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ABSTRACT
With the progressive innovation of VLSI technology, Tiled Chip
Multicore Processors (TCMP) have surfaced up as the backbone of
the modern data intensive parallel multi-core systems. Network-
on-Chip (NoC) is considered as the most preferred choice for on-
chip communication. Manufacturers have begun to investigate the
prospects of using third-party IP in sophisticated TCMP designs
due to strict time-to-market limitations. The inflated reliance over
third party IPs induced security vulnerabilities in inter-tile com-
munication. In this paper, we implement a novel Hardware Trojan
(HT) called as Delay Trojan (DT) placed in an NoC router. Proposed
DT adds random delay to flits going through it, while other NoC
routers merely experience regular congestion, making DT detec-
tion difficult. As a result, packets of latency-critical applications
stalls impacting system performance and throughput. Further, we
propose a dynamic adaptive learning framework embedded in NoC
routers that detects DT with reasonable accuracy and alerts neigh-
boring routers. We also propose a caging technique to re-route
packets. Our experimental study evaluates the impact of DT and
the effectiveness of the proposed solution.
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1 INTRODUCTION
Multi-core technology was created to improve system performance
by allowing multiple processes to execute simultaneously on mul-
tiple cores. Over the last decade, Tiled Chip Multicore Processors
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Figure 1: 4x4 mesh NoC based TCMP

(TCMP) has emerged as the most promising design framework for
high performance computing systems. Network-on-chip (NoC), the
communication backbone of TCMP, is a packet switched frame-
work in which data is packetized and sent through the network as
a series of flow control units called flits. NoC consists of switching
units called routers interconnected by bidirectional links. Figure
1 depicts a typical TCMP architecture connecting homogeneous
tiles. A tile consists of a processor, private L1 caches, and a slice of
shared distributed L2 cache [1]. Communication between multiple
memory levels contributes to the major share of inter-tile messages
travel as NoC packets. A cache miss request packet contains a single
head flit, while a cache miss reply packet contains a single head
flit, numerous body flits, and a single tail flit (H, B1, B2, ..., Bn, T).
NoC follows wormhole switching where B follows H. The router
calculates the relevant output ports for each incoming packet.

Network congestion is one of the major factors affecting sys-
tem performance. Multiple packets competing for the same output
port in a router [2] [3] results in the buffering of the packets that
lose switch arbitration. Such port conflicts increase the packets
buffer occupancy leading to the formation of congestion hot-spots.
Congestion causes delay as packets now take longer than usual
to reach destinations. If packet delay of the latency critical appli-
cations exceeds a specific threshold, it can lead to the application
level stalling and timeout. Congestion at one router not only affects
packets passing through that router, but also creates back pressure
over other neighboring routers. This can impact packets travel-
ling through the neighbors of congestion hot-spots. VoIP, real-time
video streaming, IPTV, Video on Demand, Video Conferencing, and
multi-player games are examples of latency sensitive applications
that can get impacted by NoC level congestion [4].

Outsourcing IP to third-party intellectual property (3PIP) providers
has a potential security risk. NoC is the likely target of HT inser-
tion in 3PIP since it has total system visibility from both a system
and communication standpoint. Furthermore, during inter-tile com-
munication, messages are routed through NoC routers, making
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them an apt choice for employing Hardware Trojans (HT). Due to
wide range of impact NoC routers are prime target for attacks in
TCMPs [5] [6]. Possibilities of HT attacks at NoC level are gaining
attention [7] [8]. HTs can alter the system behaviour by mount-
ing various attacks such as leakage of critical data, unauthorised
access, delay-of-service, and even system failure. Study of threat
impact, associated challenges, and proposing techniques for the
detection and localization of such attacks is gaining popularity in
NoC domain [9] [10].

