ENDURA : Enhancing Durability of Multi Level
Cell STT-RAM based Non Volatile Memory Last
Level Caches

Yogesh Kumar, S. Sivakumar and John Jose
MARS Lab, Department of Computer Science and Engineering, Indian Institute of Technology Guwahati, India

Abstract—With high packing density and low leakage power,
Spin Transfer Torque Random Access Memories (STT-RAM) are
a promising alternative to replace traditional memory technologies
such as SRAM and DRAM. Applications will continue to demand
more memory for processing in the coming decades. To achieve
higher cell density, Multi-Level Cell STT-RAM (MLC STT-RAM)
that can store two or more bits in a single memory cell is
preferred over Single Level Cell STT-RAM (SLC STT-RAM).
But their multistep read and write operations lead to significant
read and write latency. The multistep write operations are also
affecting the durability of MLC STT-RAM. Specialised wear
levelling techniques are not available for MLC STT-RAM. We
propose ENDURA, a technique that could improve the lifetime
and latency of MLC STT-RAMs. ENDURA extends the lifetime
of 2MB and 4MB MLC STT-RAM L2 caches by 2.05x and 2.59x
on a single-core system and reduces write latency by 9.6% and
8.06% respectively with minimal overhead.

Index Terms—Non Volatile Memory, Multi Level Cell, Wear
leveling, Lifetime improvement, Write variation

I. INTRODUCTION

The amount of data handled by the processing elements is
increasing every day. Because of this trend, the processing ele-
ments from handheld devices to supercomputers, require higher
processing capability as well as significant on-chip and off-chip
memories. Unfortunately, conventional memory technologies
are not scaling up to the rate of processing speed. Conventional
memory technologies such as SRAM and DRAM have very
low packaging density and high leakage power, which is a
major drawback in realising large volume of on-chip memory.
This scenario motivated to replace these traditional technologies
with emerging non-volatile memory technologies such as STT-
RAM [1], PCM [2] and ReRAM [3], which have very high
packing density and zero leakage power [4]. However, these
technologies have limited write endurance and high write
latency compared to traditional memory technologies. Among
the emerging memory technologies, STT-RAM has a better
lifetime and write latency, there by making it the most suitable
choice for realising on-chip and off-chip cache memories [5].
The on-chip area used for memory can be further efficiently
utilised by using MLC STT-RAMs, which can save more than
one bit of information in a single memory cell [6] [7].

Unlike SLC, in MLC, there are two Magnetic Tunneling
Junctions (MTJ) as shown in Fig. 1. Smaller MTJ is known
as soft bit, and larger MTJ is known as hard bit. Soft bit

978-1-6654-9005-4/22/$31.00 ©2022 IEEE

Ar—
Soft Bit MgO.
—
Hard Bit MgO
—

Fig. 1. Multi Level Cell STT-RAM

cell is easier to flip than hard bit. Write to hard bit may
result in overwriting of the soft bit. This phenomenon is called
write disturbance [8]. As feature size decreases, the difference
between read and write current decreases significantly and
hence reading a hard bit can flip the soft bit, which is called
read disturbance. To mitigate read and write disturbances, the
soft bit is read before read and write operations and later it
is restored after completion of the same [9]. This immediate
restore scheme results in more writes on the soft bit and further
reduces its lifetime.

For an MLC-based cache memory, we have two cell arrange-
ment options: direct mapping and cell split mapping. In direct
mapping, the cache block consists of both soft and hard bits,
whereas in a cell split mapping, the cache block will be either
hard or soft bits as shown in Fig. 2. An application with a non-
uniform write pattern can result in early wear out of memory
cells. In order to overcome this issue, a proper wear leveling
technique, which could distribute the writes across the memory
is necessary. The state of the art wear leveling techniques
designed for SLC memories do not distinguish between hard
and soft ways. We believe a customised wear leveling technique
can significantly improve the lifetime as well as the latency of
MLC STT-RAM when used as last-level caches.

In this paper, we make the following major contributions:

o We analyse write variations in the last level NVM cache
and draws meaningful conclusions.

o We study the impact of state-of-the-art wear leveling
techniques on MLC NVM based Last Level Caches.

o« We propose ENDURA a wear leveling technique that
reduce the intraset [10] write variation in NVM LLCs and

Cache
Line 1

Cache
Line 1

| S0 | s1|s2| 83| | S0 | HO | s1 | HI |

Cache
Line 2

Cache
Line 2

| HO | H1 | H2 | H3 | | s2 | H2 | S3 | H3 |

Cell Split Mapping Direct Mapping

Fig. 2. Direct mapping vs Cell split mapping

improve the write latency.

o We test ENDURA using SPEC 2006 [11] benchmarks
on the gemS5 cycle-accurate simulator [12], and find that
our proposed method outperforms other state-of-the-art
solutions.

