—1 12 [_ | 12 13 — 14 |——

| | | | |

Fig. 3. Illustration of Cage Formation around HT node using Messenger Flits

respect to it and triggers CCU to initiate cage formation around
the HT node using a special flit called Messenger Flit (MF)
similar to Trojan Aware Routing [13]. The caging process
involves informing all the 8 surrounding routers about the pres-
ence of HT. To achieve this, the router detecting the presence
of HT sends two MFs containing the required information: one
in clockwise direction and other in anticlockwise direction.

The MF is a special head flit containing four additional
fields providing necessary information required for cage
viz. propagation_dir, hop_count, cage_router_type, and
alert_dir. propagation_dir is a 1-bit field depicts the di-
rection of MF propagation with 0 representing anti-clockwise
direction and 1 representing clockwise direction. The 2-bit
hop_count field indicates the required number of hops the MF
needs to be propagated further. At every intermediate router,
hop_count is decremented and MF stops propagating as
hop_count reaches 0. 1-bit cage_router_type field indicates
whether the router receiving the MF is a cage-corner router
(0) or a cage-edge router (1). Cage-edge routers are direct
neighbor of HT node. The cage_router_type is flipped at
every router before propagating the MF to the next router. The
last field alert_dir is 2-bit field (with encoding 00’: North,
’01°: South, *10’: East, *11°: West) indicating the direction of
HT with respect to the router receiving the MF and is updated
only at the cage-edge routers.

It is possible that multiple HT neighbors detect the presence
of HT more or less at the same time and generate separate MF
to alert the neighbors. To avoid the propagation of separate MF
initiated by two different routers to cage the same HT node, a
prior verification is done at CCU before propagating the MF
that discards it if a received MF is alerting about the same
node as HT, the current router is already aware about.

Consider a 8x8 NoC mesh with router 28 as HT infected
router as shown in Fig. 3. For cage formation illustration, we
assume that router 29 (east neighbor of 28) detects the pres-
ence of HT using the Trojan Detection Algorithm as described
in Phase-1. Accordingly, it sets the value of direction_flag to
11’ to convey that its West neighbor is malicious and triggers
the CCU. In response, CCU of router 29, generates two MFs

to inform all the 8 routers surrounding node 28. The first MF
is forwarded to router 37 and the second to router 21. The
MF travelling towards router 37 from router 29 contains four
special fields as {0, 11, 0, 01} conveying the information that
MF has to be forwarded in anti-clockwise direction {0}, has to
be propagated for 3 more hops {11}, the recipient router 37 is
a cage-corner router {0}, and that HT is present in the South
of router 37 {01}. Router 37 upon receiving MF, processes the
MF in its CCU, performs required MF modifications, updates
the values in the local router, and finally forwards the MF to
its neighboring router in anti-clockwise direction (to router 36)
with special field values as {0, 10, 1, 01}. The hop_count field
is decremented from 3 {11} to 2 {10} and cage_router_type
is updated from {0} to {1} indicating that the new recipient
(router 36) is a cage-edge router which is the direct neighbor of
HT router. As MF moves forward, the CCU of all the routers
in its path viz. 36, 35 and 27 process MF to reflect necessary
changes required to register 28 as an HT router. Similarly,
the second MF generated by router 29 travels in clockwise
direction and reaches router 27 with field values as shown in
Fig. 3.

Cage formation is an run-time adaptive process that involves
a combination of both self learning and received updates. For
instance, when router 36 receives an MF from router 29, one
of the 3 cases can arise: Case 1: Router 36 receives MF from
router 29, and it has also detected some malicious activity in
router 28 itself but less than the threshold to consider it as
an alarming situation. Case 2: Router 36 has already initiated
MF in one of the previous cycles, and Case 3: When 36 has
not yet observed any malicious behaviour in router 28.