In this paper, we implement an HT in NoC router called as Delay
Trojan (DT), which introduces additional random delay to flits
passing through it. Additional flit delay keeps virtual channels (VCs)
engaged for longer periods of time, causing network congestion.
Proposed DT creates effects similar to the congestion in NoC routers
that makes it hard to detect and challenging to mitigate. As a result,
latency-critical application packets incur delay, causing stalls and
eventually deteriorates system performance and throughput. To the
best of our knowledge, modeling and impact analysis of DT have
not been explored before. We make the following contributions:

a. We design and implement a novel DT that intermittently
delays flits held in the input buffer of NoC routers.

b. We model an instance of DT in an 8X8 mesh TCMP and
study its impact at core, cache, and NoC level.

c. We propose a dynamic adaptive learning framework embed-
ded in NoC routers that detects DT with reasonable accuracy
and alerts neighboring routers also for subsequent remedial
measures.

d. We also propose a caging technique to re-route packets
around routers responsible for creating abnormal packet
delays either by a DT or by genuine congestion hot-spots.

2 DELAY TROJAN ATTACK IN TCMP
Existing studies in the literature assess the variation in congestion
caused by a variety of underlying routing algorithms and traffic
patterns. Average packet latency can be increased up to a factor of 15
due to congestion [11] [12]. Motivated by these findings, we propose
a malicious implant known as Delay Trojan in an NoC router that
introduces a random intermittent delay to selected packets passing
through it. We assume that at any given point in time there exists
at most one DT infected router in the NoC. While there maybe
possibility of multiple DTs in the NoC, our threat model is limited
to a single DT active at a time. In case there are multiple DTs, that
would have noticeable effect on the performance which will not
help the DT to remain active unnoticed. In our threat model, even
though the DT is considered to be always active, it mount attacks
on the packets only with the probability p.

The proposed DT is a tiny circuit that can attack packets when
they reside in the input port buffer of the infected router, similar to
the one shown in input buffer of Figure 2. The DT facilitates this
by blocking the control signals that trigger the route computation
activity, which disables the routing operation. After a random num-
ber of delay cycles, the control signal is activated again, causing
the delayed packet to be routed and arbitrated, and the packet to
be sent to its destination. The DT increases the miss penalty of
critical L1 cache misses by creating a congestion in the path of
a few random cache miss request packets. For the HT attack, we

Figure 2: NoC router with the proposed DAC module

choose the L1 miss request packets since the L1 miss penalty has a
greater influence on the performance.

3 TROJAN DETECTION AND MITIGATION
Since the mitigation module is unaware about the DT location,
every router in the NoC has a proposed Dynamic Adaptive Caging
(DAC) module to detect, localize, and eliminate the impact of poten-
tial DT. DAC technique consists of three phases: Trojan Detection
by Detection Unit (DU), Dynamic Caging by Caging Control Unit
(CCU), and Packet Re-routing unit (RRU) that takes care of the
alternative route such that packet reaches its destination. The in-
teraction among various units of DAC with other components of
router is shown in the Figure 2.

3.1 Phase 1: Trojan Detection
The presence of DT is detected by a Delay Comparator (DC) associ-
ated with the input ports and DU that coordinates it. DAC proposes
a minor modification in the head flit by adding two fields; Average
Time spent per Router (ATR) and Time spent in Previous Router (TPR),
updated in the head flit by DC as it leaves the router.

DT detection is done with the help of ATR and TPR. The DU con-
tains a delay_counter, alert_counter, and a 4- bit flag flag_NSEW to
represent a direction. When a new packet arrives, the ATR and TPR
values are extracted from the head flit and processed by DC. If the
difference (TPR-ATR) is larger than a specified anomaly_threshold,
DC updates the DU to increment the delay_counter. We call such
packets as anomaly packets. The comparison of ATR and TPR and
subsequent updation (if any) of delay_counter takes place for every
incoming head flit. This process helps to comprehend the number
of packets experiencing significantly larger delay in the previous
router alone when compared to the average delay experienced
across all routers they traveled so far.