II. RELATED WORK

Masayuki Sato et al. proposed a hybrid cache architecture
based on STT-RAM [13] with its data replacement policy
named Fast Region First Used (FRFU). Their technique com-
bines a write-optimized STT-RAM to create fast and slow
regions in the cache. This helps in achieving high density and
low leakage power. FRFU policy tries to avoid the hot data
being inserted into the slow region where the write penalty
is high. The evaluation results show that their technique has
55% less energy consumption than conventional architectures.
Adaptive Restore Scheme [14] reduce the energy overhead of
the Immediate Restore Scheme in MLC STT-RAM for write
and read disturbance restores. They introduce the concept of
read reuse distance to quantify the temporal distance between
two successive reads to a block. Jue Wang et al. proposed a
wear-levelling technique by combining Swap Shift (SwS) and
Probabilistic set Line Flush (PoLF) together to form Inter and
Intra-set Write-variation Aware Policy, named i2WAP [10]. The
goal of the SwS is to reduce inter-set write variations by shifting
the mapping of physical cache sets. PoLF reduces intra-set
write variations by probabilistically flushing hot cache line such
that next time when this data is needed, it is loaded to a cold
cache line. Both of these techniques can be implemented using
very minimal storage overhead. Sparsh Mittal and Jeffrey S.
Vetter proposed EqualWrites [15], a wear-levelling technique
used to improve the lifetime of NVM caches by minimizing
intra-set write variation. EqualWrites achieves this by recording
the number of writes at cache line granularity and swapping a
hot cache line with a cold one using data migration within a
set.

III. MOTIVATION

Experimental studies show a significant difference between
the maximum and average writes to LLC of different unicore
cache architecture systems [16]. This write variation empha-
sises the need for a good wear leveling policy for NVM
caches. MLC NVM has the advantage of higher packing density
over SLC NVM. Replacing SLC with MLC NVM allows for
higher capacity caches in a given area and can lower the miss
rate. However, it suffers from the same issues as SLC, i.e.

higher write latency and low write endurance. These issues are
scaled up for writes on a hard way. Conventional wear-levelling
techniques for SLC cannot be directly applied to MLC because
they are oblivious to the functional and operational differences
between hard and soft ways. This motivated us to explore the
possibility of a customised wear leveling technique for MLC
NVMs, which could improve the lifetime and write latency
when used as last-level caches.

IV. ENDURA

We propose a wear leveling technique ENDURA to enhance
the durability of MLC NVMs. Unlike conventional SLC wear
leveling techniques, ENDURA is tailor-made for MLC based
last level caches for improving lifetime and write latency. In
our design, we choose cell-split mapping as it allows us to
exploit the latency difference between Soft Bit Line (SBL) and
Hard Bit Lane (HBL). We organize the cache such that SBL
and corresponding HBL are in the same set and form a pair. In
the context of our work, we define pair as a group of the hard
and corresponding soft block (way) in a set. ENDURA has two
significant components, a wear leveling unit and write latency
reduction unit. We discuss these units in the coming sections.

A. SpH Wear leveling unit

To protect the cache memory from early wear out from non-
uniform write patterns and targeted repeated writes on selected
cache lines, ENDURA uses SpH (SplusH) wear leveling
unit. SpH works in similar lines with the EqualWrites [15]
technique but is customised to MLC cache lines. Algorithm
1 gives an overview of SpH wear leveling unit. Consider a
pair of hard way and soft way in a cache set. Let s be the
number of writes to soft way, and h be the number of writes
to the hard way from the requester (processor or L1 cache).
Recall that when there is a write to hard way, it results in a
write to both hard and soft way. After accounting for this write
disturbance, there will be (s+h) writes to soft way and h writes
to hard way. Due to this higher number of writes to the soft
ways, they degrade faster. The total number of writes to a pair
(s + h) determines the lifetime of the cache and not based on
the ratio these writes are distributed. Hence, we should perform
wear-levelling on the number of writes to a pair rather than
soft and hard way separately. Our proposed technique SpH
wear-levelling incorporates this idea. We maintain counters for
each pair, and on each write to that pair, we increment that
counter and swap two pairs when the difference between them
reaches a threshold. Let M; be the number of bits used for
the sph counter. We define Q; = 21 as the sph threshold.
All counters are initialised to €21 /2. On a write-hit to a cache
line, if the current value of the corresponding sph counter is
less than ; — 1, we increment it. Otherwise, we search for
another pair with sph counter value 0. If such a pair exists, we
swap it with the current pair. Otherwise, we decrement all other
sph counters in that set by 1. Since hard writes can overwrite
the soft ways, we follow a definite order for swapping. Let
(S1, H1) be the first pair and (S5, H2) be the second pair. The
swapping operation on pairs can be performed in 3 steps,