Case 1 advances to Case 2 if 36 observes similar abnormal-
ities from HT router in subsequent cycles, however, no other
incoming packets other than coming from 30 are re-routed in
Case 3. 36 only dispenses the re-routing cooperation to 29 if
some abnormality from 28 is registered by it also. The cage
formation completes only if all the cage-edge routers detect
similar malicious behaviour of HT infected router.

The proposed caging process is dynamic in nature. It is
capable of dissolve the cage after a specific Caging Time and
re-cage if packet movement delay is observed again due to HT
behaviour. Also, the proposed RTMM is capable of detecting
HT irrespective of its location in the NoC, provided there exists
only one active HT at any given point in time that does not
reside on the edge router or a corner router of NoC mesh.

C. Phase-III: Re-Routing the Packet

When a packet moving in the direction of HT infected router
reaches to cage-edge router, the Packet Re-Routing Unit (PRU)
of RTMM determines an alternative path for the packet to
reach its destination bypassing the HT router, if the cage is
erected. The routing decision is taken only for the head flit
and body and tail flits follow the same path as per wormhole
routing. When the cage is active, the PRU of cage-edge routers
block their output port in the direction of HT infected router.
The Re-routing procedure for two packets P; (from S; and
D) and P, (from S; and Ds) is shown in Fig. 4. It can

Fig. 4. Illustration of Packet Re-routing when caging is active

be noticed that the cage is active and consequently packets
reaching the cage-edge routers are re-routed in both the cases
of packet as shown in blue and pink colour.

Speculative re-routing leads to violation of underlying XY
routing rule giving rise to a possibility of deadlocks, unless
addressed at the deign level. In Fig. 4, when P; moves from
router 49 to 36 and then to 35, it initially travels south
and takes a west turn, which is against the XY routing
rules and can leave the system in a deadlock. Hence, to
prevent the scenario of deadlocks, the PRU uses an already
established concept of intermediate destination, ejection, and
re-injection [14]. Due to caging, packets are prevented from
travelling through HT router and hence do not experience
any additional delay due to non-availability of VCs. However,
packets destined to HT or packets originating at HT node are
not affected by caging. Since detection happens dynamically
at run-time by observing the anomaly in waiting period of
flits, few packets might get still affected by HT before caging
is activated.

IV. EXPERIMENTAL SETUP

To study the impact of our proposed mitigation technique,
we use gemS [15], an event driven cycle accurate simulator
to model a 64-tile TCMP with a 8x8 mesh NoC. Each
tile consists of an Out-of-Order super-scalar processor with
ALPHA architecture and dynamic instruction scheduling. Each
tile also houses a two level inclusive cache hierarchy consisting
of a 4 KB, 4-way set associative, private L1 Instruction as well
as Data caches and a shared 1 MB, 8-way set associative L2
cache with SNUCA mapping technique. We use Ruby module
of gem5 with two level MESI protocol for modeling the
memory hierarchy. NoC operations are modelled in Garnet 2.0
integrated with gem5. NoC routers use XY routing algorithm
and have 4 VCs per input port. We use single flit request
packet, 5 flit reply packets with a 64-bit flit channel.

We consider the following architectures in our study:

o NHT: Baseline architecture without any HT.

o HT-HB: Baseline architecture with an HT on any random
router that modifies FT field of common prefix from head
flit to body flit with an attack probability p=0.05.

56 |57|58|59 60|61 62|63 56 |57 58|59 |60 61|62 63 56 57|58 59‘60 616263
48 |49 (50|51 |52 |53 |54 |55 48 |49 |50 51|52 |53 |54 |55 48 |49 |50 51|52 53 |54 55
40 |41 (42|43 |44 |45 46 47 40 |41 |42 |43 |44 45 46 |47 40 41 (42|43 44|45 |46 47 High
32 |33(34|35|36(37 3839 323334|35|36/37 38|39 32|33 34|3536(37 3839
24 |25| 2627|2829 (30|31 2425|2627 29 (3031 24 25|26 (27|28 (29 30|31
16 | 17|18 19 20|21 22|23 16 |17 |18 19|20 |21 |22 |23 16 117 |18 19|20 | 21|22 |23
8 |9[10|11|12|13 14 15 8|9 1011 12‘13 14 |15 8 |9 1011 /1213|1415 Ideal
o|1|2|3|4a|5]|6]|7 o[1]2]3]al5]6]7 0o/1|2|3|4a|5]|6]|7