At the end of a time_epoch, DU checks if delay_counter is larger
than the counter_threshold. If so, alert_counter is incremented, else
it is reset. In short, alert_counter is incremented only if there is a sig-
nificant number of anomaly packets identified inside a time_epoch.
Next step is to check whether the alert_counter is incremented
in every subsequent time_epoch indicating the presence of many
packets getting delayed in the previous router. If such behaviour
is not noticed for at least one time_epoch, alert_counter is cleared
and we conclude that the previous router is genuine. However, if



alert_counter exceeds an alert_threshold, DU identifies the neigh-
bor as a prime suspect of DT and the appropriate direction flag in
flag_NSEW is set. Once the router identifies that one of its neigh-
bors is a suspected DT (as one of the bits in flag_NSEW=1), it
invokes the CCU to take necessary action and initiate the creation
of cage to protect the packets from entering the DT router. The
working of DU, operation of various counters, and its association
with different thresholds is shown in Algorithm 1.

Due to the blockedVCs creating congestion, leads to back-pressure
and DT radiates delay effect over the packets passing through its
neighbors while boosting the possibility of finding anomaly pack-
ets in that region. This is a case of false positives. Our mecha-
nism ensures the elimination of false positives by employing a
continuous multilevel packet monitoring with anomaly_threshold,
counter_threshold, and alert_threshold. Packets incurring delay due
to the back-pressure and usual NoC congestion cannot sustain
through three levels of thresholds, hence sets up the flag_NSEW.

Algorithm 1: DT Detection
Input : Incoming packet information ATR and TPR
Output :Alert with DT node detection
𝑇 : Time Epoch Length;
𝐴𝑁𝑇 : anomaly_threshold;𝐶𝑁𝑇 : counter_threshold;𝐴𝐿𝑇 : alert_threshold
𝐼𝐶𝑇 : Initial Counter Threshold;𝑚_𝑑𝑖𝑟 : Input Port Direction;
𝑓 𝑙𝑎𝑔_𝑎𝑙𝑒𝑟𝑡 : Alert Flag; 𝑓 𝑙𝑎𝑔_𝑁𝑆𝐸𝑊 : Alert Direction;
/*Delay Comparator */
if (𝑇𝑃𝑅 −𝐴𝑇𝑅) > 𝐴𝑁𝑇 then

𝑑𝑒𝑙𝑎𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑑𝑒𝑙𝑎𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1;

/*At the end of T cycles */
if 𝑑𝑒𝑙𝑎𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 > 𝐶𝑁𝑇 then

𝑎𝑙𝑒𝑟𝑡_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑎𝑙𝑒𝑟𝑡_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1;
if 𝑎𝑙𝑒𝑟𝑡_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ≥ ALT then

𝑓 𝑙𝑎𝑔_𝑎𝑙𝑒𝑟𝑡 = 1; 𝑓 𝑙𝑎𝑔_𝑁𝑆𝐸𝑊 =𝑚_𝑑𝑖𝑟 ;
Send MF to neighbors
𝑎𝑙𝑒𝑟𝑡_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0; 𝐶𝑁𝑇 = 𝐼𝐶𝑇 ;

else
𝐶𝑁𝑇 = 𝐶𝑁𝑇 /2;

else
𝑎𝑙𝑒𝑟𝑡_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0; 𝐶𝑁𝑇 = 𝐼𝐶𝑇 ;

delay_counter=0 /*RESET at the end of every time interval */

3.2 Phase 2: Dynamic Adaptive Caging
When a router detects the possibility of a DT in its neighboring
router, it raises the appropriate bit in flag_NSEW and triggers CCU
to initiate dynamic adaptive caging process. CCU uses a special flit
calledmessenger_flit (MF ) to build a cage around the DT router. The
caging process involves informing all 8 of the surrounding routers
about the HT. To facilitate this, the router detecting DT sends two
MF containing required information; one in clockwise and other in
anticlockwise direction. The presented caging approach is slightly
inspired from the HT shielding mechanism [13] [14].