1) Read S7, So, Hi, Hy in parallel

2) Write to Hy and Hsin parallel
3) Write to S7 and Sy in parallel
We write to hard ways first followed by write to soft ways in

the order described above. This way we ensure that hard writes
do not interfere with soft writes.

Algorithm 1: Algorithm for SpH wear-levelling

Let w be the way index of the write hit block
Let p = w/2 > integer division
if Sphfil[p] # Q1 - 1 then
Write new data to Datal[i][w], mark dirty, update
LRU-stack
Sphlillp] = Sphlillp] + 1
e

Let target = NULL > Target for write-redirection
for all pair-locations q (# p) do
if Sphli][q] == O then

target = q

Break from for loop

els

if target # NULL then > Candidate for write-redirection
exists
Let softl = NULL
Let hard] = NULL
Let soft2 = Read Datal[i][2 * target]
Let hard2 = Read Datali][2 * target + 1]
if w is soft way then
softl = new data
‘ hardl = Read Datali][2 * p + 1]
else
softl = Read Datal[é][2 * p]
hard]l = new data
Write hardl to Data[i][2 target + 1]

]
Write hard2 to Datalé][2 * p + 1]
Write softl to Data[i][2 * target]
Write soft2 to Datali][2 p]

Sphli][p] = Sphli][target] = Q1 /2

else

for all pair-locations q (# p) do
| Sphlilla] = Sphlilla] - 1

Write new data to Datal[i][w], mark dirty, update
LRU-stack

B. Hard Write Predictor for improving Write latency

The SpH unit balances writes between pairs. This results
in an improvement in cache lifetime. ENDURA use the Hard
Write Predictor (HWP) unit to improve write latency. HWP
exploits the latency difference between soft and hard ways.
Table I shows the latency difference between soft bits and hard
bits [14]. Since soft bit writes are approximately two times
faster than the hard bits writes, redirecting the write intensive
blocks to softways will improve the overall write latency.

TABLE I
COMPARISON OF SOFT AND HARD WAYS

Soft bit Hard bit
Read Latency 6.73 cycles 9.80 cycles
Write Latency || 25.31 cycles 56.50 cycles
Read Energy 0.22 nJ 0.43 nJ
Write Energy 0.842 nJ 2.50 nJ

wear-levelling

no | intra-pair swapping normal write

wear-levelling

Fig. 3. Flowchart of write operation

wear-levelling + intra-pair swapping

As discussed before, degradation of a storage cell depends
on the total writes (sum of soft and hard writes) in a pair.
Consider case A, where we have s writes to soft way, and h
writes to the hard way and case B, where we have s+t writes
to soft way and h — t writes to the hard way. In both of these
scenarios, the total number of writes is the same, i.e. (s + h).
So, in both cases, the impact on cache line lifetime should be
the same. But in case B, since more writes are to soft way,
which has lower write latency than hard way, average write
latency is lower than case A.

HWP aims to shift some writes from the hard ways to soft
ways. When the application writes more data to hard ways,
HWP will swap it with its corresponding soft way in that pair.
The key idea is that with the overhead of just one write; we
can save more hard writes in future. We use hwp counter for
each pair to count the number of consecutive writes to the hard
way. When this counter saturates, we will swap ways in that
pair on the next hard write. Let Qo be the consecutive hard
write threshold. We increment the corresponding hwp counter
in the event of a hard write, if the current hwp value is less
than Qo — 1. If it is already at the threshold, then we perform
intra-pair swapping. Soft way writes trigger counter reset. Like
inter-pair swapping, we follow prefixed sequential writes. Let
(S1,H,) be a pair. We can complete intra-pair swapping in
three steps.