NHT HT-HB

RTMM

Fig. 5. Heat Map for Cumulative Buffer Occupancy

56 [57[58[59]60] 616263 56 [57[58]59]60 616263 56 [57[58[59 60616263
48 |49 [50[51]52]53 54|55 48 (495051 52535455 48 [4950515253 5455
40 | 41|42 |43 |44 45 46 47 40 |41 42|43 44|45 |46 |47 40 |41 42|43 44|45|46|47
32[33[34[35]36 373839 32 [33[34[35]36 373839 32 (3334353637 [38[39

APC>CT

CT/2< APC<CT

24 |25 26|27 |28 29 |30 |31 24 |25/26|27|28|29 30|31 24 12526 |27 2829|3031 0<APC<CT/2

16 |17 18|19 |20 21 22|23 16 |17 |18 |19 20|21 |22 |23 16 17|18 |19 |20 |21 22|23
8 | 9|10{11|12|13 |14 |15 8 |9 |10(11|12 |13 |14|15 8 |9 |10|11|12|13 |14 15

APC=0

0|1|2|3|4 5 |6/|7 0|1/ 2(3|4|5|6/|7 0/1(2|3|4|5|6/|7
RTMM

NHT HT-HB

Fig. 6. Heat Map for Packet Count

« RTMM: Baseline architecture integrated with proposed

mitigation module RTMM.

SPEC CPU 2006 benchmarks are used to evaluate the
performance and effectiveness of the proposed mitigation tech-
nique. The benchmarks are categorized based on the Misses
Per Kilo Instructions (MPKI) into high (more than 25 MPKI)
and low (less than 20 MPKI) benchmarks. Five workloads
WLI1, WL2, WL3, WL4, and WL5 with different combinations
of benchmarks, each consisting of 64 instances are considered
as shown in Table I. This classification and subsequent analysis
across various workloads help us evaluate the effectiveness of
proposed mitigation technique under applications of varying
NoC injection rate and cache miss behaviors. During simula-
tion, the execution is first fast forwarded to attain warm-up
followed by detailed execution to collect the relevant statistics
for each of the architectures considered for study.

V. EXPERIMENTAL RESULTS

We analyze the impact of the threat on an 8x8 mesh NoC
and then study the effectiveness of the proposed mitigation
scheme w.r.t. Buffer Occupancy Period (BOP), Average Packet
Latency (APL), Hop Count, and L1 Average Miss Penalty
(AMP).

A. Buffer Occupancy and Congestion Analysis

Anomalous Packet Count (APC) is defined as number of
packets that are flagged as anomalous by the Detection and
Localization Unit (DLU). We define two new metrics viz.
Cumulative Buffer Occupancy (CBO) and Anomalous Packet
Count (APC) for each router. CBO of router R; is defined
as the sum of Buffer Occupancy Period (BOP) of all the flits
passing through R, divided by total number of flits passing
through R, indicated by N[R;]

N[Ri]

= Y BOP; / N[R)]

k=1

CBO[R

We record CBO values for each router for WL3 and plot as
a heat map considering router 28 as an HT infected router as
shown in Fig. 5. It can be observed that for NHT architecture,
CBO ranges from very low to medium. For the routers in the