Apart from the mandatory fields of a head fit, the MF addi-
tionally consists of four fields; namely, propagation_dir, hop_count,
alert_flag, and alert_dir. 1-bit propagation_dir denotes the direc-
tion of MF propagation; clockwise (1) and anticlockwise (0). A
2-bit hop_count indicates required number of hops the MF needs to
be propagated further. At every intermediate router (cage-corner
routers) hop_count is decremented and MF propagation stops as it
reaches 0. 1-bit alert_flag indicates whether the router receiving

Figure 3: Illustration of exchange of messenger_flits (MF ) to
build a cage around DT in router 27.

the MF is a cage-edge router (1), or a cage-corner router (0). Cage-
edge routers are always the direct neighbor of DT. The alert_flag
is flipped every time before propagating the MF to the next router.
The last field alert_dir indicates the direction of DT with respect to
the router receiving the MF and is updated only at the cage-edge
routers.

We show an illustrative example using Figure 3 to explain the
process of erecting a cage in an 8x8 mesh NoC assuming router 27
as DT infected router. Let 26 be the west neighbor of 27 detecting
DT using trojan detection mechanism discussed in last section and
sets the ’E’ bit of flag_NSEW. Thus, 26 identifies its east neighbor as
DT. The CCU of 26 generates two MF to inform all of the 8 routers
surrounding 27. The firstMF is forwarded to 34 while the second is
forwarded to 18. Note that MF comprises of four special fields and
accordingly the value {1, 3, 0, S} is sent from 26 to 34 interpreted
as follows. The MF has to be forwarded in the clockwise direction
{1}, propagated for another 3 more hops {3}, the recipient 34 is a
cage-corner router for the cage {0}, and DT is in the south of 34
{S}. 34 upon receiving the MF, get it processed in its CCU, perform
necessary updates in local router, make required modifications in
MF, and forwards to its neighbor in clockwise path with final field
values of {1, 2, 1, S}. The hop_count field is decremented from 3 to
2 and alert_flag is flipped from 0 to 1 indicating new recipient 35
is a cage-edge router and the direct neighbor of DT. The CCUs of
35, 36, and 28 now process the MF and reflect necessary updates
to register 27 as a DT router. Similarly the other MF initiated by
26, propagates through 18, 19, 20 and finally reaches 28 with the
field values shown in Figure 3. Thus, the DU and CCU together
pass essential information to all 8 surrounding routers and erects a
cage such that movement of packets through DT can be stopped.

Cage building is an adaptive process that involves the compari-
son of the self learning and received learning before cage formation.
For instance, 19 receiving MF can have one of the three possible
cases. Case 1, when 19 receives MF from 26 and also has its own
observation about experiencing the abnormal behaviour by 27 but
less than required threshold count. Case 2, when 19 has already
initiated MF in one of the previous cycles, and Case 3, when 19 yet
not register any discrepancy from 27. The first case advances to
second if 19 observes the similar abnormalities from DT router in
subsequent cycles, however, no other incoming packets other than
coming from 26 are re-routed in the third case. 19 only dispenses the
re-routing cooperation to 26 if no abnormality from 27 is registered



Figure 4: Illustration of Packet Re-Routing

by it. The cage formation completes only when all the cage-edge
router experiences the similar behaviour from DT node.

The DT is intermittent in nature and caging design is capable
of releasing the cage after a specific Caging Time and re-cage if
DT behaviour continues. Proposed DAC is capable of detecting DT
irrespective of its location, provided there exists only one active DT
at any given point in time and not resides at an edge or a corner
router. It is also possible that multiple DT neighbors detect the DT
presence more or less at the same time and generate separate MF.
Due to the propagation of separate MF initiated by two different
routers to cage the same DT, we perform a cross verification at
CCU before propagation that discards it if a received MF is alerting
the same DT the current router is already aware about.

3.3 Phase 3: Packet Re-Routing
RRU of DAC module handles such packets by facilitating an al-
ternate travel path to destinations. The active caging status and
flag_NSEW helps a router to distinguish the output port leading to
DT router that must be disabled. Accordingly, if the computed and
disabled output port of a packet is same then the packet is re-routed
by assigning a new output port.