1) Read S;
2) Write to Hy (value from Sy)
3) Write to S7 (new data)

Fig. 4 shows the a cache set of 4 way set associative cache
which uses our proposed technique. Depending on values of
sph counter, hwp counter and type of write as shown in Fig.
3, we have following different operations.

1) Normal write - Increment sph counter. Change hwp
counter based on type of write.

2) Wear leveling - Depending on whether there is a pair with
sph counter 0, we either swap or decrement other sph
counters. Change hwp counter based on type of write.

data 1 way 1
sph1 1]
hwp1 [
data 2 way 2
data 3 way 3
sph 2
hwp2 EL] data 4 way 4

Fig. 4. Organisation of an ENDURA enabled 4 way set associative NVM
cache

TABLE 1T
SYSTEM CONFIGURATION

CPU Uni-core, ALPHA, Out of order
L1 Cache Private, 64 KB,.Sl‘{AM split cache, 64 B block,
2-way set associative
Shared 512KB/1MB/2MB/4MB, NVM unified cache
L2 Cache

64 B block, 8-way set associative
4 GB
SPEC CPU2006

Main Memory

Benchmark

3) Intra-pair swapping - Swap soft and hard way in that pair.
Reset hwp counter. Increment sph counter.

4) Wear leveling + intra-pair swapping - This combines (2)
and (3). Change sph counter accordingly. Reset hwp
counter.

V. EXPERIMENTAL SETUP AND RESULT ANALYSIS

To evaluate our technique we have used gem5 [12], a cycle-
accurate event based open source architectural simulator. We
use Ruby model and MESI protocol for simulating cache
memory model and maintaining cache coherence. Details of
the system configuration are given in Table II.

TABLE III
BENCHMARK CLASSIFICATION BASED ON WPKI

Category Benchmark
Low namd (Nd), soplex (So), gromacs (Gr), href264(Hf)
Mid milc (Mi), libquantum (Lq), sjeng (Sj), bzip2 (Bz)
High leslie3d (Ls), Ibm (Lb), hmmer (Hm)

We execute one billion instructions from selected bench-
marks from SPEC CPU 2006 benchmark suite to evaluate the
performance of our proposed architecture and state of the art
technique, EqualWrites [15] for 512KB, 1MB, 2MB and 4MB
MLC NVM L2 cache memories. We categorise the benchmark
programs into Low, Mid and High categories based on their
Writes Per Kilo Instruction (WPKI) values. We evaluate the
performance of ENDURA with different sizes of sph and hwp
counters and found that sph counter size of 4-bits and hwp
counter size of 2-bits (swap after 3 consecutive hard writes)

gives the optimal performance. The following sections discuss
the impact on different performance metrics for an baseline
cache (MLC NVM without any optmization), EqualWrites and
ENDURA. We estimate relative lifetime by using the inverse
of maximum write count to a cache memory block.

A. Performance Analysis

mm Baseline
Equal Writes
W Endura

° & ° &

improvement

L & & & N M > & & > < 5O
benchmarks

Fig. 5. Comparison of Lifetime for various 512KB L2 MLC NVM cache
architectures in unicore system. (taller the bar, the better)

mmm Baseline
70 Equal Writes
W Endura

& & & & NY N RS & & > 2 O
benchmarks

Fig. 6. Comparison of Average Write Latency for various 512KB L2 MLC
NVM cache architectures normalised to base configuration in unicore system.
(shorter the bar, the better)

Fig. 5 shows the comparison of relative life (with respect
to baseline) of different NVM architectures for 512 KB L2
cache in unicore system. We can see that our proposed ar-
chitecture improves lifetime for all benchmarks. The impact
of our proposed technique is more evident for benchmarks
like namd, and h264ref. These benchmark have low average
write and high write variations. Whereas for benchmarks like
libquantum and Ibm the relative life time improvement is not
high because of the fact that these applications follow a much
more uniform write distribution pattern. A similar trend can be
seen for average write latency of various benchmark programs
shown in Fig. 6. Benchmarks with non-uniform write patterns
show major improvement in average write latency also because
our technique could redirect more writes from hard way to
soft way whose scope is limited for applications with uniform
write patterns. We run our technique for 1 MB, 2 MB and 4
MB cache sizes. ENDURA gives 1.89 times better lifetime and
7.90% reduction in write latency when compared to baseline
architecture and 7.90% reduction in write latency for IMB L2
cache as shown in Fig. 7 and 8.