TABLE I
WORKLOAD CHARACTERISTIC DETAILS OF SPEC CPU 2006 BENCHMARK MIXES

Workload Benchmarks Characteristics

Ibm milc
WL1 100% Low MPKI 0 0
WL2 25% High MPKI, 75% Low MPKI | 4 4
WL3 50% High MPKI, 50% Low MPKI | 8 8
WL4 75% High MPKI, 25% Low MPKI | 12 12
WL5 100% High MPKI 16 16

center of NoC mesh, the CBO values are higher compared to
other routers since network traffic is higher for center routers
which leads to some delay incurred by packets passing through
them. This additional delay is normal and happens due high
network traffic for high MPKI benchmarks. We also observe
in the heat map of HT-HB that network congestion is very
high in the surrounding region of HT node. This is due to the
malicious activity of HT that create delay for packet movement
due to dead flits residing in VC of 28. This behaviour is
anomalous and is captured by our mitigation technique to
detect and localize the HT node. Consequently, it can be
observed that the heat map of RTMM is almost similar to
heat map of NHT case. However, there are still some routers
in the neighboring region of HT node for which CBO values
are higher than normal. The CBO values of routers cooperating
in the re-routing mechanism are slightly higher than normal
due to the increased traffic generated by re-routed packets.

Similarly, APC values are plotted as a heat map depicting
variations on 8x8 NoC mesh as shown in Fig. 6. The color
differences show the variation in the number of flits moving
through various routers. We can observe that in NHT case
some packets passing through center routers are flagged as
anomalous however, enough anomalous packets are not found
to mark any given router as HT. As explained before, this us
due to high network traffic in the center of mesh as compared
to other regions. In contrast, in HT-HB case the APC values of
direct neighbor of HT router are much higher and crossed the
CT. This behaviour is used by RTMM to flag router 28 as the
HT node and inform other neighbors about its presence. The
heat map of RTMM shows a more balanced flit flow traffic.
Altogether, the heat map analysis of CBO and APC elucidates
the relationship of CBO and APC values with Trojan action
and utilization of these values for mitigation purpose.

B. Impact on Packet Latency and Hop Count

Since the proposed threat model blocks all the VCs in HT
infected router except one, this creates congestion if multiple
packets arrive simultaneously resulting in additional delay
experienced by packets passing through HT router. Conse-
quently, Average Packet Latency (APL) and Average Hop
Count (AHC) of all the packets passing through the infected
region (HT node and its surrounding routers) increases. The
proposed mitigation technique uses re-routing that leads to
packets travelling additional routers when caging is active,
increasing number of hops as a consequence. Fig. 7 shows
a comparison of APL and AHC for different workloads as

High MPKI benchmark instances

Low MPKI benchmark instances

soplex cactusADM | namd hmmer gromacs libquantum
0 0 16 16 16 16

4 4 12 12 12 12

8 8 8 8 8 8

12 12 4 4 4 4

16 16 0 0 0 0

NHT-APL ====1RTMM-APL mmssm HTHB-AHC ——

i HTHB-APL mmmmm NHT-AHC c=—=RTMM-AHC ===
S 60 ‘ ‘ ‘ ‘ ‘ 6
1) -
£ 50 = N q
£ {55
& 40
3
S 30 5
3
5 20 1 s
S .
s 10
&
5 O 4
E: WL1 wL2 wL3 WL4 WL5

Workload

Fig. 7. Comparison of APL and AHC for all Workloads

mentioned in the Table 8. Solid bars represent APL for all
three architectures NHT-APL, HTHB-APL and RTMM-APL
considered in experimental study. Similarly, check bars viz.
NHT-AHC, HTHB-AHC and RTMM-AHC show the Average
Hop Count for different workloads. We observe that APL val-
ues have increased drastically for HT-HB compared to baseline
NHT architecture. This is due to additional delay that packets
passing through the infected region suffer due to Trojan action.
An increase in Packet Latency of these packets consequently
increases the overall packet latency of the workload. It can be
noted from the plot that bars corresponding to RTMM-APL are
lower than HTHB-APL which shows the effectiveness of our
proposed mitigation technique. However, they are still higher
than the baseline case i.e. NHT which is due to the fact that
some of the packets are re-routed which may take few more
additional hops and cycles to reach the destination. It can also
be observed that as we move from WL1 to WLS5, the APL
also increases. This is because the percentage of high MPKI
benchmarks in the workloads increase from WLI1 to WLS.
Due to this the network traffic increases leading to a natural
increase in packet latency as well as queuing latency.