Re-routing for two packets P1 and P2 is shown in Figure 4. We
notice that the cage is erected and accordingly packet reaching
the cage-edge routers (26, 35, 19, and 28) is now re-routed. Con-
sider an instance of P1 traveling from S1 to D1, upon reaching
35 is assigned south output port which is disabled by the CCU,
henceforth, to perform re-routing either west or east is chosen
randomly to forward P1. P1 is marked as re-routed packet such that
the downstream routers facilitate the re-routing instead of applying
XY routing. Likewise P1 follows the path shown in blue color and
finally reaches D1. This is a classical example of re-routing leading
into a non-minimal alternative path for the packet.

Consider another case when P2 moves from S2 to D2 and upon
reaching cage-edge router 26, the computed and disabled output
port is come out to be same, hence P2 is assigned with south port.
Other cage routers recognises P2 as a re-routed packet assist the
re-routing as shown with pink arrows in the figure. At router 18,
computed output port is distinct from input port usual routing is
employed and the P2 follows rest of the shown path to reach D2.
Due to caging, packets are prevented from travelling through DT
and hence do not experience any trojan induced delay. However,
packets destined to DT are not affected by caging. Similarly, packets

generated by DT tile also remain unaffected. Since detection hap-
pens dynamically at run-time by observing the anomaly in packet
delays, few packets might get still affected by DT before caging
is activated. However, since routing decision is taken only for the
head flit and all other flits of the packet follows the same path caus-
ing no violation of wormhole routing. Speculative re-routing leads
to underlying XY routing violation giving rise to a possibility of
deadlocks, unless addressed at the deign level. For example, when
P1 moves from router 43 to 35 and then to 34, it initially travels
south and takes a west turn, which is against the XY turn rules and
can leave the system to a deadlock. To prevent deadlock, we use an
already established concept of intermediate destination, ejection,
and re-injection [15].

4 EXPERIMENTAL SETUP
We use the event-driven cycle accurate simulator gem5 [16] to
model a 64-tile TCMP with an 8×8 mesh NoC. Every tile consists
of an Out of Order CPU with ALPHA architecture and dynamic
instruction scheduling. The memory system consists of a 4 KB, 4-
way set associative private split (Instruction and Data) L1 cache, and
a 1024 KB, 8-way set associative shared distributed L2 cache. We fix
12 GB of main memory for our system.We use Rubymemory model,
MESI two level cache coherence protocol and Garnet framework
for NoC that uses XY routing. We have 3 VCs per input port for
a 64-bit flit channel. We use a single flit request packet and 5 flit
reply packets.

We compare the performances of the following architectures:
• BL: A baseline NoC without any HT.
• DT: An NoC with one DT in a randomly chosen router as
proposed in Section II with an attack probability of p= 0.15
and induced delay= 128 cycles.

• DAC: An NoC with proposed DAC module mentioned in
Section III.

To evaluate performance of the above architectures, we use SPEC
CPU 2006 benchmarks. Based on the Misses Per Kilo Instructions
(MPKI), we categorize benchmarks into high (more than 24 MPKI)
and low (less than 18 MPKI) benchmarks considering latency sensi-
tive applications are running on cores. The High MPKI benchmarks
group consists of lbm,milc, soplex, and cactusADM . The Low MPKI
benchmarks group contains namd, hmmer, gromacs, and libquan-
tum. For experimentation, we set up five workloads with different
combinations of benchmarks as shown in Table I. After fast for-
warding the execution to the region of interest, DT and DAC are
activated, and statistics are collected. We define region of interest as
set of nine routers including DT and its eight surrounding routers.

5 EXPERIMENTAL RESULTS
We analyse the impact of DT on NoC and also evaluate the per-
formance of our proposed mitigation system based on the metrics
namely; average packet latency, average miss penalty, average hop
count, and buffer occupancy at each router.