= Baseline
wam Equal Writes
W= Endura

improvement

L T R .
benchmarks

Fig. 7. Comparison of Lifetime for various IMB L2 MLC NVM cache
architectures in unicore system. (taller the bar, the better)

mmm Baseline
70{ MWW Equal Writes
W Endura

& & & & NY N RS & & > 2
benchmarks

6,@

Fig. 8. Comparison of Average Write Latency for various 1IMB L2 MLC
NVM cache architectures normalised to base configuration in unicore system.
(shorter the bar, the better)

Fig. 9 and 10 shows the experimental results for 2MB cache
architectures. ENDURA shows average lifetime improvement
of 2.05x for 2 MB cache when compared to baseline ar-
chitecture, which is almost same as 2.04x improvement in
EqualWrites with much less storage overhead. We also observe
9.61% reduction in average write latency when compared to
baseline whereas EqualWrites increases latency by 1.29%.

Similarly, as shown in Fig. 11 and 12 ENDURA gives
a relative lifetime improvement of 2.55 times and reduction
in write latency of 8.06% with respect to baseline system
and 13.61% reduction in write latency when compared to
EqualWrites technique for 4 MB cache size.

Fig. 13 shows the distribution of writes among hard and soft
ways for different cache architectures with capacity of 2MB.
Write distribution policy in EqualWrites technique is based
on write count to each block. While redirecting the writes, it
does not consider the latency of writes, i.e. whether the target
block is a hardway or softway. However, ENDURA distributes
the writes in softway-hardway pair granularity; hence, it can
redirect write-intensive blocks within and across the pair, giving
a better performance.

B. Overhead Analysis

ENDURA uses two groups of counters: sph and hwp. It
also needs a swapping module to swap the contents between
hard and soft ways. Let S, A, B, T, N, M denote the number
of sets, set associativity, block size, tag size, number of swap

mmm Baseline
35{ MW Equal Writes
mmm Endura

improvement

L T R .
benchmarks

Fig. 9. Comparison of Lifetime for various 2MB L2 MLC NVM cache
architectures in unicore system. (taller the bar, the better)

80

mmm Baseline
70{ W Equal Writes
W Endura

e & &

benchmarks

Fig. 10. Comparison of Average Write Latency for various 2MB L2 MLC
NVM cache architectures normalised to base configuration in unicore system.
(shorter the bar, the better)

mmm Baseline
W Equal Writes
W Endura

improvement

Eg & N N KR & Ly < O
benchmarks

Fig. 11. Comparison of Lifetime for various 4MB L2 MLC NVM cache
architectures in unicore system. (taller the bar, the better)

80

mmm Baseline
70{ WM Equal Writes
mmm Endura

v & & & NY N RS & & > 2
benchmarks

6,@

Fig. 12. Comparison of Average Write Latency for various 4MB L2 MLC
NVM cache architectures normalised to base configuration in unicore system.
(shorter the bar, the better)

100

80

60

40

20

<b/" 6 ‘2“\ Q‘@ NY

v

Baseline - soft writes
Baseline - hard writes
Equal Writes - soft writes
Equal Writes - hard writes

Endura - soft writes
Endura - hard writes

> -

benchmarks

Fig. 13. Comparison of Write distribution for various 2MB L2 MLC NVM cache architectures.

buffers and number of bits for counters per block, respectively.
Storage overhead can calculated as

_ MxSxA+NxB

b= —sxam+m <

We assume B = 64B and memory address to be 48 bit
wide (for calculating 7"). We have chosen counter size to be
4 bits for sph and 2 bits for hwp. We are using four swap
buffers of size 64B each to read two pairs in step 1 of inter-
pair swapping algorithm. This will cause a storage overhead of
0.565% for a 2 MB cache. EqualWrites on the other hand with
4 bit counter cause a storage overhead of 0.923%. For a 4MB
cache architecture ENDURA has a storage overhead of 0.560%
and EqualWrites has a storage overhead of 0.832%. This shows
that ENDURA has 38.79% and 32.69% less storage overhead
than EqualWrites for 2MB and 4MB caches respectively.