Average Hop Count (AHC) for NHT and HT-HB is almost
same for all the workloads as observed in Fig. 7. Due to HT
effect even though the packets passing through the infected
region suffer additional delay however the hop count in both
the cases are same as the packets are moving in the same
path. The observed slight difference in NHT and HT-HB is
due to the difference in number of packets that are able to
reach their destinations in the simulation time. The AHC for
RTMM has increased comparatively. This is due to the fact
that re-routed packets have to travel through additional routers
or a possible non-minimal route determined by the re-routing
algorithm leading to an increase in hop count for these packets,
hence increase in AHC.

Average Hop Count

NHT === HT-HB mmmm RTMM m—

g 180 ‘ ‘ ‘ ‘ ‘
(% 160
< 140
> 120
S 100
[0}
a8
8 60
£
® 40
(=]
S 20
[0
z 0
<
WL1 WL2 WL3 WL4 WL5
Workload

Fig. 8. Comparison of AMP for all Workloads

C. Impact on Average Miss Penalty

We analyze the impact of HT and investigate the perfor-
mance of proposed mitigation technique at cache level using
L1 cache miss penalty. L1 cache miss penalty is the number
of extra cycles required to fetch the missing data block into
the L1 cache from L2 cache or main memory. This is equal
to the time spent by an outstanding miss request in MSHR.
L1 request-response packets and L2 request-response packets
are involved to fulfill L1 and L2 miss demands. Fig. 8 shows
the variation of Average Miss Penalty (AMP) values across
all the five workloads for different architectures. As we move
from WL1 to WLS, the ratio of high MPKI benchmarks in
the workload increases leading to more NoC packets creation
and hence more impacted packets due to trojan resulting into
increased height of AMP bars. Additionally, note that the pro-
posed RTMM technique lowers down the AMP bars across all
the workloads demonstrating the effectiveness the mechanism.
The RTMM bars are slightly higher than the baseline (NHT)
as the re-routed packets travel through a non-minimal path
adding to the the packet latency which consequently increase
the AMP for the cache misses. Hence, a portion of decrease
in AMP due action of RTMM is compensated by an increase
in AMP of the re-routed packets.

D. Overhead Analysis

We use ProNoC [16] that facilitates prototyping of NoC
based systems for the implementation of the proposed RTMM
module. We implement both the HT behaviour of dead flit
creation and RTMM module in Verilog HDL integrated to
ProNoC. To analyze the timing constraints, RTL code is
synthesised in 90nm technology using Cadence Genus. Since
the RTMM circuitry is not operating in the critical path, we
verify that the proposed NoC meets all timing constraints
related to delay analysis compared to the baseline router
without an RTMM. The area and power overhead of the
RTMM circuit is 1.8% and 2.3% of the baseline router, which
is intuitive expected as all packets now undergo the BOP and
ABO verification.

VI. CONCLUSION

This paper presents a run-time self-learning based mitiga-
tion technique for dead flit attacks on NoC-based-TCMPs.
The proposed RTMM module assures that NoC routers can
mitigate the impact of HT that causes dead flits by detecting,

localising, caging, and re-routing packets travelling via HT
infected routers. We experimentally demonstrated the effec-
tiveness of the proposed mitigation technique using various
performance metrics like Average Packet Latency, Cumulative
Buffer Occupancy, Anomalous Packet Count, and Average
Miss Penalty of L1 cache misses. Through this paper We
re-emphasize the need for additional security modules like
RTMM to safeguard the NoCs from malicious HT attacks.