5.1 Impact on Packet Latency and Hop Count
Since our DT is attacking flits of the packets traveling through
the NoC, we study its impact at NoC level by collecting average
packet latency and average number of hops. Figure 5 shows the



Table 1: Workload Characteristic Details of SPEC CPU 2006 Benchmark Mixes

Workload High MPKI benchmark instances Low MPKI benchmark instances Benchmarks Characteristics
lbm milc soplex cactusADM namd hmmer gromacs libquantum

WL1 8 8 8 8 8 8 8 8 50% High MPKI, 50% Low MPKI
WL2 4 4 4 4 12 12 12 12 25% High MPKI, 75% Low MPKI
WL3 12 12 12 12 4 4 4 4 75% High MPKI, 25% Low MPKI
WL4 0 0 0 0 16 16 16 16 100% Low MPKI
WL5 16 16 16 16 0 0 0 0 100% High MPKI

(a) Comparison of APL and Hops
for WL1

(b) Comparison of AMP for WL1
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Figure 5: Performance Statistics (Average Packet Latency - APL, Average Miss Penalty - AMP and Hops) for all Workloads
comparison of average packet latency and the hop count for the
packets traveling through the NoC for baseline (BL), NoC with
a DT and an NoC with caging based mitigation approach using
WL1 mentioned in Table 1. The solid bars represent latency values
and pattern bars represent hop counts. We notice five solid bars,
indicating average latency of all the packets passing through the
NoC (L-PA), packets passing through the DT router alone (L-PT),
packets passing through the region of interest (L-PR), packets that
are impacted by DT (L-PI), and packets that are re-routed by the
DAC mechanism (L-PRR). Similarly, in terms of average hops too
we define H-PA, H-PT, H-PR, H-PI, and H-PRR.

The effect on L-PA in BL and DT is same since trojan delays less
than 1% of total packets in the NoC. As expected, due to delay of
movement of packet in DT and subsequent back pressure created
by it, L-PR and L-PT are slightly higher in DT and DAC than in
BL. We observe that packets passing through the region of interest
experience a slightly higher delay on average because of the cre-
ated congestion. However, the HT effect is clearly visible on the
impacted packets (refer L-PI bar of DT and DAC), with an increase
of 800% as compared to BL. When we apply DAC mitigation, we
can see that the latency comes down and is close to that of BL. It
clearly demonstrates the effectiveness of our proposed detection
and mitigation system. The L-PRR of DAC is slightly higher than
L-PA of BL because when we apply re-routing, the packets need
to travel additional hops to bypass the DT router. We also conduct
analysis for all workloads given in Table 1.

Average hops comparison for WL1 is also shown in Figure 5a.
The average number of hops is close to 6 in each case, except for
the re-routed packets (H-PRR) in DAC where it is around 7.5. This
is due to the additional hops and possible non-minimal route some
packets take due to DAC’s re-routing algorithm. This shows the
efficiency of DAC’s re-routing that enables a packet to reach the
destination without much delay.

The pattern bars in figure 5c shows the comparison of Average
Packet Latency (APL) across all five workloads. Irrespective of the
workloads, we observe that APL is same. This is because of the
fact the DT is not distinguishing the packets based on its source
and number of NoC packets created by that source which is the
MPKI property of the benchmark. However, we can notice that the
miss penalty bars (solid bars) shows variation across the workloads
discussed in next subsection.
5.2 Impact on L1 Cache Miss penalty
Average Miss Penalty (AMP) of an L1 request is calculated as the
time taken for the request to receive its reply at the L1 cache. This
is the amount of time an outstanding miss entry stays in the Miss
Status Handling Register of L1 cache. This includes the latency
of L1 miss request packet, access time of L2 cache, and latency of
miss reply packet. If this L1 miss results in an L2 miss, additional
round-trip delay over NoC from L2 to main memory and main
memory access time has to be added. AMP of all L1 requests (R-A),
L1 requests through the region of interest (R-R), L1 requests through
the trojan router (R-T), impacted L1 requests (R-I), and rerouted
L1 requests (R-RR) is compared across BL, DT, and DAC in Figure
5b. The R-A and R-R in DT architecture (blue bar) is only slightly
higher than that of respective value in BL (green bar) that too due to
the congestion created by DT. However, when we compare the R-T
value we see that the difference increases and the effect is clearly
visible in R-I where DT causes the AMP to rise to 150% of its value
in BL. The effectiveness of DAC is observed in R-RR, DAC restores
the AMP of rerouted packets close to the BL value.