VI. CONCLUSION AND FUTURE SCOPE

Emerging memory technologies are gaining popularity as
they have the potential to substitute or work in conjunction
with conventional memory technologies. NVM offers a low
power and high packing density solution. However, it cannot
be used directly due to its poor write endurance and latency. We
have gone through some of the existing literature which tries
to improve these drawbacks of NVM. We have also proposed
a solution to perform wear-levelling and latency reduction in
MLC. We have compared our work with EqualWrites and found
that it performs better in terms of cache lifetime with 13.61%
less average write latency and 32.69% less storage overhead.
Some future works can be developed, like minimizing hard
reads to reduce average read latency. The second idea could be
to partition the cache into two regions - instruction and data.
Former constitute only hard ways and later will have both. Our
technique can be used on data regions after some modifications.

REFERENCES

[1]1 E. Chen, D. Lottis, A. Driskill-Smith, D. Druist, V. Nikitin, S. Watts,
X. Tang, and D. Apalkov, “Non-volatile spin-transfer torque ram (stt-
ram),” in 68th Device Research Conference, 2010, pp. 249-252.

[2] H.-S.P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran,
M. Asheghi, and K. E. Goodson, “Phase change memory,” Proceedings
of the IEEE, vol. 98, no. 12, pp. 2201-2227, 2010.

[3]

[4]

[5]

[6]

71

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

H. Akinaga and H. Shima, “Resistive random access memory (reram)
based on metal oxides,” Proceedings of the IEEE, vol. 98, no. 12, pp.
2237-2251, 2010.

S. Mittal and J. S. Vetter, “A survey of software techniques for using
non-volatile memories for storage and main memory systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 5, pp.
1537-1550, 2016.

P. Chi, S. Li, Y. Cheng, Y. Lu, S. H. Kang, and Y. Xie, “Architecture
design with stt-ram: Opportunities and challenges,” in 2016 21st Asia
and South Pacific Design Automation Conference (ASP-DAC), 2016, pp.
109-114.

X. Chen, J. Wang, and J. Zhou, “Promoting mlc stt-ram for the
future persistent memory system,” in 20/7 IEEE 15th Intl Conf
on Dependable, Autonomic and Secure Computing, 15th Intl Conf
on Pervasive Intelligence and Computing, 3rd Intl Conf on Big
Data Intelligence and Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech), 2017, pp. 1180-1185.
H. Luo, L. Shi, Q. Li, C. J. Xue, and E. H.-M. Sha, “Energy, latency, and
lifetime improvements in mlc nvm with enhanced wom code,” in 2018
23rd Asia and South Pacific Design Automation Conference (ASP-DAC),
2018, pp. 554-559.

Y.-S. Hsieh, Y.-H. Chen, Y.-P. Tang, and P.-C. Huang, “A selective
write strategy for the elimination of write disturb errors on nonvolatile
memory caches,” in 2019 8th International Conference on Innovation,
Communication and Engineering (ICICE), 2019, pp. 10-13.

Y. Zhang, L. Zhang, W. Wen, G. Sun, and Y. Chen, “Multi-level cell
stt-ram: Is it realistic or just a dream?” in 2012 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2012, pp. 526-532.

J. Wang, X. Dong, Y. Xie, and N. P. Jouppi, “i2wap: Improving non-
volatile cache lifetime by reducing inter- and intra-set write variations,”
in 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA), 2013, pp. 234-245.

J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, p. 1-17, Sep. 2006. [Online].
Available: https://doi.org/10.1145/1186736.1186737

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gemS5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, p. 1-7, Aug. 2011.

M. Sato, X. Hao, K. Komatsu, and H. Kobayashi, “Energy-efficient design
of an stt-ram-based hybrid cache architecture,” in 2020 IEEE Symposium
in Low-Power and High-Speed Chips (COOL CHIPS), 2020, pp. 1-3.
X. Chen, N. Khoshavi, R. F. DeMara, J. Wang, D. Huang, W. Wen, and
Y. Chen, “Energy-aware adaptive restore schemes for mlc stt-ram cache,”
IEEE Transactions on Computers, vol. 66, no. 5, pp. 786-798, 2017.

S. Mittal and J. S. Vetter, “Equalwrites: Reducing intra-set write variations
for enhancing lifetime of non-volatile caches,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 24, no. 1, pp. 103-114, 2016.
S. Sivakumar, T. Abdul Khader, and J. Jose, Improving Lifetime of
Non-Volatile Memory Caches by Logical Partitioning. New York,
NY, USA: Association for Computing Machinery, 2021, p. 123-128.
[Online]. Available: https://doi.org/10.1145/3453688.3461488