ACKNOWLEDGEMENT

The authors acknowledge the support and funding from
DST-SERB Core Research Grant [CRG/2021/007400] and
ISEA Project Phase-II, MeitY, Government of India.

REFERENCES

[11 L. Benini and G. De Micheli, “Networks on chips: A new SoC
paradigm,” Computer, vol. 35, no. 1, pp. 70-78, 2002.

[2] G. Chrysos, “Intel® xeon phi™ coprocessor - The Architecture,” Intel
Whitepaper, vol. 176, pp. 43-50, 2014.

[3] N. Potlapally, “Hardware security in practice: Challenges and opportu-
nities,” in International Symposium on Hardware-Oriented Security and
Trust (HOST). 1EEE, 2011, pp. 93-98.

[4] F. Farahmandi, Y. Huang, and P. Mishra, System-on-Chip Security:
Validation and Verification. Springer Nature, 2019.

[5] S. Moein, J. Subramnian, T. A. Gulliver, F. Gebali, and M. W. El-
Kharashi, “Classification of hardware trojan detection techniques,” 2015
Tenth International Conference on Computer Engineering & Systems
(ICCES), pp. 357-362, 2015.

[6] D. M. Ancajas, K. Chakraborty, and S. Roy, “Fort-nocs: Mitigating the
threat of a compromised noc,” in Proceedings of the 51st Annual Design
Automation Conference (DAC), 2014, pp. 1-6.

[7]1 T. Boraten and A. K. Kodi, “Packet security with path sensitization for
nocs,” in 2016 Design, Automation & Test in Europe Conference &
Exhibition (DATE). 1EEE, 2016, pp. 1136-1139.

[8] M. Hussain, A. Malekpour, H. Guo, and S. Parameswaran, “Eetd: An
energy efficient design for runtime hardware trojan detection in untrusted
network-on-chip,” in 2018 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI). 1EEE, 2018, pp. 345-350.

[9] J. Sepulveda, A. Zankl, D. Flérez, and G. Sigl, “Towards protected
mpsoc communication for information protection against a malicious
noc,” Procedia computer science, vol. 108, pp. 11031112, 2017.

[10] Q. Yu and J. Frey, “Exploiting error control approaches for hardware
trojans on network-on-chip links,” in 2013 IEEE international sympo-
sium on defect and fault tolerance in VLSI and nanotechnology systems
(DFTS). IEEE, 2013, pp. 266-271.

[11] V. JK, M. R, R. Gupta, J. Jose, and S. Nandi, “Packet header attack
by hardware trojan in noc based tcmp and its impact analysis,” in 2021
15th IEEE ACM International Symposium on Networks on Chip (NOCS).
IEEE/ACM, 2021.

[12] M. H. Khan, R. Gupta, J. Jose, and S. Nandi, “Dead flit attack on noc
by hardware trojan and its impact analysis,” in Proceedings of the 14th
International Workshop on Network on Chip Architectures (NoCArc),
2021, pp. 10-15.

[13] R. Manju, A. Das, J. Jose, and P. Mishra, “Sectar: Secure noc using
trojan aware routing,” in 2020 14th IEEE/ACM International Symposium
on Networks-on-Chip (NOCS). 1EEE, 2020, pp. 1-8.

[14] A. Das, S. Babu, J. Jose, S. Jose, and M. Palesi, “Critical packet priori-
tisation by slack-aware re-routing in on-chip networks,” in 2018 Twelfth
IEEE/ACM International Symposium on Networks-on-Chip (NOCS).
IEEE, 2018, pp. 1-8.

[15] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2,
pp. 1-7, 2011.

[16] A.Monemi, J. W. Tang, M. Palesi, and M. N. Marsono, “ProNoC: A low
latency network-on-chip based many-core system-on-chip prototyping
platform,” Microprocessors and Microsystems, vol. 54, pp. 60-74, 2017.