The comparison of AMP across all packet classifications is shown
in Figure 5c for all five workloads. The solid bars in figure 5c shows
the comparison of AMP across all five workloads. We can see that
DAC lowers the AMP across all workloads. Since WL5 consists of
high MPKI benchmarks, it generates more NoC packets leading
to more number of impacted packets and hence high AMP bars.



At the same time, the AMP bars in WL4 are relatively low due
to the presence of low MPKI benchmarks. As expected, the AMP
bars of WL1, WL2, and WL3 exhibit proportional rise based on the
percentage of high MPKI benchmarks in the workload.

5.3 Buffer Occupancy and Flit Flow Analysis
We collect the Cumulative Buffer Occupancy (CBO) and Cumulative
Flit Count (CFC) of all flits passing through a router. We plot CBO
and CFC as a heat map for WL1 when DT is present in router 27
as shown in Figure 6. Variation in buffer occupancy and flit count
is shown in a range; green (very low) to red (ultra high). In terms
of CBO, more the colour is on red side, more the number of cycles
flits stayed in buffer of the respective router, whereas in terms of
CFC, more red colour shows more number of flits traveled through
the respective router. As expected, the center of the mesh indicates
higher CBO and CFC even in BL as flits travel through center region
more. The DT router stands out as the only red node in Figure 6b,
whereas it changes to green in Figure 6c by the effective caging that
blocks packets to DT. The orange colour effect is registered due to
the back pressure caused by congestion in Figure 6b. Moreover, we
observe that the caging do not put much pressure on the buffer stay
on the surrounding routers. The CFC analysis in Figure 6f exhibits
heavy flit traffic around the DT router and it shows that our caging
performs re-routing correctly. Overall the heat map study with
CBO and CFC comparison gives us a clear picture of the delay vs
flit flow relation in the proposed DT and its mitigation technique.

5.4 Overhead Analysis
We implement the proposed DT and DAC module in Verilog HDL
and integrate to ProNoC [17] that facilitates prototyping of NoC to
verify our designs. The designs are synthesised in 90 nm technology
using Synopsys DC. Since neither DT nor the DACmodule operates
in the critical path, the NoC with DT and DAC can be operated
at the same frequency as that of BL. DAC circuit uses counters
and flags incurring an additional storage of 62 bits per router. We
estimate additional area and power incurred by the DT and DAC
module using Orion 3.0 and find that there is an area overhead of
0.06% for DT implementation and 1.6% for the DAC module with
respect to the BL while power overhead is up to 0.75%.

6 CONCLUSION
This paper introduced the HT attack possibility that incurred delay
to selected packets. The delay created is comparable to the one
caused by normal congestion such that the neighboring router do
not suspect anything abnormal. We demonstrated that the proposed
DT located on the NoC router exhibited the ability to degrade the
system performance by stalling the cores running latency sensi-
tive applications. We also suggested a threshold statistics-based
detection and localization technique, as well as a dynamic adaptive
caging mechanism that created a cage around the DT router. We
then employed a packet re-routing method to bypass the DT router.
We are able to recover the system’s performance at a minimum cost
in terms of average packet latency, average miss penalty, area and
power overhead. Measuring system performance for a variety of
impacted message types, thresholds, and workload combinations
holds a potential future work to examine.

Figure 6: Heat Map Analysis for Cumulative Buffer Occu-
pancy (CBO) and Cumulative Flit Count (CFC)
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